601
|
Heinz E, Pichler P, Heinz C, op den Camp HJM, Toenshoff ER, Ammerer G, Mechtler K, Wagner M, Horn M. Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies. Proteomics 2010; 10:4363-76. [DOI: 10.1002/pmic.201000302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
602
|
Steinert M. Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 2010; 22:70-6. [PMID: 21109012 DOI: 10.1016/j.semcdb.2010.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
603
|
Marsano F, Boatti L, Ranzato E, Cavaletto M, Magnelli V, Dondero F, Viarengo A. Effects of mercury on Dictyostelium discoideum: proteomics reveals the molecular mechanisms of physiological adaptation and toxicity. J Proteome Res 2010; 9:2839-54. [PMID: 20408569 DOI: 10.1021/pr900914t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dictyostelium discoideum amoebae were exposed to Hg 2 microM corresponding to a sublethal concentration and Hg 10 microM with the first effects on mortality and replication rate. A total of 900 spots were visualized by 2-DE electrophoresis. Two-hundred fifty single proteins were identified by mass spectrometry. Low Hg concentration (2 microM) treatment induced up-regulation of 13 spots, mainly involved in oxidative stress response/detoxification, oxidoreductase activity, and metabolic processes. High Hg concentration (10 microM) treatment showed a different PES with 12 proteins downregulated and only two up-regulated, mainly involved in cellular metabolic processes, metal ion binding, and transferase activity. The analyses for the carbonylation show no changes after 2 microM Hg(2+) treatment and 13 differentially carbonylated proteins after 10 microM Hg(2+) involved in a broad range of cellular processes. Our findings provide insight into the mechanisms of physiological adaptation and toxicity to a low and an high mercury concentration, respectively, of Dictyostelium amoebae.
Collapse
Affiliation(s)
- Francesco Marsano
- Università del Piemonte Orientale Amedeo Avogadro - Alessandria, Novara, Vercelli, Department of Environmental and Life Sciences (DISAV), Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
604
|
The C-module-binding factor supports amplification of TRE5-A retrotransposons in the Dictyostelium discoideum genome. EUKARYOTIC CELL 2010; 10:81-6. [PMID: 21076008 DOI: 10.1128/ec.00205-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retrotransposable elements are molecular parasites that have invaded the genomes of virtually all organisms. Although retrotransposons encode essential proteins to mediate their amplification, they also require assistance by host cell-encoded machineries that perform functions such as DNA transcription and repair. The retrotransposon TRE5-A of the social amoeba Dictyostelium discoideum generates a notable amount of both sense and antisense RNAs, which are generated from element-internal promoters, located in the A module and the C module, respectively. We observed that TRE5-A retrotransposons depend on the C-module-binding factor (CbfA) to maintain high steady-state levels of TRE5-A transcripts and that CbfA supports the retrotransposition activity of TRE5-A elements. The carboxy-terminal domain of CbfA was found to be required and sufficient to mediate the accumulation of TRE5-A transcripts, but it did not support productive retrotransposition of TRE5-A. This result suggests different roles for CbfA protein domains in the regulation of TRE5-A retrotransposition frequency in D. discoideum cells. Although CbfA binds to the C module in vitro, the factor regulates neither C-module nor A-module promoter activity in vivo. We speculate that CbfA supports the amplification of TRE5-A retrotransposons by suppressing the expression of an as yet unidentified component of the cellular posttranscriptional gene silencing machinery.
Collapse
|
605
|
Abstract
Any established or aspiring model organism must justify itself using two criteria: does the model organism offer experimental advantages not offered by competing systems? And will any discoveries made using the model be of wider relevance? This review addresses these issues for the social amoeba Dictyostelium and highlights some of the organisms more recent applications. These cover a remarkably wide gamut, ranging from sociobiological to medical research with much else in between.
Collapse
|
606
|
Mondal S, Burgute B, Rieger D, Müller R, Rivero F, Faix J, Schleicher M, Noegel AA. Regulation of the actin cytoskeleton by an interaction of IQGAP related protein GAPA with filamin and cortexillin I. PLoS One 2010; 5:e15440. [PMID: 21085675 PMCID: PMC2978108 DOI: 10.1371/journal.pone.0015440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/06/2023] Open
Abstract
Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Bhagyashri Burgute
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Daniela Rieger
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, München, Germany
| | - Rolf Müller
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Francisco Rivero
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- Department of Biological Sciences, The Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Michael Schleicher
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, München, Germany
| | - Angelika A. Noegel
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- * E-mail:
| |
Collapse
|
607
|
Maniak M. Dictyostelium as a model for human lysosomal and trafficking diseases. Semin Cell Dev Biol 2010; 22:114-9. [PMID: 21056680 DOI: 10.1016/j.semcdb.2010.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Abstract
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.
Collapse
Affiliation(s)
- Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, Kassel, Germany.
| |
Collapse
|
608
|
Lelong E, Marchetti A, Guého A, Lima WC, Sattler N, Molmeret M, Hagedorn M, Soldati T, Cosson P. Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing. Cell Microbiol 2010; 13:246-58. [PMID: 21040356 DOI: 10.1111/j.1462-5822.2010.01532.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.
Collapse
Affiliation(s)
- Emmanuelle Lelong
- Département de Physiologie Cellulaire et Métabolisme, Faculté de Médecine de Genève, Centre Médical Universitaire, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
609
|
Romeralo M, Rajguru SN, Silberman JD, Landolt JC, Fiz O, Stephenson SL. Population structure of the social amoeba Dictyostelium rosarium based on rDNA. FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2010.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
610
|
Bolourani P, Spiegelman G, Weeks G. Determinants of RasC specificity during Dictyostelium aggregation. J Biol Chem 2010; 285:41374-9. [PMID: 20971846 DOI: 10.1074/jbc.m110.181115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RasC is required for optimum activation of adenylyl cyclase A and for aggregate stream formation during the early differentiation of Dictyostelium discoideum. RasG is unable to substitute for this requirement despite its sequence similarity to RasC. A critical question is which amino acids in RasC are required for its specific function. Each of the amino acids within the switch 1 and 2 domains in the N-terminal portion of RasG was changed to the corresponding amino acid from RasC, and the ability of the mutated RasG protein to reverse the phenotype of rasC(-) cells was determined. Only the change from aspartate at position 30 of RasG to alanine (the equivalent position 31 in RasC) resulted in a significant increase in adenylyl cyclase A activation and a partial reversal of the aggregation-deficient phenotype of rasC(-) cells. All other single amino acid changes were without effect. Expression of a chimeric protein, RasG(1-77)-RasC(79-189), also resulted in a partial reversal of the rasC(-) cell phenotype, indicating the importance of the C-terminal portion of RasC. Furthermore, expression of the chimeric protein, with alanine changed to aspartate (RasG(1-77(D30A))-RasC(79-189)), resulted in a full rescue the rasC(-) aggregation-deficient phenotype. Finally, the expression of either a mutated RasC, with the aspartate 31 replaced by alanine, or the chimeric protein, RasC(1-78)-RasG(78-189), only generated a partial rescue. These results emphasize the importance of both the single amino acid at position 31 and the C-terminal sequence for the specific function of RasC during Dictyostelium aggregation.
