601
|
Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E. Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum-DNA adduct repair. Oncogene 2012; 31:4718-24. [PMID: 22266871 DOI: 10.1038/onc.2011.610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription of ERCC1 and other nucleotide excision repair (NER) genes is strongly influenced by c-jun. C-jun is transcriptionally regulated by Gli proteins of the Hedgehog pathway. We therefore studied the possible relationships between Gli1, c-jun, and the upregulation of ERCC1, XPD and XRCC1 in cisplatin-resistant human ovarian cancer cells. We studied the paired human ovarian cancer cell lines A2780 and A2780-CP70. We used a shRNA construct that specifically degrades Gli1 message. Genes we assessed for mRNA and/or protein levels included: c-jun, ERCC1, XPD, XRCC1, Gli1, Gli2, SHH, IHH, GAPDH and α-tubulin. Platinum-DNA adduct repair was assessed by atomic absorbance spectrometry with Zeeman background correction. Use of the anti-Gli1 shRNA in cisplatin-resistant cells resulted in a block of the cell's ability to upregulate genes in response to cisplatin treatment, including: c-jun, ERCC1, XPD and XRCC1. This block in upregulation of c-jun was concurrent with a change in the phosphorylation pattern of the c-jun protein, shifting that pattern from a Ser63/73 dominant pattern, to a Thr91/93 dominant pattern. A2780-CP70 cells were treated at their cisplatin IC50, and DNA repair was assessed after pretreatment with anti-Gli1 shRNA or scrambled shRNA control. Control cells repaired 78% of platinum-DNA adducts at 12 h, compared with 33% repair in cells pretreated with anti-Gli1 shRNA resulting in a 2.4-fold difference. Pretreatment of A2780-CP70 cells with anti-Gli1 shRNA resulted in supra-additive cell killing with cisplatin; shifting the cisplatin IC50 (half maximal inhibitory concentration) from 30 μM to 5 μM. Pretreatment of these cells with cyclopamine did not shift the cisplatin IC50. We conclude that the transcriptional protein Gli1 is important in the upregulation of these three DNA repair genes in human ovarian cancer cells, and that Gli1 strongly influences platinum-DNA adduct repair, and cellular sensitivity to cisplatin. This Gli1 role has c-jun as an intermediate in the pathway. In all, inhibition of Gli1 by a specific shRNA inhibits the upregulation of c-jun Ser63/73, and also inhibits the upregulation of three genes essential to NER (ERCC1, XPD) and base excision repair (XRCC1).
Collapse
Affiliation(s)
- K Kudo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | | | | | | | | |
Collapse
|
602
|
Harris PJ, Speranza G, Dansky Ullmann C. Targeting embryonic signaling pathways in cancer therapy. Expert Opin Ther Targets 2012; 16:131-45. [DOI: 10.1517/14728222.2011.645808] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
603
|
Kiesslich T, Neureiter D. Advances in targeting the Hedgehog signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16:151-6. [PMID: 22233124 DOI: 10.1517/14728222.2012.652948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Hedgehog (Hh) pathway is one of the central developmental signaling mechanisms, which have recently been shown to contribute to malignant progression of a variety of human cancers. Additionally, the role of Hh and other embryonic signaling pathways in the regulation and maintenance of the tumorigenic cancer stem / -initiating subpopulation underlines the importance of this pathway in human malignancies. The review 'Targeting the Hedgehog signaling pathway for cancer therapy' by Li and coworkers has comprehensively described the potential of pharmacological targeting of Hh signaling. Here we provide an update on the current knowledge on i) the role of this pathway in human tumorigenesis and the rationale for therapeutic targeting, ii) the pharmacological approaches currently being investigated in preclinical and clinical studies, and iii) the outlook for future developments and efforts for establishing Hh antagonists as a valid approach in cancer treatment. Stratification of the tumor type according to Hh-specific expression patterns and clinicopathological characteristics, as well as investigation of possible tumor cell resistance against Hh antagonists, is the central area for further development.
Collapse
|
604
|
Abstract
The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling is associated with malignancy. Hedgehog signaling is critical for early hematopoietic development, but there is controversy over its role in normal hematopoiesis in adult organisms where it may be dispensable. Conversely, hedgehog signaling appears to be an important survival and proliferation signal for a spectrum of hematologic malignancies. Furthermore, hedgehog signaling may be critical for the maintenance and expansion of leukemic stem cells and therefore provides a possible mechanism to selectively target these primitive cell subpopulations, which are resistant to conventional chemotherapy. Indeed, phase 1 clinical trials of hedgehog pathway inhibitors are currently underway to test this hypothesis in myeloid leukemias. This review covers: (1) the hedgehog pathway and its role in normal and malignant hematopoiesis, (2) the recent development of clinical grade small molecule inhibitors of the pathway, and (3) the potential utility of hedgehog pathway inhibition as a therapeutic strategy in hemato-oncology.
Collapse
|
605
|
Mangelberger D, Kern D, Loipetzberger A, Eberl M, Aberger F. Cooperative Hedgehog-EGFR signaling. Front Biosci (Landmark Ed) 2012; 17:90-9. [PMID: 22201734 DOI: 10.2741/3917] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been known for many years that cooperative interactions between oncogenes (e.g. RAS, MYC, BCL2) can fuel cancer growth (1-5), but the restricted druggability of many of those interacting cancer genes has hampered translation of combined targeting to medical cancer therapy. The identification and characterization of cooperative cancer signaling pathways amenable to medical therapy is therefore a crucial step towards the establishment of efficient targeted combination treatments urgently needed to improve cancer therapy. Here we review recent findings of our group and colleagues on the molecular mechanisms of cooperative Hedgehog/GLI and Epidermal Growth Factor Receptor (EGFR) signaling, two clinically relevant oncogenic pathways involved in the development of many human malignancies. We also discuss the possible implications of these findings for the design of a therapeutic regimen relying on combined targeting of key effectors of both pathways.
