601
|
Breitling R. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism. Bioessays 2008; 29:1085-94. [PMID: 17935218 DOI: 10.1002/bies.20663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malformations that mimic Hh signaling defects. Recently, it was furthermore shown that secreted Hh could hitchhike on lipoprotein particles to establish its morphogenic gradient in the developing embryo. Additionally, there is new evidence that the Hh-receptor Patched transmits the Hh signal by modulating the secretion of an inhibitory sterol molecule from the receiving cells. Here we present some of the most recent discoveries on the Hh-sterol link and discuss their implications from a systems design perspective. We predict that a robust functioning of the Hh pathway will require the involvement of more sterol metabolites, and these should be the subject of future research.
Collapse
Affiliation(s)
- Rainer Breitling
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands.
| |
Collapse
|
602
|
Abstract
Cell-cell signaling is a major strategy that vertebrate embryos employ to coordinately control cell proliferation, differentiation, and survival in many developmental processes. Similar cell signaling pathways also control adult tissue regeneration and repair. We demonstrated in the developing skeletal system that the Wnt/beta-catenin signaling controls the differentiation of progenitor cells into either osteoblasts or chondrocytes. Genetic ablation of beta-catenin in the developing mouse embryo resulted in ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Conversely, ectopic upregulation of the canonical Wnt signaling led to suppression of chondrocyte formation and enhanced ossification. As other signaling pathways also play critical roles in controlling skeletal development, to gain a full picture of the molecular regulatory network of skeletal development, we investigated how the Wnt/beta-catenin signaling is integrated with Indian hedgehog (Ihh) signaling in controlling various aspects of skeletal development. We found that Wnt signaling acts downstream of Ihh signaling and is required in osteoblasts after Osterix expression to promote osteoblast maturation during endochondral bone formation. Since similar controlling mechanisms of osteoblast proliferation and differentiation may be employed by adult mesenchymal progenitor cells during fracture repair, these studies suggest that, to enhance fracture repair or bone formation, Ihh signaling needs to be enhanced at early stages, whereas Wnt signaling should be upregulated slightly later in differentiated osteoblasts.
Collapse
Affiliation(s)
- Timothy F Day
- Genetic Disease Research Branch, National Human Genome Research Institute, Building 49, Room 4A68, 49 Convent Drive, MSC 4472, Bethesda, MD 20892, USA
| | | |
Collapse
|
603
|
Tung DCY, Chao KSC. Targeting hedgehog in cancer stem cells: how a paradigm shift can improve treatment response. Future Oncol 2008; 3:569-74. [PMID: 17927522 DOI: 10.2217/14796694.3.5.569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The integration of developmental biology and cancer therapeutics has revolutionized the understanding of tumor proliferation. Cell-signaling pathways first recognized for their importance in embryogenesis have begun to inspire the scientific community to investigate new avenues in cancer initiation and growth. Other ground-breaking discoveries provided evidence for a revisit to the theory of cancer stem cells, which has long-term implications for the efficient and lasting elimination of cancer. This paradigm shift involves a change from viewing the malignant tumor as a perpetually mutating mass of clonogenic cells to seeing it as an organ mistakenly created by mutations that disrupt cell-signaling pathways in stem cells. As researchers find more evidence of the essential involvement of these signaling pathways in cancer formation and maintenance, the link between tumorigenesis and aberrant stem cell activation can be more clearly drawn. One such pathway is the hedgehog (Hh)-signaling pathway, which is important in growth and differentiation during embryogenesis and for proper functioning in many adult tissues. Investigation of this pathway and its involvement in cancer has already led to drug development that could eradicate basal cell carcinoma, the most common type of cancer in humans. Future research focused on Hh and related signaling pathways involved in cancer might improve treatment response in malignancies resistant to traditional therapy.