Collapse
Affiliation(s)
- Parvin Bolourani
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
611
|
Alexander S, Alexander H. Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs. Semin Cell Dev Biol 2010; 22:97-104. [PMID: 20951822 DOI: 10.1016/j.semcdb.2010.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/06/2010] [Accepted: 10/11/2010] [Indexed: 01/28/2023]
Abstract
A Dictyostelium discoideum mutant with a disruption in the sphingosine-1-phosphate (S-1-P) lyase gene was obtained in an unbiased genetic analysis, using random insertional mutagenesis, for mutants with increased resistance to the widely used cancer chemotherapeutic drug cisplatin. This finding opened the way to extensive studies in both D. discoideum and human cells on the role and mechanism of action of the bioactive sphingolipids S-1-P and ceramide in regulating the response to chemotherapeutic drugs. These studies showed that the levels of activities of the sphingolipid metabolizing enzymes S-1-P lyase, sphingosine kinase and ceramide synthase, affect whether a cell dies or lives in the presence of specific drugs. The demonstration that multiple enzymes of this biochemical pathway were involved in regulating drug sensitivity provided new opportunities to test whether pharmacological intervention might increase sensitivity. Thus it is of considerable clinical significance that pharmacological inhibition of sphingosine kinase synergistically sensitizes cells to cisplatin, both in D. discoideum and human cells. Linkage to the p38 MAP kinase and protein kinase C (PKC) signaling pathways has been demonstrated. This work demonstrates the utility of D. discoideum as a lead genetic system to interrogate molecular mechanisms controlling the sensitivity of tumor cells to chemotherapeutic agents and for determining novel ways of increasing efficacy. The D. discoideum system could be easily adapted to a high throughput screen for novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Stephen Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
612
|
Silver TD, Moore CE, Archibald JM. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. J Eukaryot Microbiol 2010; 57:453-9. [PMID: 21040099 DOI: 10.1111/j.1550-7408.2010.00511.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ∼610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.
Collapse
Affiliation(s)
- Tia D Silver
- Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
613
|
|
614
|
Pang TL, Chen FC, Weng YL, Liao HC, Yi YH, Ho CL, Lin CH, Chen MY. Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility. J Cell Sci 2010; 123:3745-55. [PMID: 20940261 DOI: 10.1242/jcs.064709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.
Collapse
Affiliation(s)
- Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
615
|
Cao L, Peng B, Yao L, Zhang X, Sun K, Yang X, Yu L. The ancient function of RB-E2F pathway: insights from its evolutionary history. Biol Direct 2010; 5:55. [PMID: 20849664 PMCID: PMC3224931 DOI: 10.1186/1745-6150-5-55] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/20/2010] [Indexed: 01/08/2023] Open
Abstract
Background The RB-E2F pathway is conserved in most eukaryotic lineages, including animals and plants. E2F and RB family proteins perform crucial functions in cycle controlling, differentiation, development and apoptosis. However, there are two kinds of E2Fs (repressive E2Fs and active E2Fs) and three RB family members in human. Till now, the detail evolutionary history of these protein families and how RB-E2F pathway evolved in different organisms remain poorly explored. Results We performed a comprehensive evolutionary analysis of E2F, RB and DP (dimerization partners of E2Fs) protein family in representative eukaryotic organisms. Several interesting facts were revealed. First, orthologues of RB, E2F, and DP family are present in several representative unicellular organisms and all multicellular organisms we checked. Second, ancestral E2F, RB genes duplicated before placozoans and bilaterians diverged, thus E2F family was divided into E2F4/5 subgroup (including repressive E2Fs: E2F4 and E2F5) and E2F1/2/3 subgroup (including active E2Fs: E2F1, E2F2 and E2F3), RB family was divided into RB1 subgroup (including RB1) and RBL subgroup (including RBL1 and RBL2). Third, E2F4 and E2F5 share more sequence similarity with the predicted E2F ancestral sequence than E2F1, E2F2 and E2F3; E2F4 and E2F5 also possess lower evolutionary rates and higher purification selection pressures than E2F1, E2F2 and E2F3. Fourth, for RB family, the RBL subgroup proteins possess lower evolutionary rates and higher purification selection pressures compared with RB subgroup proteins in vertebrates, Conclusions Protein evolutionary rates and purification selection pressures are usually linked with protein functions. We speculated that function conducted by E2F4/5 subgroup and RBL subgroup proteins might mainly represent the ancient function of RB-E2F pathway, and the E2F1/2/3 subgroup proteins and RB1 protein might contribute more to functional diversification in RB-E2F pathway. Our results will enhance the current understanding of RB-E2F pathway and will also be useful to further functional studies in human and other model organisms. Reviewers This article was reviewed by Dr. Pierre Pontarotti, Dr. Arcady Mushegian and Dr. Zhenguo Lin (nominated by Dr. Neil Smalheiser).
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
616
|
Ras proteins have multiple functions in vegetative cells of Dictyostelium. EUKARYOTIC CELL 2010; 9:1728-33. [PMID: 20833893 DOI: 10.1128/ec.00141-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.
