601
|
TAKAYANAGI H. Osteoimmunology - Bidirectional dialogue and inevitable union of the fields of bone and immunity. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:159-169. [PMID: 32281551 PMCID: PMC7247972 DOI: 10.2183/pjab.96.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 05/28/2023]
Abstract
Bone is a critically important part of the skeletal system that is essential for body support and locomotion. The immune system protects against pathogens and is active in host defense. These two seemingly distinct systems in fact interact with each other, share molecules and create a collaborative regulatory system called the "osteoimmune system". The most representative osteoimmune molecule is receptor activator of NF-κB ligand (RANKL), which plays multiple roles in the osteoimmune system under both physiological and pathological conditions such as rheumatoid arthritis and cancer metastasis to bone. Based on accumulating evidence for such mutual dependence, it is concluded that the relationship between bone and the immune system did not develop by accident but as a necessary consequence of evolution. Here I describe the history of and recent advances in osteoimmunology, providing a perspective in the contexts of both science and medicine.
Collapse
Affiliation(s)
- Hiroshi TAKAYANAGI
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
602
|
Saferding V, Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J Autoimmun 2019; 110:102382. [PMID: 31883831 DOI: 10.1016/j.jaut.2019.102382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
The innate immune system consists of a variety of elements controlling and participating in virtually all aspects of inflammation and immunity. It is crucial for host defense, but on the other hand its improper activation is also thought to be responsible for the generation of autoimmunity and therefore diseases such as autoimmune arthritides like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS) or inflammatory bowel disease. The innate immune system stands both at the beginning as well as the end of autoimmunity. On one hand, it regulates the activation of the adaptive immune system and the breach of self-tolerance, as antigen presenting cells (APCs), especially dendritic cells, are essential for the activation of naïve antigen specific T cells, a crucial step in the development of autoimmunity. Various factors controlling the function of dendritic cells have been identified that directly regulate lymphocyte homeostasis and in some instances the generation of organ specific autoimmunity. Moreover, microbial cues have been identified that are prerequisites for the generation of several specific autoimmune diseases. On the other hand, the innate immune system is also responsible for mediating the resulting organ damage underlying the clinical symptoms of a given autoimmune disease via production of proinflammatory cytokines that amplify local inflammation and further activate other immune or parenchymal cells in the vicinity, the generation of matrix degrading and proteolytic enzymes or reactive oxygen species directly causing tissue damage. In the last decades, molecular characterization of cell types and their subsets as well as both positive and negative regulators of immunity has led to the generation of various scenarios of how autoimmunity develops, which eventually might lead to the development of targeted interventions for autoimmune diseases. In this review, we try to summarize the elements that are contributing to the initiation and perpetuation of autoimmune responses.
Collapse
Affiliation(s)
| | - Stephan Blüml
- Department of Rheumatology, Medical University Vienna, Austria.
| |
Collapse
|
603
|
Veale DJ, Fearon U. Next-generation analysis of synovial tissue architecture. Nat Rev Rheumatol 2019; 16:67-68. [DOI: 10.1038/s41584-019-0357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
604
|
Fromm S, Cunningham CC, Dunne MR, Veale DJ, Fearon U, Wade SM. Enhanced angiogenic function in response to fibroblasts from psoriatic arthritis synovium compared to rheumatoid arthritis. Arthritis Res Ther 2019; 21:297. [PMID: 31864394 PMCID: PMC6925847 DOI: 10.1186/s13075-019-2088-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Angiogenesis is an early event in the pathogenesis of both psoriatic arthritis (PsA) and rheumatoid arthritis (RA); however, there are striking differences in blood vessel morphology and activation between the two arthropathies. The aim of this study was to assess if the PsA and RA joint microenvironments differentially regulate endothelial cell function. Methods PsA and RA primary synovial fibroblasts (SFC) were isolated from synovial biopsies, grown to confluence, and supernatants harvested and termed ‘conditioned media’ (CM). Human umbilical vein endothelial cells (HUVEC) were cultured with PsA SFC or RA SFC-CM (20%). HUVEC tube formation, migration, and PBMC adhesion were assessed by matrigel tube formation, wound repair, and PBMC adhesion assays. HUVEC cell surface expression of ICAM, VCAM, and E-Selectin was assessed by flow cytometry. Transcriptome analysis of genes promoting angiogenesis was performed by real-time PCR. Finally, a MSD multiplex angiogenic assay was performed on PsA SFC and RA SFC supernatants. Results Macroscopic synovitis and vascularity were similar in PsA and RA patients; however, significant differences in vascular morphological pattern were recorded with tortuous, elongated vessels observed in PsA compared to straight regular branching vessels observed in RA. Transcriptome analysis showed strong upregulation of the pro-angiogenic signature in HUVEC primed with PsA SFC-CM compared to RA SFC-CM and basal control. In parallel, paired PsA SFC-CM significantly induced HUVEC tube formation compared to that of RA SFC-CM. Furthermore, PsA SFC-CM induced HUVEC migration was paralleled by a significant induction in VEGFA, PFKFB3, ICAM-1, and MMP3 mRNA expression. A significant increase in PBMC adhesion and cell surface expression of VCAM-1, ICAM-1, and E-Selectin expression was also demonstrated in PsA SFC-CM-primed HUVEC compared to RA SFC-CM. Finally, VEGF, TSLP, Flt-1, and Tie-2 expression was elevated in PsA SFC-CM compared to RA SFC-CM, with no significant difference in other pro-angiogenic mediators including MIP-3, bFGF, PIGF, and MCP-1. Conclusion PsA SFC and RA SFC secreted factors differentially regulate endothelial cell function, with soluble mediators in the PsA joint microenvironment inducing a more pro-angiogenic phenotype compared to the RA.
Collapse
Affiliation(s)
- S Fromm
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - C C Cunningham
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - M R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - D J Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| | - U Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - S M Wade
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| |
Collapse
|
605
|
Luo S, Zhu R, Yu T, Fan H, Hu Y, Mohanta SK, Hu D. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis. Front Immunol 2019; 10:2938. [PMID: 31921189 PMCID: PMC6930186 DOI: 10.3389/fimmu.2019.02938] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response to non-resolving inflammation. Chronic inflammation leads to the differentiation of stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact with lymphotoxin α1β2+ immune cells. The interaction initiates lymphoid neogenesis by recruiting immune cells to the site of inflammation and ultimately leads to the formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with an activated germinal center, follicular dendritic cells, and high endothelial venules, which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of TLO activity. The well-developed TLOs actively regulate local immune responses and influence disease progression, and they are thereby regarded as the powerhouses of local immunity. In this review, we recapitulated the determinants for TLOs development, with great emphasis on the fundamental role of chronic inflammation and tissue-resident stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions in TLO-associated diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
606
|
Abstract
PURPOSE OF REVIEW The therapeutic response to biologic agents in psoriasis is significantly higher than observed in psoriatic arthritis (PsA). In this review, specific actions to improve treatment outcomes in PsA are discussed. RECENT FINDINGS Increased understanding of disease pathogenesis derived from improved preclinical models and advances in cell-based and molecular technologies provide new tools to identify therapeutic targets. In addition to the important contributions of metabolic comorbidities, chronic pain and the lack of a diagnostic biomarker signal the need for new strategies to improve outcomes. Potential strategies include the following: (1) discover a novel pathway or cellular subset, (2) apply stratification biomarkers to individualize therapy, (3) preclinical intervention, (4) combination therapy, (5) lifestyle modification, (6) address chronic pain and fatigue, and (7) multidisciplinary care. The future holds great promise for enhanced treatment responses in PsA based on improved understanding of individual variation in disease pathophysiology coupled with comprehensive and integrated treatment programs.
Collapse
Affiliation(s)
- Christopher Ritchlin
- Allergy, Immunology and Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical Center, Box 695, Rochester, NY, 14642, USA.