Collapse
Affiliation(s)
- Doris Mangelberger
- Division of Molecular Tumor Biology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | |
Collapse
|
606
|
Beauchamp EM, Uren A. A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. VITAMINS AND HORMONES 2012; 88:333-54. [PMID: 22391311 DOI: 10.1016/b978-0-12-394622-5.00015-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic has been used for ages as a therapeutic agent. Currently, it is an FDA approved drug to treat acute promyelocytic leukemia where it leads to degradation of the PML-RAR fusion protein. It has been shown to have various other targets in cells such as JNK, NFκB, thioredoxin reductase, and MAPK pathways. Most of its effects in cells have been through arsenic's ability to bind to thiol groups in cysteine residues. Recent evidence has shown that arsenic can inhibit the Hedgehog pathway by inhibiting GLI proteins. The proposed mechanism of action is through direct binding. Potential binding sites include the critical cysteine residues in GLI zinc finger domains. The role of the Hedgehog pathway has been implicated in many cancers such as basal cell carcinoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumors. Current Hedgehog pathway inhibitors have been fraught with resistance issues and so arsenic trioxide may provide an alternative therapy when combined with these other inhibitors or after acquired resistance.
Collapse
Affiliation(s)
- Elspeth M Beauchamp
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | |
Collapse
|
607
|
Abstract
Cancer drug approval has evolved as the understanding of cancer biology, and the ability to select patients for trials of targeted agents, has matured. The longstanding reliance on Phase III trials to prove drug efficacy and positive impact on patient survival may no longer be necessary, as early trials, particularly the expansion phase of a Phase I trial, may provide convincing evidence of a high response rate to a targeted drug in a patient population who has been poorly responsive to conventional therapy. If the new drug produces no safety signals of great concern, and if a validated biomarker for patient selection has been established and is readily available, accelerated approval may be achievable prior to completion of a randomized trial. The advantages, and potential downside, of rapid approval scenarios will be discussed in this article.
Collapse
Affiliation(s)
- Bruce Chabner
- From the Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
608
|
Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. VITAMINS AND HORMONES 2012; 88:461-72. [PMID: 22391316 DOI: 10.1016/b978-0-12-394622-5.00020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (Hh) pathway is a major regulator for cell differentiation, tissue polarity, and cell proliferation in embryonic development and homeostasis in adult tissue. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. It is thus believed that targeted inhibition of Hh signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we summarize major advances in the past 2 years in our understanding of Hh signaling activation in human gastrointestinal cancer and their potential in clinical treatment with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | | | | |
Collapse
|
609
|
Abstract
Dysregulated Hedgehog (Hh) signaling has been implicated in a growing number of human cancers. Although first identified as an important developmental signaling pathway crucial for cellular proliferation, differentiation, and migration during organogenesis in invertebrates, these fundamental processes have been co-opted in human cancers. Initial evidence for the Hh pathway in tumor biology comes from mutations of signaling pathway components in a hereditary cancer syndrome that typically results in basal-cell carcinoma and medulloblastoma. Subsequent analysis revealed that Hh pathway mutations are found in sporadic tumors as well as activated Hh signaling in several epithelial cancers independent of Hh pathway mutation status. Further, recent evidence has demonstrated paracrine Hh signaling within stromal cells of the tumor microenvironment with implications for drug delivery. Several Hh antagonists targeting the Hh receptor, Smoothened (SMO), have been developed and show efficacy in preclinical studies and early-stage clinical trials in humans. However, major issues with these small molecule compounds include rapid acquired resistance, potential developmental toxicities secondary to use in children, and limited efficacy in cancers driven by Hh signaling downstream of the SMO receptor.
Collapse
|
610
|
Aberger F, Kern D, Greil R, Hartmann TN. Canonical and noncanonical Hedgehog/GLI signaling in hematological malignancies. VITAMINS AND HORMONES 2012; 88:25-54. [PMID: 22391298 DOI: 10.1016/b978-0-12-394622-5.00002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly conserved Hedgehog/GLI signaling pathway regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis and the hematopoietic system by controlling cell fate decisions, stem cell self-renewal, and activation. Loss of negative control of Hedgehog signaling contributes to tumor pathogenesis and progression. In the classical view of canonical Hedgehog signaling, Hedgehog ligand binding to its receptor Patched culminates in the activation of the key pathway activator Smoothened, followed by activation of the GLI transcription factors. Its essential function and druggability render Smoothened well suited to therapeutic intervention. However, recent evidence suggests a critical role of Smoothened-independent regulation of GLI activity by several other signaling pathways including the PI3K/AKT and RAS/RAF/MEK/ERK axes. In addition, the contribution of canonical Hedgehog signaling via Patched and Smoothened to normal and malignant hematopoiesis has been the subject of recent controversies. In this review, we discuss the current understanding and controversial findings of canonical and noncanonical GLI activation in hematological malignancies in light of the current therapeutic strategies targeting the Hedgehog pathway.