Collapse
|
617
|
Clemen CS, Tangavelou K, Strucksberg KH, Just S, Gaertner L, Regus-Leidig H, Stumpf M, Reimann J, Coras R, Morgan RO, Fernandez MP, Hofmann A, Müller S, Schoser B, Hanisch FG, Rottbauer W, Blümcke I, von Hörsten S, Eichinger L, Schröder R. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. ACTA ACUST UNITED AC 2010; 133:2920-41. [PMID: 20833645 DOI: 10.1093/brain/awq222] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations of the human valosin-containing protein gene cause autosomal-dominant inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. We identified strumpellin as a novel valosin-containing protein binding partner. Strumpellin mutations have been shown to cause hereditary spastic paraplegia. We demonstrate that strumpellin is a ubiquitously expressed protein present in cytosolic and endoplasmic reticulum cell fractions. Overexpression or ablation of wild-type strumpellin caused significantly reduced wound closure velocities in wound healing assays, whereas overexpression of the disease-causing strumpellin N471D mutant showed no functional effect. Strumpellin knockdown experiments in human neuroblastoma cells resulted in a dramatic reduction of axonal outgrowth. Knockdown studies in zebrafish revealed severe cardiac contractile dysfunction, tail curvature and impaired motility. The latter phenotype is due to a loss of central and peripheral motoneuron formation. These data imply a strumpellin loss-of-function pathogenesis in hereditary spastic paraplegia. In the human central nervous system strumpellin shows a presynaptic localization. We further identified strumpellin in pathological protein aggregates in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, various myofibrillar myopathies and in cortical neurons of a Huntington's disease mouse model. Beyond hereditary spastic paraplegia, our findings imply that mutant forms of strumpellin and valosin-containing protein may have a concerted pathogenic role in various protein aggregate diseases.
Collapse
Affiliation(s)
- Christoph S Clemen
- Institute of Biochemistry I, University of Cologne, Joseph-Stelzmann-Street 52, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
618
|
Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F. From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One 2010; 5:e11882. [PMID: 20711443 PMCID: PMC2920306 DOI: 10.1371/journal.pone.0011882] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/09/2010] [Indexed: 11/29/2022] Open
Abstract
To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.
Collapse
Affiliation(s)
- Sandrine Adiba
- Laboratoire d'Ecologie, CNRS UMR7625, Université Pierre et Marie Curie, Paris Universitas, Paris, France.
| | | | | | | | | |
Collapse
|
619
|
Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glockner G. Endosymbiotic Gene Transfer and Transcriptional Regulation of Transferred Genes in Paulinella chromatophora. Mol Biol Evol 2010; 28:407-22. [DOI: 10.1093/molbev/msq209] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
620
|
Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
621
|
Dubin M, Fuchs J, Gräf R, Schubert I, Nellen W. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Res 2010; 38:7526-37. [PMID: 20675719 PMCID: PMC2995078 DOI: 10.1093/nar/gkq664] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage.
Collapse
Affiliation(s)
- Manu Dubin
- Department of Genetics, University Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | | | | | | | | |
Collapse
|
622
|
Ferguson LC, Green J, Surridge A, Jiggins CD. Evolution of the Insect Yellow Gene Family. Mol Biol Evol 2010; 28:257-72. [DOI: 10.1093/molbev/msq192] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
623
|
Sugden C, Ross S, Bloomfield G, Ivens A, Skelton J, Mueller-Taubenberger A, Williams JG. Two novel Src homology 2 domain proteins interact to regulate dictyostelium gene expression during growth and early development. J Biol Chem 2010; 285:22927-35. [PMID: 20457612 PMCID: PMC2906285 DOI: 10.1074/jbc.m110.139733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Indexed: 01/01/2023] Open
Abstract
There are 13 Dictyostelium Src homology 2 (SH2) domain proteins, almost 10-fold fewer than in mammals, and only three are functionally unassigned. One of these, LrrB, contains a novel combination of protein interaction domains: an SH2 domain and a leucine-rich repeat domain. Growth and early development appear normal in the mutant, but expression profiling reveals that three genes active at these stages are greatly underexpressed: the ttdA metallohydrolase, the abcG10 small molecule transporter, and the cinB esterase. In contrast, the multigene family encoding the lectin discoidin 1 is overexpressed in the disruptant strain. LrrB binds to 14-3-3 protein, and the level of binding is highest during growth and decreases during early development. Comparative tandem affinity purification tagging shows that LrrB also interacts, via its SH2 domain and in a tyrosine phosphorylation-dependent manner, with two novel proteins: CldA and CldB. Both of these proteins contain a Clu domain, a >200-amino acid sequence present within highly conserved eukaryotic proteins required for correct mitochondrial dispersal. A functional interaction of LrrB with CldA is supported by the fact that a cldA disruptant mutant also underexpresses ttdA, abcG10, and cinB. Significantly, CldA is itself one of the three functionally unassigned SH2 domain proteins. Thus, just as in metazoa, but on a vastly reduced numerical scale, an interacting network of SH2 domain proteins regulates specific Dictyostelium gene expression.
Collapse
Affiliation(s)
- Christopher Sugden
- From the
School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Ross
- From the
School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Gareth Bloomfield
- the
Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Alasdair Ivens
- the
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom, and
| | - Jason Skelton
- the
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom, and
| | - Annette Mueller-Taubenberger
- the
Institute for Cell Biology and Center for Integrated Protein Science, Munich, Ludwig Maximilians University, Schillerstrasse 42, D-80336 Munich, Germany
| | - Jeffrey G. Williams
- From the
School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
624
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
625
|
Bakthavatsalam D, Gomer RH. The secreted proteome profile of developing Dictyostelium discoideum cells. Proteomics 2010; 10:2556-9. [PMID: 20422638 PMCID: PMC2926150 DOI: 10.1002/pmic.200900516] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 04/13/2010] [Indexed: 01/05/2023]
Abstract
Dictyostelium discoideum is a unicellular eukaryote that, when starved, aggregates to form multicellular structures. In this report, we identified the proteins secreted by developing Dictyostelium cells using MS-based proteomics. A total of 349 different secreted proteins were identified, indicating that at least 2.6% of the 13 600 predicted proteins in the Dictyostelium genome are secreted. Gene ontology analysis suggests that many of the secreted proteins are involved in protein and carbohydrate metabolism, and proteolysis.