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology and Psoriatic Arthritis Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
607
|
Elmentaite R, Teichmann S, Madissoon E. Studying immune to non-immune cell cross-talk using single-cell technologies. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:87-94. [PMID: 32984660 PMCID: PMC7493433 DOI: 10.1016/j.coisb.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell RNA-sequencing has uncovered immune heterogeneity, including novel cell types, states and lineages that have expanded our understanding of the immune system as a whole. More recently, studies involving both immune and non-immune cells have demonstrated the importance of immune microenvironment in development, homeostasis and disease. This review focuses on the single-cell studies mapping cell-cell interactions for variety of tissues in development, health and disease. In addition, we address the need to generate a comprehensive interaction map to answer fundamental questions in immunology as well as experimental and computational strategies required for this purpose.
Collapse
Affiliation(s)
- R. Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - S.A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| | - E. Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| |
Collapse
|
608
|
Lin Y, Li B, Yang X, Cai Q, Liu W, Tian M, Luo H, Yin W, Song Y, Shi Y, He R. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 2019; 21:1133-1142. [PMID: 31759251 PMCID: PMC6880109 DOI: 10.1016/j.neo.2019.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Desmoplasia is a hallmark of intrahepatic cholangiocarcinoma (ICC), which constitutes a barrier to infiltration of lymphocyte, but not myeloid cells. Given that dense desmoplastic stroma has been reported to be a barrier to infiltration of lymphocyte, but not myeloid cells. We here investigated whether fibroblastic FAP influenced ICC progression via non-T cell-related immune mechanisms. We demonstrated fibroblastic FAP expression was critical for STAT3 activation and CCL2 production, and ICC-CAFs were the primary source of CCL2 in human ICC microenvironment by using ICC-Fbs from six ICC patients. Fibroblastic knockdown of FAP significantly impaired the ability of ICC-CAFs to promote ICC growth, MDSCs infiltration and angiogenesis, which was restored by adding exogenous CCL2. Furthermore, interestingly, the tumor-promoting effect of fibroblastic FAP is dependent on MDSCs via secretion of CCL2, as depletion of Gr-1+ cells reversed the restoring effects of exogenous CCL2 on tumor growth and angiogenesis. In vitro migration assay confirmed that exogenous CCL2 could rescue the impaired ability of ICC-Fbs to attract Gr-1+ cells caused by fibroblastic FAP knockdown. In contrast, fibroblastic FAP knockdown had no effect on ICC cell proliferation and apoptotic resistance. Depletion MDSCs by anti-Gr-1 monoclonal antibody in subcutaneous transplanted tumor model abrogated tumor promotion by ICC-CAFs suggested that the pro-tumor function of Fibroblastic FAP relied on MDSCs. Mechanical, flow cytometry and chamber migration assay were conducted to find Fibroblastic FAP was required by the ability of ICC-CAFs to promote MDSC migration directly. Moreover, fibroblastic FAP knockdown had no effect on cell proliferation and apoptotic resistance. Here, we revealed the T-cell independent mechanisms underlying the ICC-promoting effect of fibroblastic FAP by attracting MDSCs via CCL2, which was mainly attributed to the ability of FAP to attract MDSCs and suggests that specific targeting fibroblastic FAP may represent a promising therapeutic strategy against ICC.
Collapse
Affiliation(s)
- Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Integrative Medicine, Fudan University, China
| | - Bingji Li
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuguang Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Cai
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weiren Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Mengxin Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Haoyang Luo
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Yin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Song
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yinghong Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China.
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
609
|
Targeting of the Cancer-Associated Fibroblast-T-Cell Axis in Solid Malignancies. J Clin Med 2019; 8:jcm8111989. [PMID: 31731701 PMCID: PMC6912330 DOI: 10.3390/jcm8111989] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
The introduction of a wide range of immunotherapies in clinical practice has revolutionized the treatment of cancer in the last decade. The majority of these therapeutic modalities are centered on reinvigorating a tumor-reactive cytotoxic T-cell response. While impressive clinical successes are obtained, the majority of cancer patients still fail to show a clinical response, despite the fact that their tumors express antigens that can be recognized by the immune system. This is due to a series of other cellular actors, present in or attracted towards the tumor microenvironment, including regulatory T-cells, myeloid-derived suppressor cells and cancer-associated fibroblasts (CAFs). As the main cellular constituent of the tumor-associated stroma, CAFs form a heterogeneous group of cells which can drive cancer cell invasion but can also impair the migration and activation of T-cells through direct and indirect mechanisms. This singles CAFs out as an important next target for further optimization of T-cell based immunotherapies. Here, we review the recent literature on the role of CAFs in orchestrating T-cell activation and migration within the tumor microenvironment and discuss potential avenues for targeting the interactions between fibroblasts and T-cells.
