651
|
Shimada K, Oma Y, Schleker T, Kugou K, Ohta K, Harata M, Gasser SM. Ino80 Chromatin Remodeling Complex Promotes Recovery of Stalled Replication Forks. Curr Biol 2008; 18:566-75. [DOI: 10.1016/j.cub.2008.03.049] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/16/2008] [Accepted: 03/26/2008] [Indexed: 12/15/2022]
|
652
|
Abstract
During a decade of proof-of-principle analysis in model organisms, protein networks have been used to further the study of molecular evolution, to gain insight into the robustness of cells to perturbation, and for assignment of new protein functions. Following these analyses, and with the recent rise of protein interaction measurements in mammals, protein networks are increasingly serving as tools to unravel the molecular basis of disease. We review promising applications of protein networks to disease in four major areas: identifying new disease genes; the study of their network properties; identifying disease-related subnetworks; and network-based disease classification. Applications in infectious disease, personalized medicine, and pharmacology are also forthcoming as the available protein network information improves in quality and coverage.
Collapse
Affiliation(s)
- Trey Ideker
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
653
|
Houseley J, Tollervey D. The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:239-46. [DOI: 10.1016/j.bbagrm.2007.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
|
654
|
Ratushny V, Golemis EA. Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system. Biotechniques 2008; 44:655-62. [PMID: 18474041 PMCID: PMC2526548 DOI: 10.2144/000112797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In 1983, while investigators had identified a few human proteins as important regulators of specific biological outcomes, how these proteins acted in the cell was essentially unknown in almost all cases. Twenty-five years later, our knowledge of the mechanistic basis of protein action has been transformed by our increasingly detailed understanding of protein-protein interactions, which have allowed us to define cellular machines. The advent of the yeast two-hybrid (Y2H) system in 1989 marked a milestone in the field of proteomics. Exploiting the modular nature of transcription factors, the Y2H system allows facile measurement of the activation of reporter genes based on interactions between two chimeric or "hybrid" proteins of interest. After a decade of service as a leading platform for individual investigators to use in exploring the interaction properties of interesting target proteins, the Y2H system has increasingly been applied in high-throughput applications intended to map genome-scale protein-protein interactions for model organisms and humans. Although some significant technical limitations apply, Y2H has made a great contribution to our general understanding of the topology of cellular signaling networks.
Collapse
Affiliation(s)
- Vladimir Ratushny
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Erica A. Golemis
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111
| |
Collapse
|
655
|
Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 2008; 28:2244-2256. [PMID: 18212056 PMCID: PMC2268438 DOI: 10.1128/mcb.01653-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/22/2007] [Accepted: 01/08/2008] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that NuA4 is a genetic hub whose function buffers a diverse range of cellular processes, many not previously linked to the complex, including Golgi complex-to-vacuole vesicle-mediated transport. Further, we probe the role that nonessential subunits play in NuA4 complex integrity. We find that most nonessential subunits have little impact on NuA4 complex integrity and display between 12 and 42 genetic interactions. In contrast, the deletion of EAF1 causes the collapse of the NuA4 complex and displays 148 genetic interactions. Our study indicates that Eaf1 plays a crucial function in NuA4 complex integrity. Further, we determine that Eaf5 and Eaf7 form a subcomplex, which reflects their similar genetic interaction profiles and phenotypes. Our integrative study demonstrates that genetic interaction maps are valuable in dissecting complex structure and provides insight into why the human NuA4 complex, Tip60, has been associated with a diverse range of pathologies.
Collapse
Affiliation(s)
- Leslie Mitchell
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Roger Guidon Hall, 451 Smyth Rd., Ottawa, ONT K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
656
|
Papamichos-Chronakis M, Peterson CL. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol 2008; 15:338-45. [PMID: 18376411 DOI: 10.1038/nsmb.1413] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/04/2008] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated essential roles for ATP-dependent chromatin-remodeling and chromatin-modifying enzymes in gene transcription and DNA repair, but few studies have addressed how the replication machinery deals with chromatin. Here we show that the Ino80 remodeling enzyme is recruited to replication origins as cells enter S phase. Inducible degradation of Ino80 shows that it is required continuously for efficient progression of forks, especially when cells are confronted with low levels of replication stress. Furthermore, we show that stalling of replication forks in an ino80 mutant is a lethal event, and that much of the replication machinery dissociates from the stalled fork. Our data indicate that the chromatin-remodeling activity of Ino80 regulates efficient progression of replication forks and that Ino80 has a crucial role in stabilizing a stalled replisome to ensure proper restart of DNA replication.
Collapse
Affiliation(s)
- Manolis Papamichos-Chronakis
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotechnology 2, Suite 210, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
657
|
Ng CH, Tan SX, Perrone GG, Thorpe GW, Higgins VJ, Dawes IW. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor. Free Radic Biol Med 2008; 44:1131-45. [PMID: 18206664 DOI: 10.1016/j.freeradbiomed.2007.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/26/2007] [Accepted: 12/07/2007] [Indexed: 11/15/2022]
Abstract
A total of 286 H2O2-sensitive Saccharomyces cerevisiae deletion mutants were screened to identify genes involved in cellular adaptation to H2O2 stress. YAP1, SKN7, GAL11, RPE1, TKL1, IDP1, SLA1, and PET8 were important for adaptation to H2O2. The mutants were divisible into two groups based on their responses to a brief acute dose of H2O2 and to chronic exposure to H2O2. Transcription factors Yap1p, Skn7p, and Gal11p were important for both acute and chronic responses to H2O2. Yap1p and Skn7p were acting in concert for adaptation, which indicates that upregulation of antioxidant functions rather than generation of NADPH or glutathione is important for adaptation. Deletion of GPX3 and YBP1 involved in sensing H2O2 and activating Yap1p affected adaptation but to a lesser extent than YAP1 deletion. NADPH generation was also required for adaptation. RPE1, TKL1, or IDP1 deletants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose, and other mutants affected in NADPH generation tested were similarly affected in adaptation. These mutants overproduced reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This overproduction of GSH was not regulated at transcription of the gene encoding gamma-glutamylcysteine synthetase.