Collapse
Affiliation(s)
- Deenadayalan Bakthavatsalam
- Rice University, Department of Biochemistry and Cell Biology, MS 140, 6100 S Main St, Houston, TX 77005. USA
| | - Richard H. Gomer
- Rice University, Department of Biochemistry and Cell Biology, MS 140, 6100 S Main St, Houston, TX 77005. USA
| |
Collapse
|
626
|
Flowers JM, Li SI, Stathos A, Saxer G, Ostrowski EA, Queller DC, Strassmann JE, Purugganan MD. Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum. PLoS Genet 2010; 6:e1001013. [PMID: 20617172 PMCID: PMC2895654 DOI: 10.1371/journal.pgen.1001013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 12/02/2022] Open
Abstract
Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle. Theories on the evolution of cooperation sometimes hinge on knowledge of genetic relatedness between individuals. Dictyostelium discoideum has been a model for the study of key biological phenomena, including the evolution and ecology of social cooperation, but the nature of genetic variation within this species is largely unknown. We determine the levels and patterns of molecular variation in this social species. We find a preference of genetically identical cells to cooperate with each other in forming fruiting bodies, a phenomenon known as kin discrimination. Kin discrimination, however, does not appear to be correlated with overall DNA divergence of the strains. Instead, familiarity appears to breed contempt, as strains from the same geographic location (which possibly encounter each other) show higher levels of kin discrimination than strains found further apart. We also show that sex, which is rarely observed in the laboratory, appears to be widespread in the wild—an interesting finding given that sex in D. discoideum is also associated with cooperation between numerous single cells to feed the developing cannibalistic zygote. The finding that sex may occur more frequently in the wild opens the possibility of conducting controlled laboratory matings and developing D. discoideum as a genetic model system.
Collapse
Affiliation(s)
- Jonathan M. Flowers
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Si I. Li
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Angela Stathos
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Gerda Saxer
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Elizabeth A. Ostrowski
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - David C. Queller
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Joan E. Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Michael D. Purugganan
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
627
|
Dubin M, Nellen W. A versatile set of tagged expression vectors to monitor protein localisation and function in Dictyostelium. Gene 2010; 465:1-8. [PMID: 20600701 DOI: 10.1016/j.gene.2010.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/13/2010] [Accepted: 06/22/2010] [Indexed: 11/29/2022]
Abstract
We describe here a series of vectors for ectopic expression of tagged proteins in Dictyostelium discoideum. These vectors allow the addition of N- or C-terminal tags (GFP, mRFP, 3xFLAG, 3xHA, 6xMYC or TAP) with an optimised polylinker sequence and no additional amino acid residues at the N- or C-terminus of the protein. The expression cassettes were introduced into vectors containing Blasticidin or Geneticin resistance markers and into integrating as well as extrachromosomal plasmids. The vectors are designed as high and low copy versions and thus allow for a limited expression level control. They are also convenient with regard to complementation, co- and super-transformation. Finally the vectors share standardised cloning sites, so that a gene of interest can be easily transferred between vectors as experimental requirements evolve. These vectors were used to study the localisation of several putative RNA processing proteins including EriA and DicerB.
Collapse
Affiliation(s)
- Manu Dubin
- Department of Genetics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | | |
Collapse
|
628
|
Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Graña O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, Escalante R. MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 2010; 123:1674-83. [DOI: 10.1242/jcs.066076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium and human MidA are homologous proteins that belong to a family of proteins of unknown function called DUF185. Using yeast two-hybrid screening and pull-down experiments, we showed that both proteins interact with the mitochondrial complex I subunit NDUFS2. Consistent with this, Dictyostelium cells lacking MidA showed a specific defect in complex I activity, and knockdown of human MidA in HEK293T cells resulted in reduced levels of assembled complex I. These results indicate a role for MidA in complex I assembly or stability. A structural bioinformatics analysis suggested the presence of a methyltransferase domain; this was further supported by site-directed mutagenesis of specific residues from the putative catalytic site. Interestingly, this complex I deficiency in a Dictyostelium midA− mutant causes a complex phenotypic outcome, which includes phototaxis and thermotaxis defects. We found that these aspects of the phenotype are mediated by a chronic activation of AMPK, revealing a possible role of AMPK signaling in complex I cytopathology.
Collapse
Affiliation(s)
- Sergio Carilla-Latorre
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - M. Esther Gallardo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Sarah J. Annesley
- Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Javier Calvo-Garrido
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Osvaldo Graña
- O. G., Bioinformatics Unit, Structural Biology and Biocomputing Program, A. V., Structural Computational Biology Group, Structural Biology and Biocomputing Program, Centro Nacional de Investigaciones Oncológicas, C/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Sandra L. Accari
- Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Paige K. Smith
- Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alfonso Valencia
- O. G., Bioinformatics Unit, Structural Biology and Biocomputing Program, A. V., Structural Computational Biology Group, Structural Biology and Biocomputing Program, Centro Nacional de Investigaciones Oncológicas, C/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rafael Garesse
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Paul R. Fisher
- Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
629
|
Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 2010; 11:283. [PMID: 20444260 PMCID: PMC2873481 DOI: 10.1186/1471-2164-11-283] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/05/2010] [Indexed: 11/24/2022] Open
Abstract
Background CCCH type zinc finger proteins are RNA binding proteins with regulatory functions at all stages of mRNA metabolism. The best-characterized member, tritetraproline (TTP), binds to AU rich elements in 3' UTRs of unstable mRNAs, mediating their degradation. In kinetoplastids, CCCH type zinc finger proteins have been identified as being involved in the regulation of the life cycle and possibly the cell cycle. To date, no systematic listing of CCCH proteins in kinetoplastids is available. Results We have identified the complete set of CCCH type zinc finger proteins in the available genomes of the kinetoplastid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. One fifths (20%) of all CCCH motifs fall into non-conventional classes and many had not been previously identified. One third of all CCCH proteins have more than one CCCH motif, suggesting multivalent RNA binding. One third have additional recognizable domains. The vast majority are unique to Kinetoplastida or to a subgroup within. Two exceptions are of interest: the putative orthologue of the mRNA nuclear export factor Mex67 and a 3'-5' exoribonuclease restricted to Leishmania species. CCCH motifs are absent from these proteins in other organisms and might be unique, novel features of the Kinetoplastida homologues. Of the others, several have a predicted, and in one case experimentally confirmed, connection to the ubiquitination pathways, for instance a HECT-type E3 ubiquitin ligase. The total number of kinetoplastid CCCH proteins is similar to the number in higher eukaryotes but lower than in yeast. A comparison of the genomic loci between the Trypanosomatidae homologues provides insight into both the evolution of the CCCH proteins as well as the CCCH motifs. Conclusion This study provides the first systematic listing of the Kinetoplastida CCCH proteins. The number of CCCH proteins with more then one CCCH motif is larger than previously estimated, due to the identification of non-conventional CCCH motifs. Experimental approaches are now necessary to examine the functions of the many unique CCCH proteins as well as the function of the putative Mex67 and the Leishmania 3'-5' exoribonuclease.