Collapse
|
610
|
Schett G. Resolution of inflammation in arthritis. Semin Immunopathol 2019; 41:675-679. [PMID: 31720751 DOI: 10.1007/s00281-019-00768-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis is among the most frequent and severe chronic inflammatory diseases. The disease is characterized by ongoing synovial inflammation, which leads to the destruction of cartilage and bone. In RA, the mechanisms of resolution of inflammation, which are normally intact in the joints, are either suppressed or overruled. Little efforts have been undertaken to understand the mechanisms of resolution of arthritis until recently, when several molecular mechanisms have been identified that determine the chronicity and resolution of inflammation in the joints, respectively. This review describes the key concepts of resolution of arthritis mentioning the key mechanisms involved, such as regulatory macrophages, pro-resolving lipid, fatty acid and cytokine mediators, aggregated neutrophil extracellular trap formation, antibody glycosylation changes, and stromal cell alterations that are involved in determining the decision between chronicity and resolution of arthritis. Each of these mechanisms represents a potential therapeutic approach that allows skewing the balance of the inflammatory processes towards resolution.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nurnberg (FAU), Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
611
|
Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, Wallenborg K, Picelli S, Zagorska A, Pendem SV, Hudson TE, Wu MM, Budas GR, Breckenridge DG, Harrison EM, Mole DJ, Wigmore SJ, Ramachandran P, Ponting CP, Teichmann SA, Marioni JC, Henderson NC. Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Rep 2019; 29:1832-1847.e8. [PMID: 31722201 PMCID: PMC6856722 DOI: 10.1016/j.celrep.2019.10.024] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Iterative liver injury results in progressive fibrosis disrupting hepatic architecture, regeneration potential, and liver function. Hepatic stellate cells (HSCs) are a major source of pathological matrix during fibrosis and are thought to be a functionally homogeneous population. Here, we use single-cell RNA sequencing to deconvolve the hepatic mesenchyme in healthy and fibrotic mouse liver, revealing spatial zonation of HSCs across the hepatic lobule. Furthermore, we show that HSCs partition into topographically diametric lobule regions, designated portal vein-associated HSCs (PaHSCs) and central vein-associated HSCs (CaHSCs). Importantly we uncover functional zonation, identifying CaHSCs as the dominant pathogenic collagen-producing cells in a mouse model of centrilobular fibrosis. Finally, we identify LPAR1 as a therapeutic target on collagen-producing CaHSCs, demonstrating that blockade of LPAR1 inhibits liver fibrosis in a rodent NASH model. Taken together, our work illustrates the power of single-cell transcriptomics to resolve the key collagen-producing cells driving liver fibrosis with high precision.