Collapse
Affiliation(s)
- Fritz Aberger
- Division of Molecular Tumor Biology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | |
Collapse
|
611
|
Batty N, Kossoff E, Dy GK. Investigational agents in metastatic basal cell carcinoma: focus on vismodegib. J Exp Pharmacol 2012; 4:97-103. [PMID: 27186122 PMCID: PMC4863308 DOI: 10.2147/jep.s26591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vismodegib (GDC-0449, 2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide, Erivedge™) is a novel first-in-human, first-in class, orally bio-available Hedgehog pathway signaling inhibitor of the G-protein coupled receptor-like protein smoothened (SMO) which was approved in the United States on January 2012. This signaling pathway is involved in the carcinogenesis of several types of tumor, as exemplified by basal cell carcinoma. This review focuses on the role of the Hedgehog pathway in the pathogenesis of basal cell carcinoma, the pharmacology and the clinical activity of vismodegib, as well as a brief summary of investigational agents in development targeting this pathway.
Collapse
Affiliation(s)
- Nicolas Batty
- Department of Medicine, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Ellen Kossoff
- Department of Pharmacy, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Grace K Dy
- Department of Medicine, Roswell Park Cancer Center, Buffalo, NY, USA
| |
Collapse
|
612
|
Carpenter RL, Lo HW. Identification, functional characterization, and pathobiological significance of GLI1 isoforms in human cancers. VITAMINS AND HORMONES 2012; 88:115-40. [PMID: 22391302 DOI: 10.1016/b978-0-12-394622-5.00006-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioma-associated oncogene homolog 1 (GLI1) is the nuclear mediator of Hedgehog signaling that activates gene transcription via its zinc finger DNA-binding and transactivation domains. GLI1 plays a critical role in several cellular processes, including embryonic development, tumorigenesis, and tumor growth and progression. The human GLI1 gene was identified in 1987 as an amplified gene in glioblastoma. Somatic mutations have never been reported in the GLI1 gene in any cell or tumor type. Very recently in 2008-2009, the full-length GLI1 transcript was discovered to undergo alternative splicing to form two shorter isoforms, namely N-terminal deletion variant (GLI1ΔN) and truncated GLI1 (tGLI1). Emerging evidence suggests that the three structurally different GLI1 isoforms are distinctly different in their expression patterns and functions in the context of human cancers. The tGLI1 isoform, in particular, has been shown to gain the ability to modulate expression of the genes that are not regulated by GLI1 and to support the biology of more aggressive cancer. Consequently, a key focus of this chapter is to summarize and compare the properties of the three GLI1 isoforms and their relations to malignant biology of human cancers.
Collapse
Affiliation(s)
- Richard L Carpenter
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
613
|
Kelleher FC, McDermott R. Aberrations and therapeutics involving the developmental pathway Hedgehog in pancreatic cancer. VITAMINS AND HORMONES 2012; 88:355-78. [PMID: 22391312 DOI: 10.1016/b978-0-12-394622-5.00016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. A PubMed search from 2000 to 2010 and literature-based references were sourced. It was found that in 2009 a genetic analysis of pancreatic cancers discovered that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Second, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) have shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Third, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compressed the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourth, it has been found that ligand-dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. In conclusion, aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | | |
Collapse
|
614
|
Zoccali G, Pajand R, Papa P, Orsini G, Lomartire N, Giuliani M. Giant basal cell carcinoma of the skin: literature review and personal experience. J Eur Acad Dermatol Venereol 2011; 26:942-52. [DOI: 10.1111/j.1468-3083.2011.04427.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
615
|
Sharma B, Singh RK. Emerging candidates in breast cancer stem cell maintenance, therapy resistance and relapse. J Carcinog 2011; 10:36. [PMID: 22279421 PMCID: PMC3263158 DOI: 10.4103/1477-3163.91119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022] Open
Abstract
Therapy resistance is a major concern while treating breast cancer. Various mechanisms have been proposed, but so far nothing has been able to effectively address this problem. Accumulating evidences suggest that a subset of cancer cells provides survival benefits to the tumor and are responsible for therapy resistance and relapse of cancer. These so called the cancer stem cells, are known to be regulated by several pathways. Evidences shows that the tumor microenvironment plays a crucial role in maintaining the cancer stem cell pool. Signaling within the tumor is modulated by surrounding cells which secrete signals favoring tumor growth and metastasis. In breast cancer, the cancer stem cells have recently been reported to be influenced by tumor microenvironment via cytokines which act as chemoattractants for leukocytes. This review elucidates the emerging role of chemokine receptor and receptor activator of NFκB (RANK) ligand/RANK signaling pathways in mediating therapy resistance of breast cancer by maintaining the cancer stem cell pool.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Pathology and Microbiology, The University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | | |
Collapse
|
616
|
Morelli MP, Calvo E, Ordoñez E, Wick MJ, Viqueira BR, Lopez-Casas PP, Bruckheimer E, Calles-Blanco A, Sidransky D, Hidalgo M. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J Clin Oncol 2011; 30:e45-8. [PMID: 22184402 DOI: 10.1200/jco.2011.36.9678] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- M Pia Morelli
- Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
617
|
Braat H, Bruno M, Kuipers EJ, Peppelenbosch MP. Pancreatic cancer: promise for personalised medicine? Cancer Lett 2011; 318:1-8. [PMID: 22178657 DOI: 10.1016/j.canlet.2011.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022]
Abstract
Pancreatic cancer has an infaust prognosis and is the fourth commonest cause of cancer related death in men. Design of rational treatment has been hampered by lack of insight into the pathogenesis of the disease. Recently more insight has been gained into a number of crucial aspects of pancreatic carcinogenesis, in particular the cell types that can give rise to oncological transformation in the pancreas, different modes of interaction between transformed pancreatic cells and the stroma that fosters further disease progression, the need of the pancreatic tumour cells to overcome the pressure of immune surveillance and the various changes in intercellular biochemistry that tumour cells employ to both sustain chemoresistance and metastasis. Although still largely incomplete, this new knowledge opens novel avenues on more successful treatment of the disease through personalised medicine.
