601
|
Soste M, Charmpi K, Lampert F, Gerez JA, van Oostrum M, Malinovska L, Boersema PJ, Prymaczok NC, Riek R, Peter M, Vanni S, Beyer A, Picotti P. Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis Rescues from Alpha-Synuclein Toxicity. Cell Syst 2019; 9:309-320.e8. [PMID: 31521608 PMCID: PMC6859835 DOI: 10.1016/j.cels.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Proteinaceous inclusions containing alpha-synuclein (α-Syn) have been implicated in neuronal toxicity in Parkinson's disease, but the pathways that modulate toxicity remain enigmatic. Here, we used a targeted proteomic assay to simultaneously measure 269 pathway activation markers and proteins deregulated by α-Syn expression across a panel of 33 Saccharomyces cerevisiae strains that genetically modulate α-Syn toxicity. Applying multidimensional linear regression analysis to these data predicted Pah1, a phosphatase that catalyzes conversion of phosphatidic acid to diacylglycerol at the endoplasmic reticulum membrane, as an effector of rescue. Follow-up studies demonstrated that inhibition of Pah1 activity ameliorates the toxic effects of α-Syn, indicate that the diacylglycerol branch of lipid metabolism could enhance α-Syn neuronal cytotoxicity, and suggest a link between α-Syn toxicity and the biology of lipid droplets.
Collapse
Affiliation(s)
- Martin Soste
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantina Charmpi
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabienne Lampert
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Juan Atilio Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Liliana Malinovska
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Jonathan Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Natalia Cecilia Prymaczok
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andreas Beyer
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
602
|
Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase. Proc Natl Acad Sci U S A 2019; 116:20760-20769. [PMID: 31548371 PMCID: PMC6789936 DOI: 10.1073/pnas.1903216116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Misfolding and accumulation of the protein α-synuclein (αS) inside nerve cells characterize Parkinson’s disease (PD) and related brain diseases, for which no disease-modifying therapies exist. Robust cell models are needed that recapitulate abnormal αS folding/accumulation in real time, especially for compound screening. We took advantage of the engineered αS “3K” (E35K+E46K+E61K) mutation, which amplifies the familial PD-causing E46K and readily forms round inclusions. We rescued the inclusions with known αS modulators and then screened a ∼2,000-compound library. We identified the potential therapeutic target stearoyl-CoA desaturase; its inhibition cleared αS inclusions, in accord with the effects of conditioning in saturated fatty acids. We propose a model for how fatty acids serve as key modulators of cellular αS homeostasis. Microscopy of Lewy bodies in Parkinson’s disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS “3K” (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA–responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.
Collapse
|
603
|
Suomi F, McWilliams T. Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 2019; 3:NS20180134. [PMID: 32269837 PMCID: PMC7104325 DOI: 10.1042/ns20180134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/06/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.
Collapse
Affiliation(s)
- Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| |
Collapse
|
604
|
Yeboah F, Kim TE, Bill A, Dettmer U. Dynamic behaviors of α-synuclein and tau in the cellular context: New mechanistic insights and therapeutic opportunities in neurodegeneration. Neurobiol Dis 2019; 132:104543. [PMID: 31351173 DOI: 10.1016/j.nbd.2019.104543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022] Open
Abstract
α-Synuclein (αS) and tau have a lot in common. Dyshomeostasis and aggregation of both proteins are central in the pathogenesis of neurodegenerative diseases: Parkinson's disease, dementia with Lewy bodies, multi-system atrophy and other 'synucleinopathies' in the case of αS; Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy and other 'tauopathies' in the case of tau. The aggregated states of αS and tau are found to be (hyper)phosphorylated, but the relevance of the phosphorylation in health or disease is not well understood. Both tau and αS are typically characterized as 'intrinsically disordered' proteins, while both engage in transient interactions with cellular components, thereby undergoing structural changes and context-specific folding. αS transiently binds to (synaptic) vesicles forming a membrane-induced amphipathic helix; tau transiently interacts with microtubules forming an 'extended structure'. The regulation and exact nature of the interactions are not fully understood. Here we review recent and previous insights into the dynamic, transient nature of αS and tau with regard to the mode of interaction with their targets, the dwell-time while bound, and the cis and trans factors underlying the frequent switching between bound and unbound states. These aspects are intimately linked to hypotheses on how subtle changes in the transient behaviors may trigger the earliest steps in the pathogenesis of the respective brain diseases. Based on a deeper understanding of transient αS and tau conformations in the cellular context, new therapeutic strategies may emerge, and it may become clearer why existing approaches have failed or how they could be optimized.
Collapse
Affiliation(s)
- Fred Yeboah
- Novartis Institute for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, MA 02139, USA
| | - Tae-Eun Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anke Bill
- Novartis Institute for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, MA 02139, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
605
|
Imaging of post-mortem human brain tissue using electron and X-ray microscopy. Curr Opin Struct Biol 2019; 58:138-148. [PMID: 31349127 DOI: 10.1016/j.sbi.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Electron microscopy imaging of post-mortem human brain (PMHB) comes with a unique set of challenges due to numerous parameters beyond the researcher's control. Nevertheless, the wealth of information provided by the ultrastructural analysis of PMHB is proving crucial in our understanding of neurodegenerative diseases. This review highlights the importance of such studies and covers challenges, limitations and recent developments in the application of current EM imaging, including cryo-ET and correlative hybrid techniques, on PMHB.
Collapse
|
606
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
607
|
|