Collapse
Affiliation(s)
- Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James R Smith
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jordan R Portman
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Karolina Wallenborg
- Karolinska Institutet (KI), Science for Life Laboratory, Tomtebodavägen 23, Solna 171 65, Sweden
| | - Simone Picelli
- Karolinska Institutet (KI), Science for Life Laboratory, Tomtebodavägen 23, Solna 171 65, Sweden
| | | | | | | | | | | | | | - Ewen M Harrison
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Damian J Mole
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK; Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Stephen J Wigmore
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK; Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh EH4 2XU, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK; Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
612
|
Hsu T, Nguyen-Tran HH, Trojanowska M. Active roles of dysfunctional vascular endothelium in fibrosis and cancer. J Biomed Sci 2019; 26:86. [PMID: 31656195 PMCID: PMC6816223 DOI: 10.1186/s12929-019-0580-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is the underlying pathological condition that results in fibrotic diseases. More recently, many forms of cancer have also been linked to chronic tissue inflammation. While stromal immune cells and myofibroblasts have been recognized as major contributors of cytokines and growth factors that foster the formation of fibrotic tissue, the endothelium has traditionally been regarded as a passive player in the pathogenic process, or even as a barrier since it provides a physical divide between the circulating immune cells and the inflamed tissues. Recent findings, however, have indicated that endothelial cells in fact play a crucial role in the inflammatory response. Endothelial cells can be activated by cytokine signaling and express inflammatory markers, which can sustain or exacerbate the inflammatory process. For example, the activated endothelium can recruit and activate leukocytes, thus perpetuating tissue inflammation, while sustained stimulation of endothelial cells may lead to endothelial-to-mesenchymal transition that contributes to fibrosis. Since chronic inflammation has now been recognized as a significant contributing factor to tumorigenesis, it has also emerged that activation of endothelium also occurs in the tumor microenvironment. This review summarizes recent findings characterizing the molecular and cellular changes in the vascular endothelium that contribute to tissue fibrosis, and potentially to cancer formation.
Collapse
Affiliation(s)
- Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China. .,Center for Chronic Disease Research, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China.
| | - Hieu-Huy Nguyen-Tran
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| |
Collapse
|
613
|
Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 2019; 574:553-558. [PMID: 31645721 DOI: 10.1038/s41586-019-1658-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Age-associated chronic inflammation (inflammageing) is a central hallmark of ageing1, but its influence on specific cells remains largely unknown. Fibroblasts are present in most tissues and contribute to wound healing2,3. They are also the most widely used cell type for reprogramming to induced pluripotent stem (iPS) cells, a process that has implications for regenerative medicine and rejuvenation strategies4. Here we show that fibroblast cultures from old mice secrete inflammatory cytokines and exhibit increased variability in the efficiency of iPS cell reprogramming between mice. Variability between individuals is emerging as a feature of old age5-8, but the underlying mechanisms remain unknown. To identify drivers of this variability, we performed multi-omics profiling of fibroblast cultures from young and old mice that have different reprogramming efficiencies. This approach revealed that fibroblast cultures from old mice contain 'activated fibroblasts' that secrete inflammatory cytokines, and that the proportion of activated fibroblasts in a culture correlates with the reprogramming efficiency of that culture. Experiments in which conditioned medium was swapped between cultures showed that extrinsic factors secreted by activated fibroblasts underlie part of the variability between mice in reprogramming efficiency, and we have identified inflammatory cytokines, including TNF, as key contributors. Notably, old mice also exhibited variability in wound healing rate in vivo. Single-cell RNA-sequencing analysis identified distinct subpopulations of fibroblasts with different cytokine expression and signalling in the wounds of old mice with slow versus fast healing rates. Hence, a shift in fibroblast composition, and the ratio of inflammatory cytokines that they secrete, may drive the variability between mice in reprogramming in vitro and influence wound healing rate in vivo. This variability may reflect distinct stochastic ageing trajectories between individuals, and could help in developing personalized strategies to improve iPS cell generation and wound healing in elderly individuals.
Collapse
|
614
|
Dorris ER, Linehan E, Trenkmann M, Veale DJ, Fearon U, Wilson AG. Association of the Rheumatoid Arthritis Severity Variant rs26232 with the Invasive Activity of Synovial Fibroblasts. Cells 2019; 8:cells8101300. [PMID: 31652652 PMCID: PMC6829881 DOI: 10.3390/cells8101300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
rs26232, located in intron one of C5orf30, is associated with the susceptibility to and severity of rheumatoid arthritis (RA). Here, we investigate the relationship between this variant and the biological activities of rheumatoid arthritis synovial fibroblasts (RASFs). RASFs were isolated from the knee joints of 33 RA patients. The rs26232 genotype was determined and cellular migration, invasion, and apoptosis were compared using in vitro techniques. The production of adhesion molecules, chemokines, and proteases was measured by ELISA or flow cytometry. Cohort genotypes were CC n = 16; CT n = 14; TT n = 3. In comparison with the RASFs of the CT genotype, the CC genotype showed a 1.48-fold greater invasiveness in vitro (p = 0.02), 1.6-fold higher expression intracellular adhesion molecule (ICAM)-1 (p = 0.001), and 5-fold IFN-γ inducible protein-10 (IP-10) (p = 0.01). There was no association of the rs26232 genotype with the expression levels of either total C5orf30 mRNA or any of the three transcript variants. The rs26232 C allele, which has previously been associated with both the risk and severity of RA, is associated with greater invasive activity of RASFs in vitro, and with higher expression of ICAM-1 and IP-10. In resting RASFs, rs26232 is not a quantitative trait locus for C5orf30 mRNA, indicating a more complex mechanism underlying the genotype‒phenotype relationship.