Collapse
Affiliation(s)
- Henri Braat
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
618
|
Cocoş R, Schipor S, Nicolae I, Thomescu C, Raicu F. Role of COX-2 activity and CRP levels in patients with non-melanoma skin cancer. −765G>C PTGS2 polymorphism and NMSC risk. Arch Dermatol Res 2011; 304:335-42. [DOI: 10.1007/s00403-011-1194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/15/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022]
|
619
|
Abstract
In the era of cytotoxic therapies, tumor regression has rarely been observed in phase I trials and randomized controlled trials have usually been required to demonstrate modest improvements over prevailing standards of care. In the era of effective targeted therapies, drugs such as vemurafenib and crizotinib have demonstrated convincing efficacy in early clinical testing, raising the question of whether randomized phase III trials are necessary and feasible before drug approval. Since 1992, the FDA has approved a number of drugs without data from confirmatory clinical trials as part of the accelerated approval process. While this initiative has largely been successful in bringing effective drugs to the market more quickly, there is much to be learned from case studies of drugs, such as gefitinib, which subsequently failed to gain full approval. In this Review, we use a number of historical examples to make the case that it may be reasonable to consider foregoing randomized phase III trials for certain drugs before drug approval. We explore the consequences (both good and bad) of foregoing randomized phase III trials and propose criteria that might be used to select drugs for consideration of such an approach.
Collapse
|
620
|
|
621
|
Berge E, Thompson C, Messersmith W. Development of Novel Targeted Agents in the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2011; 10:266-78. [DOI: 10.1016/j.clcc.2011.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 02/08/2023]
|
622
|
|
623
|
Weiss GJ, Tibes R, Blaydorn L, Jameson G, Downhour M, White E, Caro I, Von Hoff DD. Long-term safety, tolerability, and efficacy of vismodegib in two patients with metastatic basal cell carcinoma and basal cell nevus syndrome. Dermatol Reports 2011; 3:e55. [PMID: 25386306 PMCID: PMC4211514 DOI: 10.4081/dr.2011.e55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 09/09/2011] [Indexed: 12/19/2022] Open
Abstract
Tumor responses in advanced basal cell carcinoma (BCC) have been observed in clinical trials with vismodegib, a SMO antagonist. The result of SMO antagonism is inhibition Hedgehog Signaling Pathway (HHSP) downstream target genes. HHSP inhibition has been shown to affect stem cells responsible for blood, mammary, and neural development. We report on our experience of treating two patients with advanced BCC participating. These two patients have had no new BCCs develop for at least 2.25 years. Both patients have been receiving ongoing daily treatment with vismodegib for greater than 2.75 years without experiencing any significant side effects. After prolonged continuous daily dosing with a SMO antagonist, we have not observed a significant alteration in hematologic parameters or physical abnormalities of the pectoral regions of two patients with advanced BCC.
Collapse
Affiliation(s)
- Glen J Weiss
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Raoul Tibes
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Lisa Blaydorn
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Gayle Jameson
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Molly Downhour
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Erica White
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| | - Ivor Caro
- Genentech, South San Francisco, CA, USA
| | - Daniel D Von Hoff
- Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale, AZ
| |
Collapse
|
624
|
Tang JY. Elucidating the Role of Molecular Signaling Pathways in the Tumorigenesis of Basal Cell Carcinoma. ACTA ACUST UNITED AC 2011; 30:S6-9. [DOI: 10.1016/j.sder.2011.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
625
|
Abstract
The Hedgehog (Hh) pathway is a conserved signalling system essential for embryonic development and for the maintenance of self-renewal pathways in progenitor cells. Mutations that deregulate Hh signalling are directly implicated in basal cell carcinoma and medulloblastoma. The mechanisms of Hh pathway activation in cancers in which no pathway mutations have been identified are less clear, but of great translational significance. Small molecule inhibitors of the pathway, many of which are in early phase clinical trials, may shed further light on this question. Canonical Hh signalling promotes the expression of target genes through the Glioma-associated oncogene (GLI) transcription factors. There is now increasing evidence suggesting that 'non-canonical' Hh signalling mechanisms, some of which are independent of GLI-mediated transcription, may be important in cancer and development. The focus of this review is to summarise some of the known mechanisms of Hh signalling as well as its emerging role in cancer.
