601
|
Abstract
Abstract
Telomerase is a ribonucleoprotein polymerase that synthesizes telomeric repeats onto the 3′ ends of eukaryotic chromosomes. Activation of telomerase may prevent telomeric shortening and correlates with cell immortality in the germline and certain tumor cells. Candidate hematopoietic stem cells (HSC) from adult bone marrow express low levels of telomerase, which is upregulated with proliferation and/or differentiation. To address this issue, we stimulated purified candidate HSC from human adult bone marrow with stem cell factor (SCF), interleukin-3 (IL-3), and Flt3-ligand (FL). After 5 days in culture, activity was detected in total cell extracts from IL-3–, SCF + FL–, SCF + IL-3–, FL + IL-3–, and SCF + IL-3 + FL–stimulated cultures, but not from cells cultured in SCF or FL alone. Within the CD34+fraction of the cultured cells, significant activity was found in the CD34+CD71+ fraction. In addition, PKH26 staining confirmed that detectable telomerase activity was present in dividing PKH26lo cells, whereas nondividing PKH26hi cells were telomerase negative. Because in these experiments no distinction could be made between cycling “candidate” stem cells that had retained or had lost self-renewal properties, fetal liver cells with a CD34+CD38− phenotype, highly enriched for cycling stem cells, were also examined and found to express readily detectable levels of telomerase activity. Given the replication-dependent loss of telomeric DNA in hematopoietic cells, these observations suggest that the observed telomerase activity in candidate stem cells is either expressed in a minor subset of stem cells or, more likely, is not sufficient to prevent telomere shortening.
Collapse
|
602
|
Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 1998; 16:431-9. [PMID: 9592390 DOI: 10.1038/nbt0598-431] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To construct a mammalian artificial chromosome (MAC), telomere repeats and selectable markers were introduced into a 100 kb yeast artificial chromosome (YAC) containing human centromeric DNA. This YAC, which has a regular repeat structure of alpha-satellite DNA and centromere protein B (CENP-B) boxes, efficiently formed MACs that segregated accurately and bound CENP-B, CENP-C, and CENP-E. The MACs appear to be about 1-5 Mb in size and contain YAC multimers. Structural analyses suggest that the MACs have not acquired host sequences and were formed by a de novo mechanism. The accurate segregation of the MACs suggests they have potential as vectors for introducing genes into mammals.
Collapse
MESH Headings
- Animals
- Autoantigens
- Cell Line
- Cell Line, Transformed
- Centromere/genetics
- Centromere Protein B
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes/genetics
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Human, Pair 21/genetics
- Cloning, Molecular
- DNA, Satellite/chemistry
- DNA, Satellite/genetics
- DNA-Binding Proteins
- Genetic Vectors/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Kinetochores
- Polymerase Chain Reaction
- Telomere/genetics
- Transfection
Collapse
Affiliation(s)
- M Ikeno
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Abstract
Telomerase is a ribonucleoprotein polymerase that synthesizes telomeric repeats onto the 3′ ends of eukaryotic chromosomes. Activation of telomerase may prevent telomeric shortening and correlates with cell immortality in the germline and certain tumor cells. Candidate hematopoietic stem cells (HSC) from adult bone marrow express low levels of telomerase, which is upregulated with proliferation and/or differentiation. To address this issue, we stimulated purified candidate HSC from human adult bone marrow with stem cell factor (SCF), interleukin-3 (IL-3), and Flt3-ligand (FL). After 5 days in culture, activity was detected in total cell extracts from IL-3–, SCF + FL–, SCF + IL-3–, FL + IL-3–, and SCF + IL-3 + FL–stimulated cultures, but not from cells cultured in SCF or FL alone. Within the CD34+fraction of the cultured cells, significant activity was found in the CD34+CD71+ fraction. In addition, PKH26 staining confirmed that detectable telomerase activity was present in dividing PKH26lo cells, whereas nondividing PKH26hi cells were telomerase negative. Because in these experiments no distinction could be made between cycling “candidate” stem cells that had retained or had lost self-renewal properties, fetal liver cells with a CD34+CD38− phenotype, highly enriched for cycling stem cells, were also examined and found to express readily detectable levels of telomerase activity. Given the replication-dependent loss of telomeric DNA in hematopoietic cells, these observations suggest that the observed telomerase activity in candidate stem cells is either expressed in a minor subset of stem cells or, more likely, is not sufficient to prevent telomere shortening.