Collapse
|
630
|
Fernández-Robledo JA, Vasta GR. Production of recombinant proteins from protozoan parasites. Trends Parasitol 2010; 26:244-54. [PMID: 20189877 PMCID: PMC2862126 DOI: 10.1016/j.pt.2010.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/05/2010] [Accepted: 02/05/2010] [Indexed: 12/20/2022]
Abstract
Although the past decade has witnessed sequencing from an increasing number of parasites, modern high-throughput DNA sequencing technologies have the potential to generate complete genome sequences at even higher rates. Along with the discovery of genes that might constitute potential targets for chemotherapy or vaccination, the need for novel protein expression platforms has become a pressing matter. In addition to reviewing the advantages and limitations of the currently available and emerging expression systems, we discuss novel approaches that could overcome current limitations, including the 'pseudoparasite' concept, an expression platform in which the choice of the surrogate organism is based on its phylogenetic affinity to the target parasite, while taking advantage of the whole engineered organism as a vaccination adjuvant.
Collapse
Affiliation(s)
- José A Fernández-Robledo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, IMET, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202-3101, USA. <>
| | | |
Collapse
|
631
|
Bentley AA, Adams JC. The evolution of thrombospondins and their ligand-binding activities. Mol Biol Evol 2010; 27:2187-97. [PMID: 20427418 DOI: 10.1093/molbev/msq107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex, multiprotein network that has essential roles in tissue integrity and intercellular signaling in the metazoa. Thrombospondins (TSPs) are extracellular, calcium-binding glycoproteins that have biologically important roles in mammals in angiogenesis, vascular biology, connective tissues, immune response, and synaptogenesis. The evolution of these complex functional properties is poorly understood. We report here on the evolution of TSPs and their ligand-binding capacities, from comparative genomics of species representing the major phyla of metazoa and experimental analyses of the oligomerization properties of noncanonical TSPs of basal deuterostomes. Monomeric, dimeric, trimeric, and pentameric TSPs have arisen through separate evolutionary events involving gain, loss, or modification of a coiled-coil domain or distinct domains at the amino-terminus. The relative transience of monomeric forms under evolution implicates a biological importance for multivalency of the C-terminal region of TSPs. Most protostomes have a single TSP gene encoding a pentameric TSP. The pentameric form is also present in deuterostomes, and gene duplications at the origin of deuterostomes and gene loss and further gene duplication events in the vertebrate lineage gave rise to distinct forms and novel domain architectures. Parallel analysis of the major ligands of mammalian TSPs revealed that many binding activities are neofunctions representing either coevolutionary innovations in the deuterostome lineage or neofunctions of ancient molecules such as CD36. Contrasting widely conserved capacities include binding to heparan glycosaminoglycans, fibrillar collagen, or RGD-dependent integrins. These findings identify TSPs as fundamental components of the extracellular interaction systems of metazoa and thus impact understanding of the evolution of ECM networks. The widely conserved activities of TSPs in binding to ECM components or PS2 clade integrins will be relevant to use of TSPs in synthetic extracellular matrices or tissue engineering. In contrast, the neofunctions of vertebrate TSPs likely include interactions suitable for therapeutic targeting without general disruption of ECM.
Collapse
Affiliation(s)
- Amber A Bentley
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
632
|
Nagayama K, Ohmachi T. Mitochondrial processing peptidase activity is controlled by the processing of alpha-MPP during development in Dictyostelium discoideum. MICROBIOLOGY (READING, ENGLAND) 2010; 156:978-989. [PMID: 20019080 DOI: 10.1099/mic.0.034306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We investigated the expression of the alpha subunit of the Dictyostelium mitochondrial processing peptidase (Ddalpha-MPP) during development. Ddalpha-MPP mRNA is expressed at the highest levels in vegetatively growing cells and during early development, and is markedly downregulated after 10 h of development. The Ddalpha-MPP protein is expressed as two forms, designated alpha-MPP(H) and alpha-MPP(L), throughout the Dictyostelium life cycle. The larger form, alpha-MPP(H), is cleaved to produce the functional alpha-MPP(L) form. We were not able to isolate mutants in which the alpha-mpp gene had been disrupted. Instead, an antisense transformant, alphaA2, expressing alpha-MPP at a lower level than the wild-type AX-3 was isolated to examine the function of the alpha-MPP protein. Development of the alphaA2 strain was normal until the slug formation stage, but the slug stage was prolonged to approximately 24 h. In this prolonged slug stage, only alpha-MPP(H) was present, and alpha-MPP(L) protein and MPP activity were not detected. After 28 h, alpha-MPP(L) and MPP activity reappeared, and normal fruiting bodies were formed after a delay of approximately 8 h compared with normal development. These results indicate that MPP activity is controlled by the processing of alpha-MPP(H) to alpha-MPP(L) during development in Dictyostelium.
Collapse
Affiliation(s)
- Koki Nagayama
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
- Science of Bioresources, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8551, Japan
| | - Tetsuo Ohmachi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
633
|
Parikh A, Huang E, Dinh C, Zupan B, Kuspa A, Subramanian D, Shaulsky G. New components of the Dictyostelium PKA pathway revealed by Bayesian analysis of expression data. BMC Bioinformatics 2010; 11:163. [PMID: 20356373 PMCID: PMC2873529 DOI: 10.1186/1471-2105-11-163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/31/2010] [Indexed: 11/30/2022] Open
Abstract
Background Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant information about genetic networks, but mining the data is not a trivial task. Algorithms that infer Bayesian networks from expression data are powerful tools for learning complex genetic networks, since they can incorporate prior knowledge and uncover higher-order dependencies among genes. However, these algorithms are computationally demanding, so novel techniques that allow targeted exploration for discovering new members of known pathways are essential. Results Here we describe a Bayesian network approach that addresses a specific network within a large dataset to discover new components. Our algorithm draws individual genes from a large gene-expression repository, and ranks them as potential members of a known pathway. We apply this method to discover new components of the cAMP-dependent protein kinase (PKA) pathway, a central regulator of Dictyostelium discoideum development. The PKA network is well studied in D. discoideum but the transcriptional networks that regulate PKA activity and the transcriptional outcomes of PKA function are largely unknown. Most of the genes highly ranked by our method encode either known components of the PKA pathway or are good candidates. We tested 5 uncharacterized highly ranked genes by creating mutant strains and identified a candidate cAMP-response element-binding protein, yet undiscovered in D. discoideum, and a histidine kinase, a candidate upstream regulator of PKA activity. Conclusions The single-gene expansion method is useful in identifying new components of known pathways. The method takes advantage of the Bayesian framework to incorporate prior biological knowledge and discovers higher-order dependencies among genes while greatly reducing the computational resources required to process high-throughput datasets.