Collapse
Affiliation(s)
- David C Y Tung
- The University of Texas, Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
604
|
Matus DQ, Magie CR, Pang K, Martindale MQ, Thomsen GH. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 2008; 313:501-18. [PMID: 18068698 PMCID: PMC2288667 DOI: 10.1016/j.ydbio.2007.09.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
Abstract
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Collapse
Affiliation(s)
- David Q Matus
- Kewalo Marine Lab University of Hawaii, Honolulu, HI 76813, USA
| | | | | | | | | |
Collapse
|
605
|
Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 2008; 11:981-1011. [PMID: 17979879 PMCID: PMC4401269 DOI: 10.1111/j.1582-4934.2007.00088.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
606
|
Abstract
Cilia function as critical sensors of extracellular information, and ciliary dysfunction underlies diverse human disorders including situs inversus, polycystic kidney disease, retinal degeneration, and Bardet-Biedl syndrome. Importantly, mammalian primary cilia have recently been shown to mediate transduction of Hedgehog (Hh) signals, which are involved in a variety of developmental processes. Mutations in several ciliary components disrupt the patterning of the neural tube and limb bud, tissues that rely on precisely coordinated gradients of Hh signal transduction. Numerous components of the Hh pathway, including Patched, Smoothened, and the Gli transcription factors, are present within primary cilia, indicating that key steps of Hh signaling may occur within the cilium. Because dysregulated Hh signaling promotes the development of a variety of human tumors, cilia may also have roles in cancer. Together, these findings have shed light on one mechanism by which primary cilia transduce signals critical for both development and disease.
Collapse
Affiliation(s)
- Sunny Y Wong
- Department of Biochemistry, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | |
Collapse
|
607
|
Kolterud Å, Toftgård R. Strategies for Hedgehog inhibition and its potential role in cancer treatment. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddstr.2008.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
608
|
Thiyagarajan S, Bhatia N, Reagan-Shaw S, Cozma D, Thomas-Tikhonenko A, Ahmad N, Spiegelman VS. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res 2007; 67:10642-6. [PMID: 18006803 PMCID: PMC2653855 DOI: 10.1158/0008-5472.can-07-2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway has been reported in various cancer types including prostate cancer. The GLI2 transcription factor is a primary mediator of Hh signaling. However, its relative contribution to development of prostate tumors is poorly understood. To establish the role of GLI2 in maintaining the tumorigenic properties of prostate cancer cells, we developed GLI2-specific small hairpin RNA. Knockdown of GLI2 in these cells resulted in significant down-regulation of the Hh signaling pathway, followed by inhibition of colony formation, anchorage-independent growth, and growth of xenografts in vivo. Conversely, ectopic expression of Gli2 in nontumorigenic prostate epithelial cells resulted in accelerated cell cycle progression, especially transition through G(2)-M, and augmented proliferation. Altogether, our findings suggest that GLI2 plays a critical role in the malignant phenotype of prostate cancer cells, and GLI2 may potentially become an attractive therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Saravanan Thiyagarajan
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Neehar Bhatia
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shannon Reagan-Shaw
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Diana Cozma
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Nihal Ahmad
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Vladimir S. Spiegelman
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
609
|
Tang JY, So PL, Epstein EH. Novel Hedgehog pathway targets against basal cell carcinoma. Toxicol Appl Pharmacol 2007; 224:257-64. [PMID: 17276471 PMCID: PMC2719777 DOI: 10.1016/j.taap.2006.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/11/2006] [Accepted: 12/11/2006] [Indexed: 02/05/2023]
Abstract
The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting that agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence.