Collapse
Affiliation(s)
- Chong-Han Ng
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
658
|
Rocha W, Verreault A. Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett 2008; 582:1938-49. [PMID: 18343227 DOI: 10.1016/j.febslet.2008.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
In eukaryotes, the packaging of DNA into chromatin is essential for cell viability. Several important DNA metabolic events require the transient disruption of chromatin structure, but cells have evolved a number of elaborate pathways that operate throughout the cell cycle to prevent the deleterious effects of chromatin erosion. In this review, we describe a number of distinct nucleosome assembly pathways that function during DNA replication, transcription, cellular senescence and early embryogenesis. In addition, we illustrate some of the physiological consequences associated with defects in nucleosome assembly pathways.
Collapse
Affiliation(s)
- Walter Rocha
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de Pathologie et de Biologie Cellulaire, Université de Montréal, B.P. 6128, Succursale Centre-Ville, Montréal (Qc), Canada H3C 3J7
| | | |
Collapse
|
659
|
Chuang CL, Jen CH, Chen CM, Shieh GS. A pattern recognition approach to infer time-lagged genetic interactions. ACTA ACUST UNITED AC 2008; 24:1183-90. [PMID: 18337258 DOI: 10.1093/bioinformatics/btn098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOTIVATION For any time-course microarray data in which the gene interactions and the associated paired patterns are dependent, the proposed pattern recognition (PARE) approach can infer time-lagged genetic interactions, a challenging task due to the small number of time points and large number of genes. PARE utilizes a non-linear score to identify subclasses of gene pairs with different time lags. In each subclass, PARE extracts non-linear characteristics of paired gene-expression curves and learns weights of the decision score applying an optimization algorithm to microarray gene-expression data (MGED) of some known interactions, from biological experiments or published literature. Namely, PARE integrates both MGED and existing knowledge via machine learning, and subsequently predicts the other genetic interactions in the subclass. RESULTS PARE, a time-lagged correlation approach and the latest advance in graphical Gaussian models were applied to predict 112 (132) pairs of TC/TD (transcriptional regulatory) interactions. Checked against qRT-PCR results (published literature), their true positive rates are 73% (77%), 46% (51%), and 52% (59%), respectively. The false positive rates of predicting TC and TD (AT and RT) interactions in the yeast genome are bounded by 13 and 10% (10 and 14%), respectively. Several predicted TC/TD interactions are shown to coincide with existing pathways involving Sgs1, Srs2 and Mus81. This reinforces the possibility of applying genetic interactions to predict pathways of protein complexes. Moreover, some experimentally testable gene interactions involving DNA repair are predicted. AVAILABILITY Supplementary data and PARE software are available at http://www.stat.sinica.edu.tw/~gshieh/pare.htm.
Collapse
Affiliation(s)
- Cheng-Long Chuang
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
660
|
Mani R, St.Onge RP, Hartman JL, Giaever G, Roth FP. Defining genetic interaction. Proc Natl Acad Sci U S A 2008; 105:3461-6. [PMID: 18305163 PMCID: PMC2265146 DOI: 10.1073/pnas.0712255105] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Indexed: 11/18/2022] Open
Abstract
Sometimes mutations in two genes produce a phenotype that is surprising in light of each mutation's individual effects. This phenomenon, which defines genetic interaction, can reveal functional relationships between genes and pathways. For example, double mutants with surprisingly slow growth define synergistic interactions that can identify compensatory pathways or protein complexes. Recent studies have used four mathematically distinct definitions of genetic interaction (here termed Product, Additive, Log, and Min). Whether this choice holds practical consequences has not been clear, because the definitions yield identical results under some conditions. Here, we show that the choice among alternative definitions can have profound consequences. Although 52% of known synergistic genetic interactions in Saccharomyces cerevisiae were inferred according to the Min definition, we find that both Product and Log definitions (shown here to be practically equivalent) are better than Min for identifying functional relationships. Additionally, we show that the Additive and Log definitions, each commonly used in population genetics, lead to differing conclusions related to the selective advantages of sexual reproduction.
Collapse
Affiliation(s)
- Ramamurthy Mani
- *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | | | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Guri Giaever
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1; and
| | - Frederick P. Roth
- *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
- Center for Cancer Systems Biology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| |
Collapse
|
661
|
Shieh GS, Chen CM, Yu CY, Huang J, Wang WF, Lo YC. Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling. BMC Bioinformatics 2008; 9:134. [PMID: 18312694 PMCID: PMC2323972 DOI: 10.1186/1471-2105-9-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 03/03/2008] [Indexed: 11/10/2022] Open
Abstract
Background With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few approaches have studied subtle and indirect interaction such as genetic compensation, the existence of which is widely recognized although its mechanism has yet to be clarified. Furthermore, when inferring gene networks most models include only observed variables whereas latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do participate in networks in reality. Results Motivated by inferring transcriptional compensation (TC) interactions in yeast, a stepwise structural equation modeling algorithm (SSEM) is developed. In addition to observed variables, SSEM also incorporates hidden variables to capture interactions (or regulations) from latent factors. Simulated gene networks are used to determine with which of six possible model selection criteria (MSC) SSEM works best. SSEM with Bayesian information criterion (BIC) results in the highest true positive rates, the largest percentage of correctly predicted interactions from all existing interactions, and the highest true negative (non-existing interactions) rates. Next, we apply SSEM using real microarray data to infer TC interactions among (1) small groups of genes that are synthetic sick or lethal (SSL) to SGS1, and (2) a group of SSL pairs of 51 yeast genes involved in DNA synthesis and repair that are of interest. For (1), SSEM with BIC is shown to outperform three Bayesian network algorithms and a multivariate autoregressive model, checked against the results of qRT-PCR experiments. The predictions for (2) are shown to coincide with several known pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair. In addition, experimentally testable interactions of Rad27 are predicted. Conclusion SSEM is a useful tool for inferring genetic networks, and the results reinforce the possibility of predicting pathways of protein complexes via genetic interactions.