Collapse
Affiliation(s)
- Anup Parikh
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
634
|
Neumann CS, Walsh CT, Kay RR. A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1. Proc Natl Acad Sci U S A 2010; 107:5798-803. [PMID: 20231486 PMCID: PMC2851905 DOI: 10.1073/pnas.1001681107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentiation-inducing factor 1 (DIF-1) is a polyketide-derived morphogen which drives stalk cell formation in the developmental cycle of Dictyostelium discoideum. Previous experiments demonstrated that the biosynthetic pathway proceeds via dichlorination of the precursor molecule THPH, but the enzyme responsible for this transformation has eluded characterization. Our recent studies on prokaryotic flavin-dependent halogenases and insights from the sequenced Dd genome led us to a candidate gene for this transformation. In this work, we present in vivo and in vitro evidence that chlA from Dd encodes a flavin-dependent halogenase capable of catalyzing both chlorinations in the biosynthesis of DIF-1. The results provide in vitro characterization of a eukaryotic oxygen-dependent halogenase and demonstrate a broad reach in biology for this molecular tailoring strategy, notably its involvement in the differentiation program of a social amoeba.
Collapse
Affiliation(s)
- Christopher S. Neumann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; and
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; and
| | - Robert R. Kay
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 OQH, UK
| |
Collapse
|
635
|
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010; 140:631-42. [PMID: 20211133 DOI: 10.1016/j.cell.2010.01.032] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/17/2009] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
636
|
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 2010; 6:e1000812. [PMID: 20333239 PMCID: PMC2841616 DOI: 10.1371/journal.ppat.1000812] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022] Open
Abstract
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica. All eukaryotic organisms have mitochondria, organelles cordoned by a double membrane, which are descendants of an ancestral bacterial endosymbiont. Nowadays, mitochondria are fully integrated into the context of diverse cellular processes and serve in providing energy, iron-containing prosthetic groups and some of the cellular building blocks like lipids and amino acids. In multi-cellular organisms, mitochondria play an additional vital role in cell signaling pathways and programmed cell death. In some unicellular eukaryotes which inhabit oxygen poor environments, intriguing mitochondrial adaptations have taken place resulting in the creation of specialized compartments known as mitosomes and hydrogenosomes. Several important human pathogens like Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis and microsporidia contain these organelles and in many cases the function and biogenesis of these organelles remain unknown. In this paper, we investigated the protein import pathways into the mitosomes of E. histolytica, which represent one of the simplest mitochondria-related compartment discovered yet. In accordance with the limited organellar proteome, we show that only core components of mitochondria-related protein import machines are present in E. histolytica to serve for the import of a small set of substrate proteins.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
637
|
A fully resolved phylogeny of the social amoebas (Dictyostelia) based on combined SSU and ITS rDNA sequences. Protist 2010; 161:539-48. [PMID: 20303322 DOI: 10.1016/j.protis.2009.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/19/2009] [Indexed: 11/20/2022]
Abstract
The dictyostelids possess a complex life cycle including aggregative and multicellular stages. They also include one of the most widely studied protistan model organisms, Dictyostelium discoideum. The current molecular phylogeny of dictyostelids is based largely on SSU (18S) rDNA sequences and shows a deep taxon consisting of four major groups, none of which correspond to the three traditional morphologically-defined genera. However, due to the generally slowly evolving nature of SSU rDNA, these data fail to resolve the majority of branches within the four groups. Given the highly morphologically mixed nature of the dictyostelid groups, it is important to resolve relationships within them. We have determined sequences for the internal transcribed spacers (ITS) of rDNA for nearly all species in the original dictyostelid global phylogeny. Phylogenetic analyses of these data, in combination with the previously determined SSU rDNA sequences, confidently resolve nearly all branches in the tree. This now fully resolved phylogeny confirms the utility of ITS for dictyostelid systematics and lays the ground work for further evolutionary study of the group.
Collapse
|
638
|
Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G. Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 2010; 11:R35. [PMID: 20236529 PMCID: PMC2864575 DOI: 10.1186/gb-2010-11-3-r35] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/11/2010] [Accepted: 03/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionarily divergent organisms often share developmental anatomies despite vast differences between their genome sequences. The social amoebae Dictyostelium discoideum and Dictyostelium purpureum have similar developmental morphologies although their genomes are as divergent as those of man and jawed fish. RESULTS Here we show that the anatomical similarities are accompanied by extensive transcriptome conservation. Using RNA sequencing we compared the abundance and developmental regulation of all the transcripts in the two species. In both species, most genes are developmentally regulated and the greatest expression changes occur during the transition from unicellularity to multicellularity. The developmental regulation of transcription is highly conserved between orthologs in the two species. In addition to timing of expression, the level of mRNA production is also conserved between orthologs and is consistent with the intuitive notion that transcript abundance correlates with the amount of protein required. Furthermore, the conservation of transcriptomes extends to cell-type specific expression. CONCLUSIONS These findings suggest that developmental programs are remarkably conserved at the transcriptome level, considering the great evolutionary distance between the genomes. Moreover, this transcriptional conservation may be responsible for the similar developmental anatomies of Dictyostelium discoideum and Dictyostelium purpureum.