Collapse
|
604
|
Abstract
Telomeres protect the ends of chromosomes from degradation and fusion. In most eukaryotes telomeres are replicated by a specialised polymerase, telomerase. Telomerase synthesises one strand of the telomere; while conventional DNA polymerases synthesise the complementary strand. Additional processing of telomeres occurs in ciliates and yeast during each cell cycle. Telomerase activity and RNA levels change as cells enter and exit the cell cycle. Gradual telomere shortening in the absence of telomerase does not immediately affect cell cycling; however, "critically" short telomeres are hypothesised to play a role in senescence and the triggering of DNA damage checkpoints.
Collapse
Affiliation(s)
- K J Buchkovich
- University of Illinois at Chicago, Department of Pharmacology, Chicago 60612, USA
| |
Collapse
|
605
|
Lansdorp PM, Poon S, Chavez E, Dragowska V, Zijlmans M, Bryan T, Reddel R, Egholm M, Bacchetti S, Martens U. Telomeres in the haemopoietic system. CIBA FOUNDATION SYMPOSIUM 1998; 211:209-18; discussion 219-22. [PMID: 9524760 DOI: 10.1002/9780470515433.ch14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The limited life span of most blood cells requires the continuous production of cells, which in adults exceeds 10(12) cells/day. This impressive production of cells (approximately 4 x 10(16) cells over a lifetime) is achieved by the proliferation and differentiation of committed progenitor cells, which themselves are derived from a population of pluripotent stem cells with self-renewal potential. Paradoxically, the large majority of stem cells in adult bone marrow are quiescent cells. One possibility is that stem cells, like other somatic cells, have only a limited replicative potential (< 100 divisions). This hypothesis is supported by two key observations and the consideration that, in theory, 55 divisions can yield 4 x 10(16) cells. First, it was shown that 'candidate' stem cells purified from fetal and adult tissue showed dramatic functional differences in turn-over time and the ability to produce cells with stem cell properties, Second, these functional differences were found to correlate with a measurable loss of telomere repeats despite the presence of low but readily detectable levels of telomerase in all purified cell fractions. In order to address questions about the role of telomeres in normal and malignant haemopoiesis, we developed a quantitative fluorescence in situ hybridization technique. Here we review the characteristics of this novel tool to assess the number of telomere repeats at the end of individual chromosomes and provide an overview of recent observations.
Collapse
Affiliation(s)
- P M Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Abstract
The mechanism by which telomeres prevent end-to-end fusion has remained elusive. Here, we show that the human telomeric protein TRF2 plays a key role in the protective activity of telomeres. A dominant negative allele of TRF2 induced end-to-end chromosome fusions detectable in metaphase and anaphase cells. Telomeric DNA persisted at the fusions, demonstrating that TTAGGG repeats per se are not sufficient for telomere integrity. Molecular analysis suggested that the fusions represented ligation of telomeres that have lost their single-stranded G-tails. Therefore, TRF2 may protect chromosome ends by maintaining the correct structure at telomere termini. In addition, expression of mutant forms of TRF2 induced a growth arrest with characteristics of senescence. The results raise the possibility that chromosome end fusions and senescence in primary human cells may be caused by loss by TRF2 from shortened telomeres.
Collapse
Affiliation(s)
- B van Steensel
- The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
607
|
Martens UM, Zijlmans JM, Poon SS, Dragowska W, Yui J, Chavez EA, Ward RK, Lansdorp PM. Short telomeres on human chromosome 17p. Nat Genet 1998; 18:76-80. [PMID: 9425906 DOI: 10.1038/ng0198-018] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human chromosomes terminate in a series of T2AG3 repeats, which, together with associated proteins, are essential for chromosome stability. In somatic cells, these sequences are known to be gradually lost through successive cells divisions; however, information about changes on specific chromosomes is not available. Individual telomeres could mediate important biological effects as was shown in yeast, in which loss of a single telomere results in cell-cycle arrest and chromosome loss. We now demonstrate by quantitative fluorescence in situ hybridization (Q-FISH; ref. 7) that the number of T2AG3 repeats on specific chromosome arms is very similar in different tissues from the same donor and varies only to some extent between donors. In all sixteen individuals studied, telomeres on chromosome 17p were shorter than the median telomere length--a finding confirmed by analysis of terminal restriction fragments from sorted chromosomes. These observations provide evidence of chromosome-specific factors regulating the number of T2AG3 repeats in individual telomeres and raise the possibility that the relatively short telomeres on chromosome 17p contribute to the frequent loss of 17p alleles in human cancers.