Collapse
Affiliation(s)
- Grace S Shieh
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
662
|
Taylor RJ, Siegel AF, Galitski T. Network motif analysis of a multi-mode genetic-interaction network. Genome Biol 2008; 8:R160. [PMID: 17683534 PMCID: PMC2374991 DOI: 10.1186/gb-2007-8-8-r160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/01/2007] [Accepted: 08/02/2007] [Indexed: 12/03/2022] Open
Abstract
Statistical and computational methods for the extraction of biological information from dense multi-mode genetic-interaction networks were developed and implemented in open-source software. Different modes of genetic interaction indicate different functional relationships between genes. The extraction of biological information from dense multi-mode genetic-interaction networks demands appropriate statistical and computational methods. We developed such methods and implemented them in open-source software. Motifs extracted from multi-mode genetic-interaction networks form functional subnetworks, highlight genes dominating these subnetworks, and reveal genetic reflections of the underlying biochemical system.
Collapse
Affiliation(s)
- R James Taylor
- Institute for Systems Biology, N. 34th Street, Seattle, WA 98103 USA.
| | | | | |
Collapse
|
663
|
Kim CS, Riikonen P, Salakoski T. Detecting biological associations between genes based on the theory of phase synchronization. Biosystems 2008; 92:99-113. [PMID: 18289772 DOI: 10.1016/j.biosystems.2007.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/20/2007] [Accepted: 12/22/2007] [Indexed: 11/17/2022]
Abstract
This study presents a novel approach to detect biological associations for gene pairs with cell cycle-specific expression profiles. Previous studies have shown that periodic transcription is commonly regulated by transcription factors that are also periodically transcribed, and there is a growing number of examples where cell cycle regulated genes are conserved in yeast and mammalian cells. Some genes have periodicity for their oscillatory activity throughout cell division. These cell cycle-specific oscillatory activities could be explained by a biological phenomenon in terms of efficiency and logical order. In the yeast data used in this study, about 13% of genes behave in this manner based on a previous yeast study. Microarrays have been applied to determine genome-wide expression patterns during the cell cycle of a number of different cells. Moreover, several previous studies have shown that many pairs of genes, which have linearly correlated expression profiles, have similar cellular roles or physical interactions. Based on this point of view, the traditional clustering methods have focused on similar expression profiles based on the premise that genes with similar expression profiles have similar biological functions or relevant biological interactions. However, there are a number of previous studies indicating that the expression of some genes may be delayed compared to others due to a time lag in their transcriptional control. Therefore, we propose a novel clustering method, named as phase-synchronization clustering, based on the theory of phase synchronization for detecting biological associations using cell cycle-specific expression profiles. We evaluate phase-synchronization clustering here using Saccharomyces cerevisiae microarray data. Phase-synchronization clustering is able to detect biologically associated gene pairs that have linearly correlated (simultaneous and inverted) as well as time-delayed expression profiles. The performance of phase-synchronization clustering is compared with other conventional clustering methods. The likelihood of finding relevant biological associations by phase-synchronization clustering is significantly higher than other clustering methods. Therefore, phase-synchronization clustering is more efficient for detecting known biological interactions for gene pairs than other conventional clustering methods for analyzing cell cycle-specific expression data. The evaluation analysis of the results by phase-synchronization clustering also suggests that the cellular activities during the cell division process could be understood as a phenomenon of collective synchronization.
Collapse
Affiliation(s)
- Chang Sik Kim
- Institute of Animal Resources Research, Kangwon National University, Chuncheon, Republic of Korea.
| | | | | |
Collapse
|
664
|
A molecular interpretation of genetic interactions in yeast. FEBS Lett 2008; 582:1245-50. [DOI: 10.1016/j.febslet.2008.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/08/2008] [Indexed: 11/18/2022]
|
665
|
Abstract
Transcriptional regulation in eukaryotes is a complicated set of processes involving hundreds of proteins. The past decade has seen significant progress in the development of technologies that allow the dissection of the interplay between these regulatory factors. These methodologies have advanced the field to the point where regulation can be examined at the genome level and where intricate regulatory questions can be addressed in multicellular organisms. The application of these technologies over the coming decade promises exciting views of how complexes integrate to create defined regulatory networks.