Collapse
Affiliation(s)
- Anup Parikh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
639
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC, Kastner PM, Burghardt E, Gerisch G. The STE group kinase SepA controls cleavage furrow formation in Dictyostelium. ACTA ACUST UNITED AC 2010; 66:929-39. [PMID: 19479821 DOI: 10.1002/cm.20386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During a REMI screen for proteins regulating cytokinesis in Dictyostelium discoideum we isolated a mutant forming multinucleate cells. The gene affected in this mutant encoded a kinase, SepA, which is an ortholog of Cdc7, a serine-threonine kinase essential for septum formation in Schizosaccharomyces pombe. Localization of SepA-GFP in live cells and its presence in isolated centrosomes indicated that SepA, like its upstream regulator Spg1, is associated with centrosomes. Knockout mutants of SepA showed a severe cytokinesis defect and a delay in development. In multinucleate SepA-null cells nuclear division proceeded normally and synchronously. However, often cleavage furrows were either missing or atypical: they were extremely asymmetric and constriction was impaired. Cortexillin-I, a marker localizing strictly to the furrow in wild-type cells, demonstrated that large, crescent-shaped furrows expanded and persisted long after the spindle regressed and nuclei returned to the interphase state. Outside the furrow the filamentous actin system of the cell cortex showed strong ruffling activity. These data suggest that SepA is involved in the spatial and temporal control system organizing cortical activities in mitotic and postmitotic cells.
Collapse
|
640
|
Abstract
Many genes inherited from the alpha-proteobacterial ancestor of mitochondria have undergone evolutionary transfer to the nuclear genome in eukaryotes. In some rare cases, genes have been functionally transferred in pieces, resulting in split proteins that presumably interact in trans within mitochondria, fulfilling the same role as the ancestral, intact protein. We describe a nucleus-encoded mitochondrial protein (here named Cox1-c) in the amoeboid protist Acanthamoeba castellanii that is homologous to the C-terminal portion of conventional mitochondrial Cox1, whereas the corresponding portion of the mitochondrion-encoded A. castellanii Cox1 is absent. Bioinformatics searches retrieved nucleus-encoded Cox1-c homologs in most major eukaryotic supergroups; in these cases, also, the mitochondrion-encoded Cox1 lacks the corresponding C-terminal motif. These data constitute the first report of functional relocation of a portion of cox1 to the nucleus. This transfer event was likely ancient, with the resulting nuclear cox1-c being differentially activated across the eukaryotic domain.
Collapse
|
641
|
Whitney TJ, Gardner DG, Mott ML, Brandon M. Identifying the molecular basis of functions in the transcriptome of the social amoeba Dictyostelium discoideum. GENETICS AND MOLECULAR RESEARCH 2010; 9:394-415. [PMID: 20309825 DOI: 10.4238/vol9-1gmr752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.
Collapse
Affiliation(s)
- T J Whitney
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | | | | | | |
Collapse
|
642
|
Muramoto T, Müller I, Thomas G, Melvin A, Chubb JR. Methylation of H3K4 Is required for inheritance of active transcriptional states. Curr Biol 2010; 20:397-406. [PMID: 20188556 DOI: 10.1016/j.cub.2010.01.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Maintenance of differentiation programs requires stability, when appropriate, of transcriptional states. However, the extent to which inheritance of active transcriptional states occurs from mother to daughter cells has not been directly addressed in unperturbed cell populations. RESULTS By live imaging of single-gene transcriptional events in individual cells, we have directly recorded the potential for mitotic inheritance of transcriptional states down cell lineages. Our data showed strong similarity in frequency of transcriptional firing between mother and daughter cells. This memory persisted for complete cell cycles. Both transcriptional pulse length and pulsing rate contributed to overall inheritance, and memory was determined by lineage, not cell environment. Analysis of transcription in chromatin mutants demonstrated that the histone H3K4 methylase Set1 and Ash2, a component of the methylase complex, are required for memory. The effects of Set1 methylation may be mediated directly by chromatin, because loss of memory also occurred when endogenous H3K4 was replaced by alanine. Although methylated H3K4 is usually associated with active transcriptional units, the modification was not required for gene activity but stabilized transcriptional frequency between generations. CONCLUSIONS Our data indicate that methylated H3K4 can act as a chromatin mark reflecting the original meaning of "epigenetic."
Collapse
Affiliation(s)
- Tetsuya Muramoto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
643
|
Underwood J, Greene J, Steimle PA. Identification of a new mechanism for targeting myosin II heavy chain phosphorylation by Dictyostelium myosin heavy chain kinase B. BMC Res Notes 2010; 3:56. [PMID: 20199682 PMCID: PMC2838905 DOI: 10.1186/1756-0500-3-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 03/03/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Heavy chain phosphorylation plays a central role in regulating myosin II bipolar filament assembly in Dictyostelium, as well as in higher eukaryotic nonmuscle cells. Our previous work has demonstrated that the WD-repeat domain of Dictyostelium myosin II heavy chain kinase B (MHCK-B), unlike its counterpart in MHCK-A, is not absolutely required for targeting of the kinase to phosphorylate MHC. Thus, we tested the hypothesis that an asparagine-rich and structurally disordered region that is unique to MHCK-B can by itself function in substrate targeting. FINDINGS Biochemical assays comparing the activities of full-length MHCK-B, a truncation lacking only the WD-repeat domain (B-Delta-WD), and a truncation lacking both the N-rich region and the WD-repeat domain (B-Delta-N-WD) revealed that the N-rich region targets MHCK-B to phosphorylate MHC in a manner that leads to bipolar filament disassembly. This targeting is physiologically relevant since cellular over-expression of the B-Delta-WD truncation, but not the B-Delta-N-WD truncation, leads to dramatically reduced levels of myosin II filament assembly and associated defects in cytokinesis and multicellular development. CONCLUSIONS The results presented here demonstrate that an intrinsically unstructured, and asparagine-rich, region of a MHCK-B can mediate specific targeting of the kinase to phosphorylate myosin II heavy chain. This targeting involves a direct binding interaction with myosin II filaments. In terms of regulating myosin bipolar filament assembly, our results suggest that factors affecting the activity of this unique region of MHCK-B could allow for regulation of MHCK-B in a manner that is distinct from the other MHCKs in Dictyostelium.
Collapse
Affiliation(s)
- Julie Underwood
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Jonathan Greene
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Paul A Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
644
|
Shina MC, Müller R, Blau-Wasser R, Glöckner G, Schleicher M, Eichinger L, Noegel AA, Kolanus W. A cytohesin homolog in Dictyostelium amoebae. PLoS One 2010; 5:e9378. [PMID: 20186335 PMCID: PMC2826412 DOI: 10.1371/journal.pone.0009378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. PRINCIPAL FINDINGS Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(-) cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. SIGNIFICANCE The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.