Collapse
Affiliation(s)
- U M Martens
- Terry Fox Laboratory for Hematology/Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
608
|
|
609
|
Katoh M, Katoh M, Kameyama M, Kugoh H, Shimizu M, Oshimura M. A repressor function for telomerase activity in telomerase-negative immortal cells. Mol Carcinog 1998; 21:17-25. [PMID: 9473768 DOI: 10.1002/(sici)1098-2744(199801)21:1<17::aid-mc4>3.0.co;2-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human telomerase, a ribonucleoprotein that adds TTAGGG repeats onto telomeres and compensates for their shortening, is repressed in most normal human somatic cells. Human somatic cells are considered to have a limited proliferation capacity because of the telomere shortening. Although immortalization of somatic cells is often associated with telomerase reactivation, there are some immortal cells in which telomerase activity is undetectable. In these cells, telomeres may be maintained by an unknown mechanism other than telomerase reactivation. To examine the genetic regulation of telomerase activity, we constructed hybrids between immortal cells with (HepG2) and without (KMST6) telomerase activity. These two cell lines had relatively short and long telomeres, respectively. The hybrid cells continued to proliferate without detectable telomerase activity even after 100 population doublings. Telomerase-positive subpopulations occasionally appeared after serial passages. Southern blot analysis revealed that the hybrids had long terminal restriction fragments similar to that of KMST6, regardless of telomerase activity, and fluorescence in situ hybridization with a telomeric probe showed high-intensity hybridization signals on telomeres, indicating relatively long telomeric repeats. These results suggest that the telomerase-negative immortal cells contain a gene or genes functioning as a telomerase repressor and maintain telomere length by a dominant mechanism other than telomerase reactivation.
Collapse
Affiliation(s)
- M Katoh
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Japan
| | | | | | | | | | | |
Collapse
|
610
|
Benn P. Aging chromosome telomeres: parallel studies with terminal repeat and telomere associated DNA probes. Mech Ageing Dev 1997; 99:153-66. [PMID: 9483489 DOI: 10.1016/s0047-6374(97)00099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human chromosome telomeres consist of tandemly repeated (TTAGGG)n sequences with variant and more complex telomere-associated DNA sequences proximal to the terminal repeats. Terminal restriction fragment (TRF) sizes have been evaluated by Southern blot analysis using a terminal repeat probe, (TTAGGG)3 that will simultaneously detect all telomeres and with a telomere-associated DNA probe, TelBamll, that identifies a specific sub-group of chromosome ends. For DNA extracted from in vitro aging fibroblasts, a progressive reduction in the size of the TRFs could be demonstrated using both probes. For both fibroblasts and adult lymphocyte DNA, there were differences in the size of the fragments detected with the two probes. Studies were carried out to determine whether this difference might, in part, be attributable to variability in terminal repeat lengths as well as heterogeneity in the location of terminal restriction enzyme recognition sites. Using the (TTAGGG)3 probe to identify all telomeres, the terminal repeat lengths from lymphocytes of two adults appeared to be highly variable with sizes upto 20 kb. For the sub-group of telomeres identified by TelBamll the terminal repeat lengths were estimated to be 2-4 kb and appeared to show relatively little size diversity. If it assumed that the molecular weights of the DNA fragments identified in these studies do accurately reflect individual telomere structures, then it can be concluded that some specific telomere repeat arrays are substantially shorter than others. Variation in terminal repeat length may be related to the extent that telomeres participate in chromosome rearrangement.