Collapse
Affiliation(s)
- Emma R Dorris
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Eimear Linehan
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Michelle Trenkmann
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Douglas J Veale
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D06 R590, Ireland.
| | - Anthony G Wilson
- University College Dublin Centre for Arthritis Research, Conway Institute, University College Dublin, Dublin D04 W6F6, Ireland.
| |
Collapse
|
615
|
Where to Stand with Stromal Cells and Chronic Synovitis in Rheumatoid Arthritis? Cells 2019; 8:cells8101257. [PMID: 31618926 PMCID: PMC6829866 DOI: 10.3390/cells8101257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
The synovium exercises its main function in joint homeostasis through the secretion of factors (such as lubricin and hyaluronic acid) that are critical for the joint lubrication and function. The main synovium cell components are fibroblast-like synoviocytes, mesenchymal stromal/stem cells and macrophage-like synovial cells. In the synovium, cells of mesenchymal origin modulate local inflammation and fibrosis, and interact with different fibroblast subtypes and with resident macrophages. In pathologic conditions, such as rheumatoid arthritis, fibroblast-like synoviocytes proliferate abnormally, recruit mesenchymal stem cells from subchondral bone marrow, and influence immune cell activity through epigenetic and metabolic adaptations. The resulting synovial hyperplasia leads to secondary cartilage destruction, joint swelling, and pain. In the present review, we summarize recent findings on the molecular signature and the roles of stromal cells during synovial pannus formation and rheumatoid arthritis progression.
Collapse
|
616
|
Grieshaber-Bouyer R, Kämmerer T, Rosshirt N, Nees TA, Koniezke P, Tripel E, Schiltenwolf M, Kirsch J, Hagmann S, Moradi B. Divergent Mononuclear Cell Participation and Cytokine Release Profiles Define Hip and Knee Osteoarthritis. J Clin Med 2019; 8:jcm8101631. [PMID: 31590365 PMCID: PMC6832735 DOI: 10.3390/jcm8101631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease driven by a blend of inflammatory and biomechanical processes. Studies using human samples to understand inflammatory mechanisms in OA frequently recruit OA patients with different affected joints, even though recent evidence indicates that OA is a heterogeneous disease which only culminates in a common end point. Differences in age of onset and the dynamics of disease progression suggest that different joints may represent different disease entities, thereby diluting the discovery potential in a combined analysis. We hypothesized that different OA joints may also differ in immunopathology within the synovium. To investigate this hypothesis, we profiled the immune cell contribution (flow cytometry) and cytokine release profiles (ELISA) in purified synovial membrane mononuclear cells from 50 patients undergoing either hip (n = 34) or knee (n = 16) replacement surgery. Unsupervised computational approaches were used for disease deconstruction. We found that hip and knee osteoarthritis are not identical in respect to the inflammatory processes that take place in the synovial membrane. Instead, we report that principally CD14+ macrophages are expanded fourfold in the synovial membrane of patients with knee OA compared to hip OA, with a trend to higher expression in CD8+ T cells, while CD4+ T cells, B cells, and NK cells were found at comparable quantities. Upon isolation and culture of cells from synovial membrane, isolates from hip OA released higher concentrations of Eotaxin (CCL11), G-CSF, GM-CSF, INF-γ, IP-10 (CXCL10), TNF-α, MIP-1α (CCL3), MIP-1β (CCL4), IL-4, IL-10, IL-17, and lower concentrations of stem cell factor (SCF), thereby highlighting the difference in the nature of hip and knee osteoarthritis. Taken together, this study establishes hip and knee OA as immunologically distinct types of OA, and creates a resource of the cytokine expression landscape and mononuclear cell infiltration pattern of patients with hip and knee osteoarthritis.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Till Kämmerer
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Nils Rosshirt
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Timo A Nees
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Philipp Koniezke
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Elena Tripel
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Marcus Schiltenwolf
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Johannes Kirsch
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Sébastien Hagmann
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| | - Babak Moradi
- University Clinic of Heidelberg, Clinic for Orthopaedic and Trauma Surgery, Schlierbacher, Landstr, 200a 69118 Heidelberg, Germany.