Collapse
Affiliation(s)
- Kieren D Marini
- Monash Institute of Medical Research, Centre for Cancer Research, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
626
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
627
|
Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG. Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2011; 57:930-8. [PMID: 21618411 PMCID: PMC3164386 DOI: 10.1002/pbc.23174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/30/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant activation of the hedgehog (Hh) signaling pathway is implicated widely in both pediatric and adult malignancies. Inactivation of the Hh regulator PTCH is responsible for the Gorlin cancer predisposition syndrome. The spectrum of tumors found in Gorlin Syndrome includes basal cell carcinoma, medulloblastoma, and rarely, rhabdomyosarcoma (RMS). A previous report utilizing in situ hybridization has provided initial evidence for the expression of Hh targets GLI1 and PTCH in RMS tumors. PROCEDURE To investigate the role of Hh pathway signaling in pediatric RMS and undifferentiated sarcoma (US) tumors, the expression of Hh pathway targets GLI1 and PTCH was measured. RNA was extracted from archival human tumor specimens collected from pediatric patients enrolled on Intergroup Rhabdomyosarcoma Study III and IV, and subjected to quantitative reverse transcriptase-polymerase chain reaction. RESULTS Expression of GLI1 with or without PTCH was detected in substantial subsets of embryonal RMS (ERMS) and US tumors but only rarely in alveolar RMS tumors. Neither PTCH mutations nor activating SMO mutations were detected in ERMS tumors with high GLI1 expression. Microarray analysis demonstrated relative overexpression of downstream Hh targets in ERMS tumors with high or intermediate GLI1 expression. Unlike a recent report, Hh pathway activity in ERMS tumors did not correlate with a unique clinical phenotype. CONCLUSIONS Our findings support a role for Hh pathway activation in the genesis of a subset of ERMS and US tumors. Hh signaling may represent a novel therapeutic target in affected tumors.
Collapse
Affiliation(s)
- Joseph G Pressey
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
628
|
|
629
|
Rohner A, Spilker ME, Lam JL, Pascual B, Bartkowski D, Li QJ, Yang AH, Stevens G, Xu M, Wells PA, Planken S, Nair S, Sun S. Effective Targeting of Hedgehog Signaling in a Medulloblastoma Model with PF-5274857, a Potent and Selective Smoothened Antagonist That Penetrates the Blood–Brain Barrier. Mol Cancer Ther 2011; 11:57-65. [DOI: 10.1158/1535-7163.mct-11-0691] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
630
|
Tostar U, Toftgård R, Zaphiropoulos PG, Shimokawa T. Reduction of human embryonal rhabdomyosarcoma tumor growth by inhibition of the hedgehog signaling pathway. Genes Cancer 2011; 1:941-51. [PMID: 21779473 DOI: 10.1177/1947601910385449] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/15/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft-tissue sarcoma in children. Embryonal rhabdomyosarcoma (E-RMS) represents the most common RMS subtype, but the molecular events driving this tumor are still largely unknown. The hedgehog (HH) pathway, a major signal transduction cascade, is linked with many cancers, including RMS. As we previously have detected loss of heterozygosity of PTCH1 in E-RMS, we now examined 8 E-RMS tumor samples and 5 E-RMS cell lines for the presence of PTCH1 mutations, but none was detected. However, in the E-RMS cell lines, a variable pattern of up-regulated expression of certain HH signaling target genes, including HHIP, PTCH1, SFRP1, and GLI1, was observed. Moreover, treatment with the small molecule HH signaling inhibitors cyclopamine and GANT61 inhibited cell proliferation in all E-RMS cell lines analyzed. Interestingly, GANT61 was more effective, and this was accompanied by increased apoptosis, while cyclopamine promoted necrotic events. Specific knockdown of SMO had no effect on the proliferation of E-RMS cells, indicating the presence of an SMO-independent HH signaling pathway in the E-RMS cell lines. Furthermore, in an in vivo xenograft model, tumor growth was significantly reduced by GANT61 treatment of E-RMS cells. Additionally, siRNA experiments provided evidence that inhibition of GLI1 or GLI3 but not GLI2 was sufficient to reduce proliferation of these cell lines. As GANT61 is known to block GLI1/GLI2 transcriptional activity, the inhibition of E-RMS growth by GANT61 is likely to be mediated through GLI1. In conclusion, our findings implicate that GLI1 could constitute an effective therapeutic target in pediatric E-RMS.
Collapse
Affiliation(s)
- Ulrica Tostar
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-14183 Sweden
| | | | | | | |
Collapse
|
631
|
Abstract
The Hedgehog (Hh) pathway is a major regulator of many fundamental processes in vertebrate embryonic development including stem cell maintenance, cell differentiation, tissue polarity and cell proliferation. Constitutive activation of the Hh pathway leading to tumorigenesis is seen in basal cell carcinomas and medulloblastoma. A variety of other human cancers, including brain, gastrointestinal, lung, breast and prostate cancers, also demonstrate inappropriate activation of this pathway. Paracrine Hh signaling from the tumor to the surrounding stroma was recently shown to promote tumorigenesis. This pathway has also been shown to regulate proliferation of cancer stem cells and to increase tumor invasiveness. Targeted inhibition of Hh signaling may be effective in the treatment and prevention of many types of human cancers. The discovery and synthesis of specific Hh pathway inhibitors have significant clinical implications in novel cancer therapeutics. Several synthetic Hh antagonists are now available, several of which are undergoing clinical evaluation. The orally available compound, GDC-0449, is the farthest along in clinical development. Initial clinical trials in basal cell carcinoma and treatment of select patients with medulloblastoma have shown good efficacy and safety. We review the molecular basis of Hh signaling, the current understanding of pathway activation in different types of human cancers and we discuss the clinical development of Hh pathway inhibitors in human cancer therapy.
Collapse
Affiliation(s)
- Sachin Gupta
- Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | | | | |
Collapse
|
632
|
Singh BN, Fu J, Srivastava RK, Shankar S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One 2011; 6:e27306. [PMID: 22087285 PMCID: PMC3210776 DOI: 10.1371/journal.pone.0027306] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022] Open
Abstract
Background Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs). Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib), orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro. Methodology/Principal Findings GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival. Conclusions/Significance These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs.