Collapse
Affiliation(s)
- P Benn
- Department of Pediatrics, University of Connecticut Health Center, Farmington 06030-6140, USA.
| |
Collapse
|
611
|
Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzatto L. In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci U S A 1997; 94:13782-5. [PMID: 9391104 PMCID: PMC28384 DOI: 10.1073/pnas.94.25.13782] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aging in vivo and cell division in vitro are associated with telomere shortening. Several lines of evidence suggest that telomere length may be a good predictor of the long term replicative capacity of cells. To investigate the natural fate of chromosome telomeres of hematopoietic stem cells in vivo, we measured the telomere length of peripheral blood granulocytes from 11 fully engrafted bone marrow transplant recipients and from their respective donors. In 10 of 11 donor-recipient pairs, the telomere length was significantly reduced in the recipient and the extent of reduction correlated inversely with the number of nucleated cells infused. These data provide internally controlled in vivo evidence that, concomitantly with their proliferation, hematopoietic stem cells lose telomere length; it is possible that, as a result, their proliferative potential is reduced. These findings must be taken into account when developing new protocols in which few stem cells are used for bone marrow transplantation or for gene therapy.
Collapse
Affiliation(s)
- R Notaro
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
612
|
Weng NP, Palmer LD, Levine BL, Lane HC, June CH, Hodes RJ. Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev 1997; 160:43-54. [PMID: 9476664 DOI: 10.1111/j.1600-065x.1997.tb01026.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telomerase activity and the regulation of telomere length are factors which have been implicated in the control of cellular replication. These variables have been examined during human lymphocyte development, differentiation, activation, and aging. It was found that telomere length of peripheral blood CD4+ T cells decreases with age as well as with differentiation from naive to memory cells in vivo, and decreases with cell division in vitro. These results provide evidence that telomere length correlates with lymphocyte replicative history and residual replicative potential. In contrast, telomere length appears to increase during tonsil B-cell differentiation and germinal center (GC) formation in vivo. It was also found that telomerase activity is highly regulated during T-cell development and B-cell differentiation in vivo, with high levels of telomerase activity expressed in thymocytes and GC B cells, and low levels of telomerase activity in resting mature peripheral blood lymphocytes. Finally, resting lymphocytes retain the ability to upregulate telomerase activity upon activation, and this capacity does not appear to decline with age. Although the precise role of telomerase in lymphocyte function remains to be elucidated, telomerase may contribute to protection from telomere shortening in T and B lymphocytes, and may thus play a critical role in lymphocyte development, differentiation and activation. The future study of telomerase and its regulation of telomere length may enhance our understanding of how the replicative lifespan is regulated in lymphocytes.
Collapse
Affiliation(s)
- N P Weng
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
613
|
Simmons CG, Pitts AE, Mayfield LD, Shay JW, Corey DR. Synthesis and membrane permeability of PNA-peptide conjugates. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)10136-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
614
|
Abstract
Efforts to expand the number of stem cells ex vivo are based on the assumption that the self-renewal properties of stem cells are subject to extrinsic control. Although loss of stem cell properties ex vivo has been well-documented, conclusive evidence for a gain of stem cell function in vitro has not been forthcoming. In this short discussion paper, some issues related to the self-renewal of stem cells in relation to future experimental strategies are presented.
Collapse
Affiliation(s)
- P M Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
615
|
Mondello C, Riboni R, Casati A, Nardo T, Nuzzo F. Chromosomal instability and telomere length variations during the life span of human fibroblast clones. Exp Cell Res 1997; 236:385-96. [PMID: 9367622 DOI: 10.1006/excr.1997.3756] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growth characteristics, karyotype changes, and telomere length variations were analyzed during the life span of 12 anchorage-independent clones isolated from a xeroderma pigmentosum fibroblast strain. After an initial period of comparable active growth, all the clones showed a decline in the growth rate and finally entered a phase of replicative senescence; however, the number of population doublings and the time required to enter senescence varied among the clones. Repeated cytogenetic analyses during culture propagation showed the appearance of chromosome anomalies, mainly telomeric association (tas) and unbalanced translocations. In all the clones the percentage of abnormal mitoses increased with culture passage, but reached different levels (from less than 10% to about 100%). This finding indicates that the replicative block may be associated with differently altered cytogenetic patterns. Specific chromosome arms (5p, 16q, 19q, and 20q) were preferentially involved in tas, suggesting that alterations in chromosome ends may occur which predispose to fusion. In some clones it was possible to demonstrate the origin of marker chromosomes from the evolution of tas. Telomere length analysis by Southern blotting on DNA samples prepared from 7 clones and from the parental cell lines showed that the terminal restriction fragment (TRF) profiles were homogeneous in senescent parental cells and in the clones during the last part of their life in culture, regardless of the degree of karyotype abnormalities. The homogeneity of the TRF profiles supports the hypothesis of a critical telomere length at senescence.