| |
Collapse
|
617
|
Culemann S, Grüneboom A, Krönke G. Origin and function of synovial macrophage subsets during inflammatory joint disease. Adv Immunol 2019; 143:75-98. [PMID: 31607368 DOI: 10.1016/bs.ai.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes, including monocytes and macrophages, are a central component of the host's innate immune system designated to protect against invading pathogens. However, these cells do not only interact with various parts of the innate and adaptive immune system, but also fulfill indispensable duties during the control of tissue homeostasis and organ function. Moreover, macrophages are crucially involved in tissue remodeling and repair in response to damage. Simultaneously, mononuclear phagocytes might also contribute to the pathogenesis of various inflammatory and autoimmune diseases. In particular, their potential role in inflammatory joint diseases such as rheumatoid arthritis (RA) has drawn increasing attention and substantially shaped our general understanding of the role of monocytes and macrophages during health and disease. This review summarizes our current knowledge about the origin and function of mononuclear phagocytes within the joint and addresses their involvement in joint inflammation.
Collapse
Affiliation(s)
- Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anika Grüneboom
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
618
|
Abstract
Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts (CF) in the heart begin to remodel the myocardium via extracellular matrix deposition, resulting in increased tissue stiffness and reduced compliance. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies targeting fibrosis remain limited3. In this study, we demonstrate the efficacy of redirected T-cell immunotherapy to specifically target pathologic cardiac fibrosis. We find that cardiac fibroblasts expressing a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of cardiac fibroblast gene signatures from healthy versus diseased human hearts, we identified an endogenous CF target; fibroblast activation protein (FAP). Adoptive transfer of T cells expressing a chimeric antigen receptor (CAR) against FAP, results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide the proof-of-principle basis for a novel immunotherapeutic avenue for the treatment of cardiac disease.
Collapse
|
619
|
Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019; 572:670-675. [PMID: 31391580 DOI: 10.1038/s41586-019-1471-1] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
Macrophages are considered to contribute to chronic inflammatory diseases such as rheumatoid arthritis1. However, both the exact origin and the role of macrophages in inflammatory joint disease remain unclear. Here we use fate-mapping approaches in conjunction with three-dimensional light-sheet fluorescence microscopy and single-cell RNA sequencing to perform a comprehensive spatiotemporal analysis of the composition, origin and differentiation of subsets of macrophages within healthy and inflamed joints, and study the roles of these macrophages during arthritis. We find that dynamic membrane-like structures, consisting of a distinct population of CX3CR1+ tissue-resident macrophages, form an internal immunological barrier at the synovial lining and physically seclude the joint. These barrier-forming macrophages display features that are otherwise typical of epithelial cells, and maintain their numbers through a pool of locally proliferating CX3CR1- mononuclear cells that are embedded into the synovial tissue. Unlike recruited monocyte-derived macrophages, which actively contribute to joint inflammation, these epithelial-like CX3CR1+ lining macrophages restrict the inflammatory reaction by providing a tight-junction-mediated shield for intra-articular structures. Our data reveal an unexpected functional diversification among synovial macrophages and have important implications for the general role of macrophages in health and disease.
Collapse
|
620
|
|
621
|
|
622
|
Abstract
Functionally distinct fibroblast subsets mediate inflammation or tissue damage in inflammatory arthritis.
Collapse
Affiliation(s)
- Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
623
|
|