Collapse
Affiliation(s)
- Brahma N. Singh
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
633
|
Kuphal S, Shaw-Hallgren G, Eberl M, Karrer S, Aberger F, Bosserhoff AK, Massoumi R. GLI1-dependent transcriptional repression of CYLD in basal cell carcinoma. Oncogene 2011; 30:4523-30. [PMID: 21577203 DOI: 10.1038/onc.2011.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 03/28/2011] [Accepted: 04/03/2011] [Indexed: 12/23/2022]
Abstract
CYLD is a deubiquitination enzyme that regulates different cellular processes, such as cell proliferation and cell survival. Mutation and loss of heterozygosity of the CYLD gene causes development of cylindromatosis, a benign tumour originating from the skin. Our study shows that CYLD expression is dramatically downregulated in basal cell carcinoma (BCC), the most common cancer in humans. Reduced CYLD expression in basal cell carcinoma was mediated by GLI1-dependent activation of the transcriptional repressor Snail. Inhibition of GLI1 restored the CYLD expression-mediated Snail signaling pathway, and caused a significant delay in the G1 to S phase transition, as well as proliferation. Our data suggest that GLI1-mediated suppression of CYLD has a significant role in basal cell carcinoma progression.
Collapse
Affiliation(s)
- S Kuphal
- Institute of Pathology, University of Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
634
|
Lasudry J. [Management of eyelid tumors: general considerations]. J Fr Ophtalmol 2011; 34:741-54. [PMID: 22036553 DOI: 10.1016/j.jfo.2011.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/19/2011] [Indexed: 11/26/2022]
Abstract
Despite the fact that the majority of eyelid tumors are benign, proper management in daily practice requires detection of the malignant ones. Several clinical criteria are usually proposed to support or reject a hypothesis of malignancy; however, most are of limited reliability. In any case of doubt, outpatient biopsy is recommended, so as to establish the correct diagnosis and formulate the most appropriate treatment plan. In all facial malignancies, the first (and absolutely mandatory) consideration is control of the cancer. Then, restoration of eyelid function can be addressed, in the following order: protection of the globe by complete dynamic eyelid closure and opening, visual function (and prevention of possible deprivation amblyopia) by insuring a clear visual axis, correction of the tear film, efficient lachrymal drainage, and only then the role of the eyelids in facial expression and esthetics. For most malignant eyelid tumors, the best assurance of complete excision is obtained by extemporaneous examination of the resection margins by frozen section (by Mohs' micrographic surgery techniques, or a variation thereof). Currently, advancement and transposition flaps, possibly in combination with tarso-conjunctival or skin grafts, are the most utilised techniques. Despite the lack of histological verification, new treatment modalities, including topical chemotherapy, photodynamic therapy and cryotherapy, may provide interesting treatment options, particularly in collaboration with the dermatologist.
Collapse
Affiliation(s)
- J Lasudry
- Service d'ophtalmologie, clinique de pathologie et chirurgie orbitopalpébro-lacrymale et onco-ophtalmologie, hôpital académique Erasme, université libre de Bruxelles, 808, route de Lennik, 1070 Bruxelles, Belgique.
| |
Collapse
|
635
|
Targeting the Hedgehog and Notch Signaling Pathways. J Thorac Oncol 2011; 6:S1820-1. [DOI: 10.1097/01.jto.0000407572.67949.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
636
|
Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 2011; 17:512-27. [PMID: 22157296 PMCID: PMC3381956 DOI: 10.1097/ppo.0b013e31823e701a] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography-based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene "addictions" as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer-targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review.
Collapse
Affiliation(s)
- Jill E. Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - David E. Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
637
|
Mar BG, Amakye D, Aifantis I, Buonamici S. The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis. Leukemia 2011; 25:1665-73. [PMID: 21660044 PMCID: PMC4310480 DOI: 10.1038/leu.2011.143] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/02/2011] [Accepted: 05/03/2011] [Indexed: 12/28/2022]
Abstract
Hedgehog (Hh) is a developmental signaling pathway in which Hh ligands bind Patched (Ptch), which relieves its inhibition of Smoothened (Smo), allowing the Gli family of transcription factors to translocate to the nucleus and activate Hh target genes. The role of Hh signaling in hematopoiesis is controversial and ill defined. Although some groups observed self-renewal defects with decreased replating and reduced efficiency of secondary murine transplants, other groups reported no hematopoietic phenotypes, which may be related to the timing of Hh abrogation. In malignant hematopoiesis, most attention has been focused on the role of Hh signaling in chronic myeloid leukemia (CML), considered by many to be a stem cell disorder that bears the constitutively active BCR-ABL tyrosine kinase. Despite the elimination of most leukemia cells through BCR-ABL inhibition, most patients remain PCR positive, suggesting that the putative CML stem cell may be resistant to kinase antagonism. Groups are now exploring the Hh pathway as an alternate pathway supporting CML stem cell survival. Knockdown or inhibition of Smo abrogates or delays the appearance of CML in several in vitro and in vivo models. These data have lead to clinical trials using BCR-ABL kinase and novel Smo inhibitors in combination.