Collapse
Affiliation(s)
- C Mondello
- Istituto di Genetica Biochimica ed Evoluzionistica of CNR, Pavia, Italy.
| | | | | | | | | |
Collapse
|
616
|
Affiliation(s)
- P M Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada, V5Z 1L3.
| |
Collapse
|
617
|
Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91:25-34. [PMID: 9335332 DOI: 10.1016/s0092-8674(01)80006-4] [Citation(s) in RCA: 1583] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To examine the role of telomerase in normal and neoplastic growth, the telomerase RNA component (mTR) was deleted from the mouse germline. mTR-/- mice lacked detectable telomerase activity yet were viable for the six generations analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral oncogenes, and generated tumors in nude mice following transformation. Telomeres were shown to shorten at a rate of 4.8+/-2.4 kb per mTR-/- generation. Cells from the fourth mTR-/- generation onward possessed chromosome ends lacking detectable telomere repeats, aneuploidy, and chromosomal abnormalities, including end-to-end fusions. These results indicate that telomerase is essential for telomere length maintenance but is not required for establishment of cell lines, oncogenic transformation, or tumor formation in mice.
Collapse
Affiliation(s)
- M A Blasco
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
618
|
Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A 1997; 94:7423-8. [PMID: 9207107 PMCID: PMC23837 DOI: 10.1073/pnas.94.14.7423] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ultra-long telomeres that have been observed in mice are not in accordance with the concept that critical telomere shortening is related to aging and immortalization. Here, we have used quantitative fluorescence in situ hybridization to estimate (T2AG3)n lengths of individual telomeres in various mouse strains. Telomere lengths were very heterogeneous, but specific chromosomes of bone marrow cells and skin fibroblasts from individual mice had similar telomere lengths. We estimate that the shortest telomeres are around 10 kb in length, indicating that each mouse cell has a few telomeres with (T2AG3)n lengths within the range of human telomeres. These short telomeres may be critical in limiting the replicative potential of murine cells.
Collapse
Affiliation(s)
- J M Zijlmans
- Terry Fox Laboratory for Hematology/Oncology, BC Cancer Research Centre, 601 West 10th Avenue, Vancouver, BC Canada V5Z 1L3
| | | | | | | | | | | | | |
Collapse
|
619
|
Bryan TM, Marusic L, Bacchetti S, Namba M, Reddel RR. The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum Mol Genet 1997; 6:921-6. [PMID: 9175740 DOI: 10.1093/hmg/6.6.921] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
According to the telomere hypothesis of senescence, the progressive shortening of telomeres that occurs upon division of normal somatic cells eventually leads to cellular senescence. The immortalisation of human cells is associated with the acquisition of a telomere maintenance mechanism which is usually dependent upon expression of the enzyme telomerase. About one third of in vitro immortalised human cell lines, however, have no detectable telomerase but contain telomeres that are abnormally long. The nature of the alternative telomere maintenance mechanism (referred to as ALT, for Alternative Lengthening of Telomeres) that must exist in these telomerase-negative cells has not been elucidated. It has previously been shown that abnormal lengthening of yeast telomeres may occur due to mutations in the yeast telomerase RNA gene. That this is not the mechanism of the abnormally long telomeres in ALT cell lines was demonstrated by the finding that seven of seven ALT lines have wild-type human telomerase RNA (hTR) sequence, including a novel polymorphism that is present in 30% of normal individuals. We found that two ALT cell lines have no detectable expression of the hTR gene. This shows that the ALT mechanism in these cell lines is not dependent on hTR. Expression of exogenous hTR via infection of these cells with a recombinant hTR-adenovirus vector did not result in telomerase activity, indicating that their lack of telomerase activity is not due to absence of hTR expression. We conclude that the ALT mechanism is not dependent on the expression of hTR, and does not involve mutations in the hTR sequence.