Collapse
Affiliation(s)
- Rebecca K Dunn
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
666
|
Ju D, Wang X, Xu H, Xie Y. Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol Cell Biol 2008; 28:1404-12. [PMID: 18070918 PMCID: PMC2258742 DOI: 10.1128/mcb.01787-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/05/2007] [Accepted: 11/26/2007] [Indexed: 01/13/2023] Open
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the Rpn4 transcription factor upregulates the proteasome genes and is rapidly degraded by the proteasome. Previous work has identified Ubr2 and Rad6 as the cognate E3 and E2 enzymes for Rpn4 ubiquitylation. However, our recent attempts to ubiquitylate Rpn4 using purified Ubr2 and Rad6 proteins in a reconstitution system have been unsuccessful, suggesting that an additional factor is required for Rpn4 ubiquitylation. Here, we screened the entire collection of the single-gene-deletion yeast mutants generated by the Saccharomyces Genome Deletion Project and identified the mub1Delta mutant defective in ubiquitin-dependent degradation of Rpn4. An in vitro reconstitution ubiquitylation assay confirms that Mub1 is the missing factor for Rpn4 ubiquitylation. We further show that Mub1 directly interacts with Ubr2 and Rpn4. The MYND domain of Mub1 may play an important role in Rpn4 ubiquitylation. Interestingly, Mub1 itself is a short-lived protein and its degradation is dependent on the Ubr2/Rad6 ubiquitin ligase. Together, these data suggest that Mub1 and Ubr2 cooperate to transfer ubiquitin to Rpn4 from Rad6 and that Mub1 may switch from a partner to a substrate of the Ubr2/Rad6 ubiquitin ligase.
Collapse
Affiliation(s)
- Donghong Ju
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E. Warren Ave., Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
667
|
A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF. PLoS One 2008; 3:e1500. [PMID: 18231587 PMCID: PMC2198942 DOI: 10.1371/journal.pone.0001500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022] Open
Abstract
Background Despite extensive large scale analyses of expression and protein-protein interactions (PPI) in the model organism Saccharomyces cerevisiae, over a thousand yeast genes remain uncharacterized. We have developed a novel strategy in yeast that directly combines genetics with proteomics in the same screen to assign function to proteins based on the observation of genetic perturbations of sentinel protein interactions (GePPI). As proof of principle of the GePPI screen, we applied it to identify proteins involved in the regulation of an important yeast cell cycle transcription factor, SBF that activates gene expression during G1 and S phase. Methodology/Principle Findings The principle of GePPI is that if a protein is involved in a pathway of interest, deletion of the corresponding gene will result in perturbation of sentinel PPIs that report on the activity of the pathway. We created a fluorescent protein-fragment complementation assay (PCA) to detect the interaction between Cdc28 and Swi4, which leads to the inactivation of SBF. The PCA signal was quantified by microscopy and image analysis in deletion strains corresponding to 25 candidate genes that are periodically expressed during the cell cycle and are substrates of Cdc28. We showed that the serine-threonine kinase Elm1 plays a role in the inactivation of SBF and that phosphorylation of Elm1 by Cdc28 may be a mechanism to inactivate Elm1 upon completion of mitosis. Conclusions/Significance Our findings demonstrate that GePPI is an effective strategy to directly link proteins of known or unknown function to a specific biological pathway of interest. The ease in generating PCA assays for any protein interaction and the availability of the yeast deletion strain collection allows GePPI to be applied to any cellular network. In addition, the high degree of conservation between yeast and mammalian proteins and pathways suggest GePPI could be used to generate insight into human disease.
Collapse
|
668
|
Nap1 links transcription elongation, chromatin assembly, and messenger RNP complex biogenesis. Mol Cell Biol 2008; 28:2113-24. [PMID: 18227150 DOI: 10.1128/mcb.02136-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Deltanap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.
Collapse
|
669
|
Abstract
Targeting the interfaces between proteins has huge therapeutic potential, but discovering small-molecule drugs that disrupt protein-protein interactions is an enormous challenge. Several recent success stories, however, indicate that protein-protein interfaces might be more tractable than has been thought. These studies discovered small molecules that bind with drug-like potencies to 'hotspots' on the contact surfaces involved in protein-protein interactions. Remarkably, these small molecules bind deeper within the contact surface of the target protein, and bind with much higher efficiencies, than do the contact atoms of the natural protein partner. Some of these small molecules are now making their way through clinical trials, so this high-hanging fruit might not be far out of reach.
Collapse
|
670
|
Alber F, Förster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 2008; 77:443-77. [PMID: 18318657 DOI: 10.1146/annurev.biochem.77.060407.135530] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the cell, we need to determine the macromolecular assembly structures, which may consist of tens to hundreds of components. First, we review the varied experimental data that characterize the assemblies at several levels of resolution. We then describe computational methods for generating the structures using these data. To maximize completeness, resolution, accuracy, precision, and efficiency of the structure determination, a computational approach is required that uses spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. This approach is illustrated by determining the configuration of the 456 proteins in the nuclear pore complex (NPC) from baker's yeast. With these tools, we are poised to integrate structural information gathered at multiple levels of the biological hierarchy--from atoms to cells--into a common framework.
Collapse
Affiliation(s)
- Frank Alber
- Department of Biopharmaceutical Sciences, and California Institute for Quantitative Biosciences, University of California at San Francisco, CA 94158-2330, USA.
| | | | | | | | | |
Collapse
|
671
|
Abstract
Histone acetylation helps to maintain integrity of the yeast replisome in response to genotoxic agents. Four groups have now identified protein Rtt109p as the catalytic subunit of a novel histone H3 acetylase complex that harbors a histone chaperone subunit essential for significant activity.