Collapse
Affiliation(s)
- BG Mar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - D Amakye
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - I Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, USA
- Helen and Martin S Kimmel Stem Cell Center, NYU School of Medicine, New York, NY, USA
| | - S Buonamici
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
638
|
O'Bryan KW, Ratner D. The role of targeted molecular inhibitors in the management of advanced nonmelanoma skin cancer. ACTA ACUST UNITED AC 2011; 30:57-61. [PMID: 21540021 DOI: 10.1016/j.sder.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Surgical treatment remains the standard of care for nonmelanoma skin cancer and is successful for the vast majority of patients with these tumors. The treatment of patients with metastatic or unresectable nonmelanoma skin cancer, however, has until recently been based solely on traditional methods of chemotherapy and radiation. However, these methods have high rates of treatment failure, morbidity, and mortality, and alternative treatment modalities for patients with aggressive or advanced disease are needed. As in other areas of cancer therapeutics, recent research elucidating the molecular basis of cancer development, and the subsequent arrival of targeted molecular inhibitors for cancer therapy, have been met with much excitement. In this review, we seek to illuminate recent developments and future possibilities in the use of targeted molecular inhibitors for treatment of advanced squamous cell carcinoma, basal cell carcinoma, and dermatofibrosarcoma protuberans.
Collapse
Affiliation(s)
- Kevin W O'Bryan
- Columbia University Department of Dermatology, Division of Dermatologic Surgery, New York, NY 10032, USA.
| | | |
Collapse
|
639
|
Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 2011; 11:165-73. [PMID: 22027695 DOI: 10.1158/1535-7163.mct-11-0341] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant activation of the hedgehog (Hh) signaling pathway is one of the most prevalent abnormalities in human cancer. Tumors with cell autonomous Hh activation (e.g., medulloblastomas) can acquire secondary mutations at the Smoothened (Smo) antagonist binding pocket, which render them refractory to conventional Hh inhibitors. A class of Hh pathway inhibitors (HPI) has been identified that block signaling downstream of Smo; one of these compounds, HPI-1, is a potent antagonist of the Hh transcription factor Gli1 and functions independent of upstream components in the pathway. Systemic administration of HPI-1 is challenging due to its minimal aqueous solubility and poor bioavailability. We engineered a polymeric nanoparticle from [poly(lactic-co-glycolic acid); (PLGA)] conjugated with polyethylene glycol (PEG), encapsulating HPI-1 (NanoHHI). NanoHHI particles have an average diameter of approximately 60 nm, forms uniform aqueous suspension, and improved systemic bioavailability compared with the parent compound. In contrast to the prototype targeted Smo antagonist, HhAntag (Genentech), NanoHHI markedly inhibits the growth of allografts derived from Ptch(-/+); Trp53(-/-) mouse medulloblastomas that harbor a Smo(D477G) binding site mutation (P < 0.001), which is accompanied by significant downregulation of mGli1 as well as bona fide Hh target genes (Akna, Cltb, and Olig2). Notably, NanoHHI combined with gemcitabine also significantly impedes the growth of orthotopic Pa03C pancreatic cancer xenografts that have a ligand-dependent, paracrine mechanism of Hh activation when compared with gemcitabine alone. No demonstrable hematologic or biochemical abnormalities were observed with NanoHHI administration. NanoHHI should be amenable to clinical translation in settings where tumors acquire mutational resistance to current Smo antagonists.
Collapse
Affiliation(s)
- Venugopal Chenna
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
640
|
Redmond EM, Guha S, Walls D, Cahill PA. Investigational Notch and Hedgehog inhibitors--therapies for cardiovascular disease. Expert Opin Investig Drugs 2011; 20:1649-64. [PMID: 22007748 DOI: 10.1517/13543784.2011.628658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION During the past decade, a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. AREAS COVERED This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the preclinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. EXPERT OPINION Preclinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands have proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. By contrast, the Hedgehog-based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients.
Collapse
Affiliation(s)
- Eileen M Redmond
- University of Rochester, Department of Surgery, 601 Elmwood Ave, Box SURG, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
641
|
Shi W, Nacev BA, Aftab BT, Head S, Rudin CM, Liu JO. Itraconazole side chain analogues: structure-activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and hedgehog signaling. J Med Chem 2011; 54:7363-74. [PMID: 21936514 DOI: 10.1021/jm200944b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure-activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole.
Collapse
Affiliation(s)
- Wei Shi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | | | | | | | | | | |
Collapse
|
642
|
Abstract
Confined to one side of the chest, limited stage small cell lung cancer is treated with a combination of chemotherapy and radiotherapy, yet has a long-term survival rate of only 15%. Extensive stage disease has initial response rates to chemotherapy exceeding 70%. However, the disease almost invariably progresses and becomes fatal. Many recent clinical trials have failed to show superiority of newer chemotherapeutics or targeted therapies compared with the standard chemotherapy backbone of platinum plus etoposide. Numerous promising targeted therapies and other agents are still in development.
Collapse
|
643
|
Cassier PA, Labidi-Galy SI, Heudel P, Dutour A, Méeus P, Chelghoum M, Alberti L, Ray-Coquard I, Blay JY. Therapeutic pipeline for soft-tissue sarcoma. Expert Opin Pharmacother 2011; 12:2479-91. [PMID: 21913865 DOI: 10.1517/14656566.2011.604633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Soft-tissue sarcomas (STS) represent a heterogeneous group of malignant tumors originating from connective tissues. Over recent years, this heterogeneity has led to a molecular breakdown of STS and subsequent use of targeted agents in several molecularly defined subgroups. After the initial success of imatinib in gastrointestinal stromal tumors, several other compounds have shown promising activity in some but not all subgroups of sarcoma. AREAS COVERED This review discusses the rational and clinical results, when available, that support this subtype-directed approach. In the vast majority of cases, these agents have been tested only in patients with advanced disease; as chemotherapeutic agents are developed as non-histotype-specific therapies, they are not discussed here. The PubMed literature was searched using the terms 'sarcoma', 'angiogenesis', 'mTOR' and 'targeted agents'. Proceedings of the annual meeting of the American Society of Clinical Oncology as well as those of the Connective Tissue Oncology Society were also searched for relevant information. EXPERT OPINION Many agents are currently developed in a subtype-specific manner in STS and this represents a significant leap forward. However, much remains to be done to improve our understanding of the molecular biology of this heterogeneous group of diseases.