Collapse
Affiliation(s)
- Jean Y Tang
- Department of Dermatology, San Francisco General Hospital, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
610
|
Ji Z, Mei FC, Johnson BH, Thompson EB, Cheng X. Protein kinase A, not Epac, suppresses hedgehog activity and regulates glucocorticoid sensitivity in acute lymphoblastic leukemia cells. J Biol Chem 2007; 282:37370-7. [PMID: 17895245 DOI: 10.1074/jbc.m703697200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP synergizes strongly with glucocorticoids (GC) to induce apoptosis in normal or malignant lymphoid cells. We examined the individual roles that cAMP-dependent protein kinase (PKA) and Epac (exchange protein directly activated by cAMP), two intracellular cAMP receptors, play in this synergistic effect. Our studies demonstrate that PKA is responsible for the observed synergism with GC, whereas Epac exerts a weak antagonistic effect against GC-induced apoptosis. We find that endogenous PKA activity is higher in the GC-sensitive clone than in the GC-resistant clone. In the GC-sensitive clone, higher PKA activity is associated with lower Hedgehog (Hh) activity. Moreover, inhibition of Hh activity by Hh pathway-specific inhibitors leads to cell cycle arrest and apoptosis in CEM (human acute lymphoblastic leukemia, T lineage) cells, and the GC-sensitive clone is more sensitive to Hh inhibition. These results suggest that Hh activity is critical for leukemia cell growth and survival and that the level of Hh activity is in part responsible for the synergism between cAMP and GC.
Collapse
Affiliation(s)
- Zhenyu Ji
- Department of Pharmacology and Toxicology, School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
611
|
Remsberg JR, Lou H, Tarasov SG, Dean M, Tarasova NI. Structural analogues of smoothened intracellular loops as potent inhibitors of Hedgehog pathway and cancer cell growth. J Med Chem 2007; 50:4534-8. [PMID: 17685505 PMCID: PMC3956439 DOI: 10.1021/jm0705657] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Smoothened is a critical component of the Hedgehog pathway that is essential for stem cell renewal and is dysregulated in many cancer types. We have found synthetic analogues of the second and third intracellular loops of smoothened to be potent inhibitors of the Hedgehog pathway. Palmitoylated peptides as short as 10 residues inhibited melanoma cells growth with IC50 in the low nanomolar range. The compounds are promising drug candidates and convenient tools for solving mechanisms of Hedgehog signaling.
Collapse
Affiliation(s)
| | | | | | | | - Nadya I. Tarasova
- To whom correspondence should be addressed. Phone: (301) 846-5225. Fax: (301) 846-62-31.
| |
Collapse
|
612
|
Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3:466-79. [PMID: 17637779 DOI: 10.1038/nchembio.2007.17] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.
Collapse
MESH Headings
- Animals
- Catalysis
- Chemistry, Pharmaceutical/instrumentation
- Chemistry, Pharmaceutical/methods
- Drug Design
- Drug Evaluation, Preclinical/instrumentation
- Drug Evaluation, Preclinical/methods
- Enzymes/chemistry
- Humans
- Ions
- Kinetics
- Models, Biological
- Models, Chemical
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Technology, Pharmaceutical/instrumentation
- Technology, Pharmaceutical/methods
- Transcription, Genetic
Collapse
Affiliation(s)
- James Inglese
- US National Institutes of Health Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3370, USA.
| | | | | | | | | | | | | |
Collapse
|
613
|
Cousin W, Fontaine C, Dani C, Peraldi P. Hedgehog and adipogenesis: fat and fiction. Biochimie 2007; 89:1447-53. [PMID: 17933451 DOI: 10.1016/j.biochi.2007.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/24/2007] [Indexed: 11/19/2022]
Abstract
Morphogenes, abundantly described during embryogenesis have recently emerged as crucial modulators of cell differentiation processes. Hedgehog signaling, the dysregulation of which causing several pathologies such as congenital defects and cancer, is involved in several cell differentiation processes including adipogenesis. This review presents an overview of the relations between Hedgehog signaling, adipocyte differentiation and fat mass. While the anti-adipogenic role of Hedgehog signaling seems to be established, the effect of Hedgehog inhibition on adipocyte differentiation in vitro remains debated. Finally, Hedgehog potential as a pharmacological target to treat fat mass disorders is discussed.