Collapse
Affiliation(s)
- Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
672
|
|
673
|
Thaminy S, Newcomb B, Kim J, Gatbonton T, Foss E, Simon J, Bedalov A. Hst3 Is Regulated by Mec1-dependent Proteolysis and Controls the S Phase Checkpoint and Sister Chromatid Cohesion by Deacetylating Histone H3 at Lysine 56. J Biol Chem 2007; 282:37805-14. [DOI: 10.1074/jbc.m706384200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
674
|
Casamassimi A, Napoli C. Mediator complexes and eukaryotic transcription regulation: an overview. Biochimie 2007; 89:1439-46. [PMID: 17870225 DOI: 10.1016/j.biochi.2007.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/02/2007] [Indexed: 10/23/2022]
Abstract
Mediator is an essential component of the RNA polymerase II-mediated transcription machinery. This component plays a key role both in the stimulation of basal transcription and in the regulation of eukaryotic mRNA synthesis. The Saccharomyces cerevisiae Mediator complex was the first to be studied and consists of at least 20 different subunits with multiple activities. Afterwards, its subunit composition was determined and related functions of C. elegans, Drosophila and mammalian complexes show a striking evolutionary conservation both of the structure and function from yeast to man. Recently, yeast studies strongly suggest additional roles for Mediator in coordinating transcription initiation with downstream transcriptional events in the coding region of genes; consequently, new models of recruitment-coupled regulation have been indicated. Further studies on transcription machinery should expand our knowledge of the pathways in which variant components of Mediator, or variant proteins interacting directly or in complexes, represent risk factors for complex inheritable disease.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of General Pathology, Division of Clinical Pathology, 1st School of Medicine, II University of Naples, Via L. De Crecchio 7, 80138-Naples, Italy
| | | |
Collapse
|
675
|
Ii T, Fung J, Mullen JR, Brill SJ. The yeast Slx5-Slx8 DNA integrity complex displays ubiquitin ligase activity. Cell Cycle 2007; 6:2800-9. [PMID: 18032921 PMCID: PMC2808205 DOI: 10.4161/cc.6.22.4882] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic studies in budding yeast have previously implicated SLX5 and SLX8 in the control of genome stability and sumoylation. These genes encode RING-finger domain proteins that form a complex of unknown function. Because RING-finger proteins comprise a large class of ubiquitin (Ub) ligases, Slx5 and Slx8 were tested for this activity. Here we show that the Slx5-Slx8 complex, but not its individual subunits, stimulates several human and yeast Ub conjugating enzymes, including Ubc1, 4, 5, and Ubc13-Mms2. The RING-finger domains of both subunits are genetically required for suppression of slx sgs1Delta synthetic-lethality, and point mutations that abolish Ub ligase activity in vitro also eliminate in vivo complementation. Targets of the in vitro ubiquitination reaction include the Slx5 and Slx8 subunits themselves, and the homologous recombination proteins Rad52 and Rad57. We propose that the Slx5-Slx8 complex functions as a two-component Ub ligase in vivo and that it controls genome stability and sumoylation via ubiquitination.
Collapse
Affiliation(s)
- Tatsuya Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Jacqueline Fung
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Janet R. Mullen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Steven J. Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
676
|
Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Arch Biochem Biophys 2007; 469:157-64. [PMID: 18036332 DOI: 10.1016/j.abb.2007.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/15/2007] [Accepted: 11/03/2007] [Indexed: 11/22/2022]
Abstract
One of the key pathways for DNA double-stranded break (DSB) repair is the non-homologous end-joining (NHEJ) pathway, which directly re-ligates two broken ends of DNA. Using a plasmid repair assay screen, we identified that the deletion strain for RTT109 had a reduced efficiency for NHEJ in yeast. This deletion strain also had a reduced efficiency to repair induced chromosomal DSBs in vivo. Tandem-affinity purification of Rtt109 recovered Vps75 as a physical interacting protein. Deletion of VPS75 was also shown to have an effect on the efficiency of NHEJ in both the plasmid repair and the chromosomal repair assays. In addition, deletion mutants for both RTT109 and VPS75 showed hypersensitivity to different DNA damaging agents. Our genetic interaction analysis supports a role for RTT109 in DNA damage repair. We propose that one function of the Rtt109-Vps75 interacting protein pair is to affect the efficiency of NHEJ in yeast. Vps75 but not Rtt109 also seem to have an effect on the efficiency of DSB repair using homologous recombination.
Collapse
|
677
|
Examining protein protein interactions using endogenously tagged yeast arrays: the cross-and-capture system. Genome Res 2007; 17:1774-82. [PMID: 17989249 DOI: 10.1101/gr.6667007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Comprehensive approaches to detect protein-protein interactions (PPIs) have been most successful in the yeast model system. Here we present "Cross-and-Capture," a novel assay for rapid, sensitive assessment of PPIs via pulldown of differently tagged yeast strain arrays. About 500 yeast genes that function in DNA replication, repair, and recombination and nuclear proteins of unknown function were chromosomally tagged with six histidine residues or triple VSV epitopes. We demonstrate that the assay can interrogate a wide range of previously known protein complexes with increased resolution and sensitivity. Furthermore, we use "Cross-and-Capture" to identify two novel protein complexes: Rtt101p-Mms1p and Sae2p-Mre11p. The Rtt101p-Mms1p interaction was subsequently characterized by genetic and functional analyses. Our studies establish the "Cross-and-Capture" assay as a novel, versatile tool that provides a valuable complement for the next generation of yeast proteomic studies.
Collapse
|
678
|
Casci T. Epistasis on the double. Nat Rev Genet 2007. [DOI: 10.1038/nrg2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
679
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
680
|
|
681
|
Roberts TM, Zaidi IW, Vaisica JA, Peter M, Brown GW. Regulation of rtt107 recruitment to stalled DNA replication forks by the cullin rtt101 and the rtt109 acetyltransferase. Mol Biol Cell 2007; 19:171-80. [PMID: 17978089 DOI: 10.1091/mbc.e07-09-0961] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint kinase Mec1, and it forms complexes with DNA repair enzymes, including the nuclease subunit Slx4, but the role of Rtt107 in the DNA damage response remains unclear. We find that Rtt107 interacts with chromatin when cells are treated with compounds that cause replication forks to arrest. This damage-dependent chromatin binding requires the acetyltransferase Rtt109, but it does not require acetylation of the known Rtt109 target, histone H3-K56. Chromatin binding of Rtt107 also requires the cullin Rtt101, which seems to play a direct role in Rtt107 recruitment, because the two proteins are found in complex with each other. Finally, we provide evidence that Rtt107 is bound at or near stalled replication forks in vivo. Together, these results indicate that Rtt109, Rtt101, and Rtt107, which genetic evidence suggests are functionally related, form a DNA damage response pathway that recruits Rtt107 complexes to damaged or stalled replication forks.