Collapse
|
644
|
Tao H, Jin Q, Koo DI, Liao X, Englund NP, Wang Y, Ramamurthy A, Schultz PG, Dorsch M, Kelleher J, Wu X. Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. ACTA ACUST UNITED AC 2011; 18:432-7. [PMID: 21513879 DOI: 10.1016/j.chembiol.2011.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Several small molecule antagonists for Smoothened (Smo) have been developed, and achieved promising preclinical efficacy in cancers that are dependent on Hedgehog (Hh) signaling. However, in a recent clinical study, a drug-resistant D473H SMO mutant was identified that is thought to be responsible for cancer relapse in a patient with medulloblastoma. Here, we report two Smo antagonists that bind to distinct sites, as compared to known antagonists and agonists, and inhibit both wild-type and mutant Smo. These findings provide an insight of the ligand-binding sites of Smo and a basis for the development of potential therapeutics for tumors with drug-resistant Smo mutations.
Collapse
Affiliation(s)
- Haiyan Tao
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
645
|
Philips GM, Chan IS, Swiderska M, Schroder VT, Guy C, Karaca GF, Moylan C, Venkatraman T, Feuerlein S, Syn WK, Jung Y, Witek RP, Choi S, Michelotti GA, Rangwala F, Merkle E, Lascola C, Diehl AM. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One 2011; 6:e23943. [PMID: 21912653 PMCID: PMC3166282 DOI: 10.1371/journal.pone.0023943] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/27/2011] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Chronic fibrosing liver injury is a major risk factor for hepatocarcinogenesis in humans. Mice with targeted deletion of Mdr2 (the murine ortholog of MDR3) develop chronic fibrosing liver injury. Hepatocellular carcinoma (HCC) emerges spontaneously in such mice by 50-60 weeks of age, providing a model of fibrosis-associated hepatocarcinogenesis. We used Mdr2(-/-) mice to investigate the hypothesis that activation of the hedgehog (Hh) signaling pathway promotes development of both liver fibrosis and HCC. METHODS Hepatic injury and fibrosis, Hh pathway activation, and liver progenitor populations were compared in Mdr2(-/-) mice and age-matched wild type controls. A dose finding experiment with the Hh signaling antagonist GDC-0449 was performed to optimize Hh pathway inhibition. Mice were then treated with GDC-0449 or vehicle for 9 days, and effects on liver fibrosis and tumor burden were assessed by immunohistochemistry, qRT-PCR, Western blot, and magnetic resonance imaging. RESULTS Unlike controls, Mdr2(-/-) mice consistently expressed Hh ligands and progressively accumulated Hh-responsive liver myofibroblasts and progenitors with age. Treatment of aged Mdr2-deficient mice with GDC-0449 significantly inhibited hepatic Hh activity, decreased liver myofibroblasts and progenitors, reduced liver fibrosis, promoted regression of intra-hepatic HCCs, and decreased the number of metastatic HCC without increasing mortality. CONCLUSIONS Hh pathway activation promotes liver fibrosis and hepatocarcinogenesis, and inhibiting Hh signaling safely reverses both processes even when fibrosis and HCC are advanced.
Collapse
Affiliation(s)
- George M. Philips
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Isaac S. Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vanessa T. Schroder
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Cynthia Guy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gamze F. Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Cynthia Moylan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Talaignair Venkatraman
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Sebastian Feuerlein
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Youngmi Jung
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biological Science, Pusan National University, Pusan, Korea
| | - Rafal P. Witek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Steve Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gregory A. Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fatima Rangwala
- Divisions of Cell Therapy, Hematology and Medical Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elmar Merkle
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Christopher Lascola
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
646
|
Ontoria JM, Bufi LL, Torrisi C, Bresciani A, Giomini C, Rowley M, Serafini S, Bin H, Hao W, Steinkühler C, Jones P. Identification of a series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as potent smoothened antagonist hedgehog pathway inhibitors. Bioorg Med Chem Lett 2011; 21:5274-82. [DOI: 10.1016/j.bmcl.2011.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 01/06/2023]
|
647
|
|
648
|
Drugs on the Horizon for Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2011. [DOI: 10.1007/s11888-011-0099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
649
|
N-(2-alkylaminoethyl)-4-(1,2,4-oxadiazol-5-yl)piperazine-1-carboxamides as highly potent smoothened antagonists. Bioorg Med Chem Lett 2011; 21:5283-8. [DOI: 10.1016/j.bmcl.2011.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 01/11/2023]
|
650
|
Brown ML, Aaron W, Austin RJ, Chong A, Huang T, Jiang B, Kaizerman JA, Lee G, Lucas BS, McMinn DL, Orf J, Rong M, Toteva MM, Xu G, Ye Q, Zhong W, DeGraffenreid MR, Wickramasinghe D, Powers JP, Hungate R, Johnson MG. Discovery of amide replacements that improve activity and metabolic stability of a bis-amide smoothened antagonist hit. Bioorg Med Chem Lett 2011; 21:5206-9. [DOI: 10.1016/j.bmcl.2011.07.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/28/2022]
|