Collapse
Affiliation(s)
- Wendy Cousin
- ISBDC, Université De Nice Sophia-Antipolis, CNRS, 28 Avenue De Valrose, 06100 Nice, France.
| | | | | | | |
Collapse
|
614
|
Abstract
The Hedgehog (Hh) pathway plays central roles in animal development and stem-cell function. Defects in Hh signalling lead to birth defects and cancer in humans. The first and often genetically damaged step in this pathway is the interaction between two membrane proteins - Patched (Ptc), encoded by a tumour suppressor gene, and Smoothened (Smo), encoded by a proto-oncogene. Recent work linking Hh signalling to sterol metabolites and protein-trafficking events at the primary cilium promises to shed light on the biochemical basis of how Patched inhibits Smoothened, and to provide new avenues for cancer treatment.
Collapse
Affiliation(s)
- Rajat Rohatgi
- Department of Developmental Biology, Howard Hughes Medical Institute, Clark Center West W252, 318 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | |
Collapse
|
615
|
Yeh JJ, Der CJ. Targeting signal transduction in pancreatic cancer treatment. Expert Opin Ther Targets 2007; 11:673-94. [PMID: 17465725 DOI: 10.1517/14728222.11.5.673] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jen Jen Yeh
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Division of Surgical Oncology, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
616
|
Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas Derived fromCxcr6Mutant Mice Respond to Treatment with a Smoothened Inhibitor. Cancer Res 2007; 67:3871-7. [PMID: 17413002 DOI: 10.1158/0008-5472.can-07-0493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sonic hedgehog (Shh) pathway is activated in approximately 30% of human medulloblastoma resulting in increased expression of downstream target genes. In about half of these cases, this has been shown to be a consequence of mutations in regulatory genes within the pathway, including Ptc1, Smo, and Sufu. However, for some tumors, no mutations have been detected in known pathway genes. This suggests that either mutations in other genes promote tumorigenesis or that epigenetic alterations increase pathway activity in these tumors. Here, we report that 3% to 4% of mice lacking either one or both functional copies of Cxcr6 develop medulloblastoma. Although CXCR6 is not known to be involved in Shh signaling, tumors derived from Cxcr6 mutant mice expressed Shh pathway target genes including Gli1, Gli2, Ptc2, and Sfrp1, indicating elevated pathway activity. Interestingly, the level of Ptc1 expression was decreased in tumor cells although two normal copies of Ptc1 were retained. This implies that reduced CXCR6 function leads to suppression of Ptc1 thereby increasing Smoothened function and promoting tumorigenesis. We used a direct transplant model to test the sensitivity of medulloblastoma arising in Cxcr6 mutant mice to a small-molecule inhibitor of Smoothened (HhAntag). We found that transplanted tumors were dramatically inhibited in mice treated for only 4 days with HhAntag. These findings suggest that HhAntag may be effective against tumors lacking mutations in known Shh pathway genes.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Hedgehog Proteins/metabolism
- Medulloblastoma/drug therapy
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Patched Receptors
- Patched-1 Receptor
- Receptors, CXCR
- Receptors, CXCR6
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Smoothened Receptor
Collapse
Affiliation(s)
- Ken Sasai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
617
|
Clark PA, Treisman DM, Ebben J, Kuo JS. Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 2007; 236:3297-308. [DOI: 10.1002/dvdy.21381] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
618
|
Abstract
Recent studies have revealed unexpected connections between the mammalian Hedgehog (Hh) signal transduction pathway and the primary cilium, a microtubule-based organelle that protrudes from the surface of most vertebrate cells. Intraflagellar transport proteins, which are required for the construction of cilia, are essential for all responses to mammalian Hh proteins, and proteins required for Hh signal transduction are enriched in primary cilia. The phenotypes of different mouse mutants that affect ciliary proteins suggest that cilia may act as processive machines that organize sequential steps in the Hh signal transduction pathway. Cilia on vertebrate cells are likely to be important in additional developmental signaling pathways and are required for PDGF receptor alpha signaling in cultured fibroblasts. Cilia are not essential for either canonical or noncanonical Wnt signaling, although cell-type-specific modulation of cilia components may link cilia and Wnt signaling in some tissues. Because ciliogenesis in invertebrates is limited to a very small number of specialized cell types, the role of cilia in developmental signaling pathways is likely a uniquely vertebrate phenomenon.
Collapse
|