Collapse
Affiliation(s)
- Tania M Roberts
- Department of Biochemistry and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | |
Collapse
|
682
|
Abstract
Chromatin structure plays a vital role in the transmission of heritable gene expression patterns. The recent application of mass spectrometry to histone biology provides several striking insights into chromatin regulation. The continuing identification of new histone post-translational modifications is revolutionizing the ways in which we think about how access to genomic DNA is controlled. While post-translational modifications of the flexible histone tails continue to be an active area of investigation, the recent discovery of multiple modifications in the structured globular domains of histones provides new insights into how the nucleosome works. Recent experiments underscore the importance of a subgroup of these modifications: those that regulate histone-DNA interactions on the lateral surface of the nucleosome. This information highlights an emerging new paradigm in chromatin control, that of the epigenetic regulation of nucleosome mobility.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Syracuse University, Department of Biology, Syracuse, New York, NY 13244, USA.
| |
Collapse
|
683
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
684
|
|
685
|
Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007; 26:5310-8. [PMID: 17694074 DOI: 10.1038/sj.onc.1210599] [Citation(s) in RCA: 742] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylation of the epsilon-amino group of a lysine residue was first discovered with histones in 1968, but the responsible enzymes, histone acetyltransferases and deacetylases, were not identified until the mid-1990s. In the past decade, knowledge about this modification has exploded, with targets rapidly expanding from histones to transcription factors and other nuclear proteins, and then to cytoskeleton, metabolic enzymes, and signaling regulators in the cytoplasm. Thus, protein lysine acetylation has emerged as a major post-translational modification to rival phosphorylation. In this issue of Oncogene, 19 articles review various aspects of the enzymes governing lysine acetylation, especially about their intimate links to cancer. To introduce the articles, we highlight here four central themes: (i) multisubunit enzymatic complexes; (ii) non-histone substrates in diverse cellular processes; (iii) interplay of lysine acetylation with other regulatory mechanisms, such as noncoding RNA-mediated gene silencing and activation; and (iv) novel therapeutic strategies and preventive measures to combat cancer and other human diseases.
Collapse
Affiliation(s)
- X-J Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Québec, Canada.
| | | |
Collapse
|
686
|
Roguev A, Wiren M, Weissman JS, Krogan NJ. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat Methods 2007; 4:861-6. [PMID: 17893680 DOI: 10.1038/nmeth1098] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/27/2007] [Indexed: 01/09/2023]
Abstract
Epistasis analysis, which reports on the extent to which the function of one gene depends on the presence of a second, is a powerful tool for studying the functional organization of the cell. Systematic genome-wide studies of epistasis, however, have been limited, with the majority of data being collected in the budding yeast, Saccharomyces cerevisiae. Here we present two 'pombe epistasis mapper' strategies, PEM-1 and PEM-2, which allow for high-throughput double mutant generation in the fission yeast, S. pombe. These approaches take advantage of a previously undescribed, recessive, cycloheximide-resistance mutation. Both systems can be used for genome-wide screens or for the generation of high-density, quantitative epistatic miniarray profiles (E-MAPs). Since S. cerevisiae and S. pombe are evolutionary distant, this methodology will provide insight into conserved biological pathways that are present in S. pombe, but not S. cerevisiae, and will enable a comprehensive analysis of the conservation of genetic interaction networks.
Collapse
Affiliation(s)
- Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
687
|
Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 2007; 38:1-31. [PMID: 17949725 DOI: 10.1016/j.ijpara.2007.07.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/18/2022]
Abstract
Comparative genomics of parasitic protists and their free-living relatives are profoundly impacting our understanding of the regulatory systems involved in transcription and chromatin dynamics. While some parts of these systems are highly conserved, other parts are rapidly evolving, thereby providing the molecular basis for the variety in the regulatory adaptations of eukaryotes. The gross number of specific transcription factors and chromatin proteins are positively correlated with proteome size in eukaryotes. However, the individual types of specific transcription factors show an enormous variety across different eukaryotic lineages. The dominant families of specific transcription factors even differ between sister lineages, and have been shaped by gene loss and lineage-specific expansions. Recognition of this principle has helped in identifying the hitherto unknown, major specific transcription factors of several parasites, such as apicomplexans, Entamoeba histolytica, Trichomonas vaginalis, Phytophthora and ciliates. Comparative analysis of predicted chromatin proteins from protists allows reconstruction of the early evolutionary history of histone and DNA modification, nucleosome assembly and chromatin-remodeling systems. Many key catalytic, peptide-binding and DNA-binding domains in these systems ultimately had bacterial precursors, but were put together into distinctive regulatory complexes that are unique to the eukaryotes. In the case of histone methylases, histone demethylases and SWI2/SNF2 ATPases, proliferation of paralogous families followed by acquisition of novel domain architectures, seem to have played a major role in producing a diverse set of enzymes that create and respond to an epigenetic code of modified histones. The diversification of histone acetylases and DNA methylases appears to have proceeded via repeated emergence of new versions, most probably via transfers from bacteria to different eukaryotic lineages, again resulting in lineage-specific diversity in epigenetic signals. Even though the key histone modifications are universal to eukaryotes, domain architectures of proteins binding post-translationally modified-histones vary considerably across eukaryotes. This indicates that the histone code might be "interpreted" differently from model organisms in parasitic protists and their relatives. The complexity of domain architectures of chromatin proteins appears to have increased during eukaryotic evolution. Thus, Trichomonas, Giardia, Naegleria and kinetoplastids have relatively simple domain architectures, whereas apicomplexans and oomycetes have more complex architectures. RNA-dependent post-transcriptional silencing systems, which interact with chromatin-level regulatory systems, show considerable variability across parasitic protists, with complete loss in many apicomplexans and partial loss in Trichomonas vaginalis. This evolutionary synthesis offers a robust scaffold for future investigation of transcription and chromatin structure in parasitic protists.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
688
|
Beyer A, Bandyopadhyay S, Ideker T. Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 2007; 8:699-710. [PMID: 17703239 PMCID: PMC2811081 DOI: 10.1038/nrg2144] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree.