Collapse
Affiliation(s)
- Maria Christina Shina
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rolf Müller
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rosemarie Blau-Wasser
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Gernot Glöckner
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute e.V., Jena, Germany
| | - Michael Schleicher
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- * E-mail: (AAN); (WK)
| | - Waldemar Kolanus
- Laboratory of Molecular Immunology, LIMES Institute of the University of Bonn, Bonn, Germany
- * E-mail: (AAN); (WK)
| |
Collapse
|
645
|
Czarna M, Mathy G, Mac'Cord A, Dobson R, Jarmuszkiewicz W, Sluse-Goffart CM, Leprince P, De Pauw E, Sluse FE. Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development. Proteomics 2010; 10:6-22. [PMID: 20013782 DOI: 10.1002/pmic.200900352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development.
Collapse
Affiliation(s)
- Malgorzata Czarna
- Laboratory of Bioenergetics and Cellular Physiology, University of Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
646
|
Abstract
The term 'single-molecule genomics' (SMG) describes a group of molecular methods in which single molecules are detected or sequenced. The focus on the analysis of individual molecules distinguishes these techniques from more traditional methods, in which template DNA is cloned or PCR-amplified prior to analysis. Although technically challenging, the analysis of single molecules has the potential to play a major role in the delivery of truly personalized medicine. The two main subgroups of SMG methods are single-molecule digital PCR and single-molecule sequencing. Single-molecule PCR has a number of advantages over competing technologies, including improved detection of rare genetic variants and more precise analysis of copy-number variation, and is more easily adapted to the often small amount of material that is available in clinical samples. Single-molecule sequencing refers to a number of different methods that are mainly still in development but have the potential to make a huge impact on personalized medicine in the future.
Collapse
Affiliation(s)
- Frank McCaughan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
647
|
Kortholt A, Bolourani P, Rehmann H, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM. A Rap/phosphatidylinositol 3-kinase pathway controls pseudopod formation [corrected]. Mol Biol Cell 2010; 21:936-45. [PMID: 20089846 PMCID: PMC2836974 DOI: 10.1091/mbc.e09-03-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GbpD, a guanine exchange factor specific for Rap1, has been implicated in adhesion, cell polarity, and chemotaxis of Dictyostelium cells. Here it is shown that activated Rap1 directly binds to PI3K. The activation of PI3K by Rap1 and RasG regulates basal and chemoattractant-stimulated PIP3 levels and pseudopod formation. GbpD, a Dictyostelium discoideum guanine exchange factor specific for Rap1, has been implicated in adhesion, cell polarity, and chemotaxis. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. Phg2, a serine/threonine-specific kinase, mediates Rap1-regulated cell-substrate adhesion, but not cell polarity or chemotaxis. In this study we demonstrate that overexpression of GbpD in pi3k1/2-null cells does not induce the adhesion and cell morphology phenotype. Furthermore we show that Rap1 directly binds to the Ras binding domain of PI3K, and overexpression of GbpD leads to strongly enhanced PIP3 levels. Consistently, upon overexpression of the PIP3-degradating enzyme PTEN in GbpD-overexpressing cells, the strong adhesion and cell morphology phenotype is largely lost. These results indicate that a GbpD/Rap/PI3K pathway helps control pseudopod formation and cell polarity. As in Rap-regulated pseudopod formation in Dictyostelium, mammalian Rap and PI3K are essential for determining neuronal polarity, suggesting that the Rap/PI3K pathway is a conserved module regulating the establishment of cell polarity.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
648
|
Shina MC, Unal C, Eichinger L, Müller-Taubenberger A, Schleicher M, Steinert M, Noegel AA. A Coronin7 homolog with functions in actin-driven processes. J Biol Chem 2010; 285:9249-61. [PMID: 20071332 DOI: 10.1074/jbc.m109.083725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum Coronin7 (DdCRN7) together with human Coronin7 (CRN7) and Pod-1 of Drosophila melanogaster and Caenorhabditis elegans belong to the coronin family of WD-repeat domain-containing proteins. Coronin7 proteins are characterized by two WD-repeat domains that presumably fold into two beta-propeller structures. DdCRN7 shares highest homology with human CRN7, a protein with roles in membrane trafficking. DdCRN7 is present in the cytosol and accumulates in cell surface projections during movement and phago- and pinocytosis. Cells lacking CRN7 have altered chemotaxis and phagocytosis. Furthermore, loss of CRN7 affects the infection process by the pathogen Legionella pneumophila and allows a more efficient internalization of bacteria. To provide a mechanism for CNR7 action, we studied actin-related aspects. We could show that CRN7 binds directly to F-actin and protects actin filaments from depolymerization. CRN7 also associated with F-actin in vivo. It was present in the Triton X-100-insoluble cytoskeleton, colocalized with F-actin, and its distribution was sensitive to drugs affecting the actin cytoskeleton. We propose that the CRN7 role in chemotaxis and phagocytosis is through its effect on the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria C Shina
- Institute for Biochemistry I, Center for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, Medical Faculty, University of Cologne, 50931 Koeln, Germany
| | | | | | | | | | | | | |
Collapse
|
649
|
Abstract
The growth factor progranulin (PGRN) regulates cell division, survival, and migration. PGRN is an extracellular glycoprotein bearing multiple copies of the cysteine-rich granulin motif. With PGRN family members in plants and slime mold, it represents one of the most ancient of the extracellular regulatory proteins still extant in modern animals. PRGN has multiple biological roles. It contributes to the regulation of early embryogenesis, to adult tissue repair and inflammation. Elevated PGRN levels often occur in cancers, and PGRN immunotherapy inhibits the growth of hepatic cancer xenografts in mice. Recent studies have demonstrated roles for PGRN in neurobiology. An autosomal dominant mutation in GRN, the gene for PGRN, leads to neuronal atrophy in the frontal and temporal lobes, resulting in the disease frontotemporal lobar dementia. In this review we will discuss current knowledge of the multifaceted biology of PGRN.
Collapse
Affiliation(s)
- Andrew Bateman
- Endocrine Research Laboratory, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada.
| | | |
Collapse
|
650
|
Tung SM, Ünal C, Ley A, Peña C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 2010; 12:765-80. [DOI: 10.1111/j.1462-5822.2010.01432.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|