Collapse
Affiliation(s)
- T M Bryan
- Children's Medical Research Institute, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
620
|
Abstract
Peptide nucleic acids (PNAs) are DNA analogs containing neutral amide backbone linkages. PNAs are stable to degradation by enzymes and hybridize to complementary sequences with higher affinity than analogous DNA oligomers. PNA synthesis employs protocols derived from solid-phase peptide synthesis, making the methodology straightforward and flexible. PNAs are being incorporated into an expanding set of applications, including genome mapping, the identification of mutations and measurement of telomere length. The growth in the popularity of PNAs as a tool for nucleic acid recognition should accelerate as the properties of PNAs become more familiar.
Collapse
Affiliation(s)
- D R Corey
- Howard Hughes Medical Institute, Dallas, TX, USA.
| |
Collapse
|
621
|
Abstract
This article reviews the current understanding of the involvement of telomerase in in vitro immortalisation of human cells. In vitro immortalisation with DNA tumour viruses or chemicals usually occurs in two phases. The first stage is an extension of lifespan beyond that at which cells would normally senescence, after which the culture enters a period of crisis. The second stage involves the escape from crisis of a rare cell in the culture, which goes on to proliferate indefinitely. The hypothesis that telomere shortening acts as a signal for senescence and crisis, and that cells need to activate telomerase to survive these states, gained support from early studies examining telomere behaviour and telomerase activity in immortalised cell lines. In many cases, telomeres were found to continue to shorten during the phase of extended lifespan, and no telomerase was detectable. Cells which survived crisis had activated telomerase and had stable or lengthened telomerase. However, it is now clear that this model does not apply to all cell lines. Approximately a quarter of in vitro immortalised cell lines so far examined have no detectable telomerase activity, yet have very long and heterogeneous telomeres. These cell lines have acquired a novel mechanism for lengthening their telomeres, named ALT (Alternative Lengthening of Telomeres). The nature of ALT is not yet understood, but may involve non-reciprocal recombination between telomeres. ALT is not merely a phenomenon of in vitro immortalised cell lines, but has also been found in tumours and tumour-derived cell lines. Furthermore, there are a number of cell lines which have been shown to have low levels of telomerase prior to crisis while telomere shortening is still occurring, and the function of these low levels of telomerase activity is unknown.
Collapse
Affiliation(s)
- T M Bryan
- Children's Medical Research Institute, Wentworthville, N.S.W., Australia
| | | |
Collapse
|
622
|
Frequency of Fetal Cells in Sorted Subpopulations of Nucleated Erythroid and CD34+ Hematopoietic Progenitor Cells From Maternal Peripheral Blood. Blood 1997. [DOI: 10.1182/blood.v89.7.2347] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Fetal cells that circulate in maternal peripheral blood (PB) during pregnancy offer a potential source of nucleated fetal material for noninvasive prenatal diagnosis. Fluorescence-activated cell sorting was used to target two populations of fetal cells: nucleated erythroid cells (NECs; CD71/glycophorin-A+ CD45lo-int CD34−) and hematopoietic progenitor cells (CD34+ cells; CD34++ CD71/glycophorin-A− CD45int). Fetal cells were detected by fluorescence in situ hybridization (FISH) using directly conjugated chromosome X and Y probes in 65% (13 of 20) of the maternal PBs (fetal karyotype 46,XY). The frequency of fetal cells isolated from the NEC and CD34+ fractions was, respectively, 0 to 14 and 0 to 7 cells per 2 × 107 previously frozen maternal cells (≈20 mL of blood). In nonfrozen samples, the yield and recovery of fetal cells was moderately improved. Culturing the CD34+ sorted fractions in serum-free media with cytokines improved the quality of the FISH preparations and resulted in a slight expansion in detectable fetal cells. The frequency of fetal cells isolated from cultured CD34+ fractions was 0 to 35 and 0 to 93 cells per 2 × 107 previously frozen and nonfrozen maternal PB cells, respectively. These results document the isolation, characterization, and enumeration of fetal cells from the maternal periphery that appear to be present in most, but not all, samples analyzed.