Collapse
Affiliation(s)
- Andreas Beyer
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
689
|
Abstract
UNLABELLED Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthew Suderman
- McGill Centre for Bioinformatics, 3775 University Street, Montreal, QCH3A 2B4, Canada.
| | | |
Collapse
|
690
|
Morrison AJ, Kim JA, Person MD, Highland J, Xiao J, Wehr TS, Hensley S, Bao Y, Shen J, Collins SR, Weissman JS, Delrow J, Krogan NJ, Haber JE, Shen X. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 2007; 130:499-511. [PMID: 17693258 DOI: 10.1016/j.cell.2007.06.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 04/30/2007] [Accepted: 06/01/2007] [Indexed: 01/23/2023]
Abstract
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 subunit of the INO80 complex is phosphorylated by the Mec1/Tel1 kinases during exposure to DNA-damaging agents. Mutation of Ies4's phosphorylation sites does not significantly affect DNA repair processes, but does influence DNA damage checkpoint responses. Additionally, ies4 phosphorylation mutants are linked to the function of checkpoint regulators, such as the replication checkpoint factors Tof1 and Rad53. These findings establish a chromatin remodeling complex as a functional component in the Mec1/Tel1 DNA damage signaling pathway that modulates checkpoint responses and suggest that posttranslational modification of chromatin remodeling complexes regulates their involvement in distinct processes.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Carcinogenesis, Science Park Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
691
|
Han J, Zhou H, Li Z, Xu RM, Zhang Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J Biol Chem 2007; 282:28587-28596. [PMID: 17690098 DOI: 10.1074/jbc.m702496200] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In budding yeast, acetylation of histone H3 lysine 56 (H3-K56) is catalyzed by the Rtt109-Vps75 histone acetyltransferase (HAT) complex, with Rtt109 being the catalytic subunit, and histone chaperone Asf1 is required for this modification. Cells lacking Rtt109 are susceptible to perturbations in DNA replication. However, how Asf1 regulates acetylation of H3-K56 and how loss of H3-K56 acetylation affects DNA replication are unclear. We show that at low concentrations the Rtt109-Vps75 HAT complex acetylates H3-K56 in vitro when H3/H4 is complexed with Asf1, but not H3/H4 tetramers, recapitulating the in vivo requirement of Asf1 for H3-K56 acetylation using recombinant proteins. Moreover, the Rtt109-Vps75 complex interacts with Asf1-H3/H4 but not Asf1. In vivo, the Rtt109-Asf1 interaction is also dependent on the ability of Asf1 to bind H3/H4. Furthermore, the Rtt109 homolog in Schizosaccharomyces pombe (SpRtt109) also displayed an Asf1-dependent H3-K56 HAT activity in vitro. These results indicate that Asf1 regulates H3-K56 acetylation by presenting histones H3 and H4 to Rtt109-Vps575 for acetylation, and this mechanism is likely to be conserved. Finally, we have shown that cells lacking Rtt109 or expressing H3-K56 mutants exhibited significant reduction in the association of three proteins with stalled DNA replication forks and hyper-recombination of replication forks stalled at replication fork barriers of the ribosomal DNA locus compared with wild-type cells. Taken together, these studies provide novel insight into the role of Asf1 in the regulation of H3-K56 acetylation and the function of this modification in DNA replication.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhizhong Li
- Structural Biology Program, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomedicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Rui-Ming Xu
- Structural Biology Program, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomedicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
692
|
Abstract
In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research.
Collapse
Affiliation(s)
- Weiwei Zhong
- HHMI and Division of Biology, Caltech, 1200 E California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
693
|
Downs JA, Nussenzweig MC, Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature 2007; 447:951-8. [PMID: 17581578 DOI: 10.1038/nature05980] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrity of the genome is frequently challenged by double-strand breaks in the DNA. Defects in the cellular response to double-strand breaks are a major cause of cancer and other age-related pathologies; therefore, much effort has been directed at understanding the enzymatic mechanisms involved in recognizing, signalling and repairing double-strand breaks. Recent work indicates that chromatin - the fibres into which DNA is packaged with a proteinaceous structural polymer - has an important role in initiating, propagating and terminating this cellular response to DNA damage.
Collapse
Affiliation(s)
- Jessica A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | | | | |
Collapse
|
694
|
Dovey CL, Russell P. Mms22 preserves genomic integrity during DNA replication in Schizosaccharomyces pombe. Genetics 2007; 177:47-61. [PMID: 17660542 PMCID: PMC2013719 DOI: 10.1534/genetics.107.077255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The faithful replication of the genome, coupled with the accurate repair of DNA damage, is essential for the maintenance of chromosomal integrity. The MMS22 gene of Saccharomyces cerevisiae plays an important but poorly understood role in preservation of genome integrity. Here we describe a novel gene in Schizosaccharomyces pombe that we propose is a highly diverged ortholog of MMS22. Fission yeast Mms22 functions in the recovery from replication-associated DNA damage. Loss of Mms22 results in the accumulation of spontaneous DNA damage in the S- and G2-phases of the cell cycle and elevated genomic instability. There are severe synthetic interactions involving mms22 and most of the homologous recombination proteins but not the structure-specific endonuclease Mus81-Eme1, which is required for survival of broken replication forks. Mms22 forms spontaneous nuclear foci and colocalizes with Rad22 in cells treated with camptothecin, suggesting that it has a direct role in repair of broken replication forks. Moreover, genetic interactions with components of the DNA replication fork suggest that Mms2 functions in the coordination of DNA synthesis following damage. We propose that Mms22 functions directly at the replication fork to maintain genomic integrity in a pathway involving Mus81-Eme1.
Collapse
Affiliation(s)
- Claire L Dovey
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | |
Collapse
|
695
|
A comprehensive genetic characterization of bacterial motility. PLoS Genet 2007; 3:1644-60. [PMID: 17941710 PMCID: PMC1976333 DOI: 10.1371/journal.pgen.0030154] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/25/2007] [Indexed: 01/05/2023] Open
Abstract
We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere. Bacteria thrive in a limitless range of extreme environments, accompanied by exotic metabolisms and sophisticated behaviors. However, our modern molecular understanding of bacteria comes from studies of a limited range of phenotypes in a handful of model organisms such as E. coli and Bacillus subtilis. With the availability of thousands of sequenced bacterial genomes, there is now an urgent need for methods that rapidly and comprehensively reveal the genetic basis of phenotypes across the microbial biosphere. To this end, we have developed a genome-wide experimental framework that quantifies the degree to which every gene in the genome contributes to a phenotype of interest, and reveals the organization of genes within regulatory networks and signaling pathways. We show here that the application of this methodology to E. coli swimming and surface motility reveals essentially all the previously known components of flagellar-mediated chemotaxis on the time scale of weeks. Remarkably, we also identify three dozen additional novel loci that operate through diverse mechanisms to affect a behavior that was assumed to be completely characterized. The speed, ease, and broad applicability of this framework should greatly accelerate the global analysis of a wide range of uncharacterized bacterial behaviors.
Collapse
|
696
|
|
697
|
Sadoul K, Boyault C, Pabion M, Khochbin S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 2007; 90:306-12. [PMID: 17681659 DOI: 10.1016/j.biochi.2007.06.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/19/2007] [Indexed: 11/17/2022]
Abstract
Lysine acetylation was first discovered as a post-translational modification of histones and has long been considered as a direct regulator of chromatin structure and function. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are the enzymes involved in this modification and they were thought to act as critical gene silencers or activators. Further investigations indicated that lysine acetylation can also occur in non-histone proteins and pointed to HATs and HDACs as multifunctional factors, acting not only on transcription but also on a variety of other cellular processes. One of these processes is the regulation of protein stability. Indeed, at least four independent HATs, namely CBP, p300, PCAF and TAF1, and one HDAC, HDAC6, possess intrinsic ubiquitin-linked functions in addition to their regular HAT/HDAC activities. Furthermore HATs and HDACs can be found in multi-subunit complexes with enzymes of the ubiquitination machinery. Moreover, lysine acetylation itself was found to directly or indirectly affect protein stability. These observations reveal therefore a tight link between protein lysine acetylation and ubiquitination and designate the acetylation machinery as a determinant element in the control of cellular proteolytic activities.
Collapse
Affiliation(s)
- Karin Sadoul
- INSERM U823, Equipe Epigénétique et Signalisation Cellulaire, F-38706 Grenoble, France
| | | | | | | |
Collapse
|
698
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
699
|
Markham K, Bai Y, Schmitt-Ulms G. Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal Bioanal Chem 2007; 389:461-73. [PMID: 17583802 DOI: 10.1007/s00216-007-1385-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/14/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The study of protein-protein interactions involving endogenous proteins frequently relies on the immunoaffinity capture of a protein of interest followed by mass spectrometry-based identification of co-purifying interactors. A notorious problem with this approach is the difficulty of distinguishing physiological interactors from unspecific binders. Additional challenges pose the need to employ a strategy that is compatible with downstream mass spectrometry and minimizes sample losses during handling steps. Finally, the complexity of data sets demands solutions for data filtering. Here we present an update on co-immunoprecipitation procedures for sensitive interactome mapping applications. We define the relevant terminology, review methodological advances that reduce sample losses, and discuss experimental strategies that facilitate recognition of candidate interactors through a combination of informative controls and data filtering. Finally, we provide starting points for initial validation experiments and propose conventions for manuscripts which report on co-immunoprecipitation work.
Collapse
Affiliation(s)
- Kelly Markham
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6 Queen's Park Crescent West, Toronto, ON M5S 3H2, Canada
| | | | | |
Collapse
|
700
|
Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 2007; 3:116. [PMID: 17551511 PMCID: PMC1911201 DOI: 10.1038/msb4100159] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/24/2007] [Indexed: 01/25/2023] Open
Abstract
Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.
Collapse
Affiliation(s)
- Ronish Gupta
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bart Kus
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Fladd
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James Wasmuth
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raffi Tonikian
- Banting & Best Department of Medical Research, University of Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Tel.: +1 416-813-5098; Fax: +1 416-813-8456;
| |
Collapse
|