Collapse
|
623
|
Abstract
The normal haematopoietic system harbours telomerase-competent cells with a capacity to upregulate the activity to notable levels in a telomere length-independent manner. Strong telomerase activity is found in progenitor stem cells and activated lymphocytes in vitro as well as in vivo, indicating that cells with high growth requirements can readily upregulate telomerase. Despite detection of telomerase activity, a gradual telomere erosion occurs in stem cells and lymphocytes, with significantly shortened telomeres at higher ages, a phenomenon that might be of importance for developing immunosenescence and exhausted haematopoiesis. In malignant haematopoietic disorders telomerase activity is a general finding with large differences in activity levels. The strongest telomerase expression has been shown in acute leukaemias and non-Hodgkin's lymphomas, especially high grade cases. There are indications that the level of activity might parallel tumour progression and be of prognostic relevance, but studies of larger patient materials are needed. An association between the cell cycle and telomerase activity exists, especially for normal haematopoietic cells, and induction of a differentiation programme in immortalised cell lines downregulates telomerase activity. The expression of telomerase activity seems to be regulated at different levels, since for immature bone marrow cells the level of activity seemed to parallel better the phenotype than the proliferation state. The frequent expression of telomerase in leukaemias and lymphomas makes these disorders interesting targets for future anti-telomerase therapy.
Collapse
Affiliation(s)
- K F Norrback
- Department of Pathology, Umeå University, Sweden
| | | |
Collapse
|
624
|
Abstract
Mouse telomeres are on average longer than those of man, raising questions regarding the link between telomere loss and replicative senescence in mice and the requirement for telomerase activity for mouse cell immortalisation. However, the emerging data on telomerase activity during tumorigenesis in the mouse must be interpreted in the context of the very different structure of mouse telomeres. It will be argued here that the evidence for a casual link between telomere loss and replicative senescence is weak in the mouse, with the observed upregulation of telomerase activity in mouse tumours perhaps instead reflecting co-ordinated regulatory changes in tumour cells. Its absence would be consistent with evolutionary considerations, which hypothesise that such a link is an additional layer of control against tumour formation that has evolved in man. The very different genomic substrates for telomerase in humans and mice mean that the initial phenotype of a telomerase knock-out mouse does not necessarily critically address the existence of a link between telomerase and tumorigenesis in man.
Collapse
Affiliation(s)
- D Kipling
- Department of Pathology, University of Wales College of Medicine, Cardiff, U.K
| |
Collapse
|
625
|
|
626
|
Abstract
Telomeres, the ends of eukaryotic chromosomes are structural and functional units composed of proteins and repetitive DNA sequences. Telomeres protect the ends of chromosomes from DNA loss caused by incomplete replication of 3' ends. The obligatory loss of terminal sequence with each cell division leads to telomere shortening, and is counteracted in germline cells by an enzymatic activity termed telomerase that resynthesizes telomeric DNA de novo. Telomere length and telomerase activity have been measured by several groups in both normal and malignant blood and marrow cells. Telomere length decreases with age in normal blood and bone marrow, despite the presence of a detectable telomerase activity. In most hematologic malignancies telomere length is short and telomerase activity is enhanced, compatible with the late activation of the enzyme in tumour development. The implications of these findings for tumour pathogenesis, diagnosis, and treatment are discussed.
Collapse
Affiliation(s)
- B Leber
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
627
|
Smulevitch SV, Simmons CG, Norton JC, Wise TW, Corey DR. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. Nat Biotechnol 1996; 14:1700-4. [PMID: 9634855 DOI: 10.1038/nbt1296-1700] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of DNA oligonucleotides, neutral peptide nucleic acids (PNAS), and oligonucleotide conjugates to hybridize to inverted repeat sequences within supercoiled double-stranded DNA by Watson-Crick base-pairing is examined. PNAs and oligonucleotide conjugates initiate and maintain strand invasion under more stringent conditions than do unmodified DNA oligonucleotides. PNAs hybridize rapidly and, once bound, hold open a target site allowing oligonucleotides to base-pair to the displaced strand under conditions that would otherwise preclude hybridization. The ability to manipulate hybridization efficiency through different options for the alteration of oligomer charge should have important implications for optimizing sequence-specific recognition of DNA.
Collapse
Affiliation(s)
- S V Smulevitch
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
628
|
Abstract
RNA in situ hybridization is a useful method for localizing specific mRNAs and studying the spatial and temporal organization of RNA transcription, processing and transport in cells. In this review, I describe methods of RNA in situ hybridization for tissue sections and cell preparations. Special emphasis is placed on the application of non-radioactive-labeled probes for multiparameter cell analysis. In addition, a summary of RNA in situ hybridization studies on RNA transport in the cytoplasm as well as in the nucleus of cells is given.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, Leiden University, Netherlands
| |
Collapse
|