651
|
Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:284-91. [PMID: 24413286 PMCID: PMC3948040 DOI: 10.1289/ehp.1307429] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/09/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. OBJECTIVES We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. METHODS We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. RESULTS 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. CONCLUSIONS Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. CITATION Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.
Collapse
Affiliation(s)
- Kun Lu
- Department of Biological Engineering
| | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Foley KA, Ossenkopp KP, Kavaliers M, MacFabe DF. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 2014; 9:e87072. [PMID: 24466331 PMCID: PMC3899377 DOI: 10.1371/journal.pone.0087072] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/22/2013] [Indexed: 02/08/2023] Open
Abstract
Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12–16, LPS (50 µg/kg) on G15–16, or vehicle control on G12–16 or G15–16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10–18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40–42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kelly A. Foley
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, Ontario, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Department of Psychology, The University of Western Ontario, London, Ontario, Canada
| | - Derrick F. MacFabe
- Department of Psychology, The University of Western Ontario, London, Ontario, Canada
- The Kilee Patchell-Evans Autism Research Group, Division of Developmental Disabilities, Departments of Psychology and Psychiatry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
653
|
Villena J, Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol 2014; 4:512. [PMID: 24459463 PMCID: PMC3890654 DOI: 10.3389/fimmu.2013.00512] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022] Open
Abstract
The intestinal mucosa plays a critical role in the host’s interactions with innocuous commensal microbiota and invading pathogenic microorganisms. Intestinal epithelial cells (IECs) and gut associated immune cells recognize the bacterial components via pattern-recognition receptors (PRRs) and are responsible for maintaining tolerance to the large communities of resident luminal bacteria while being also able to mount inflammatory responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs that are present on IECs and immune cells which are involved in the induction of both tolerance and inflammation. A growing body of experimental and clinical evidence supports the therapeutic and preventive application of probiotics for several gastrointestinal inflammatory disorders in which TLRs exert a significant role. This review aims to summarize the current knowledge of the beneficial effects of probiotic microorganisms with the capacity to modulate the immune system (immunobiotics) in the regulation of intestinal inflammation in pigs, which are very important as both livestock and human model. Especially we discuss the role of TLRs, their signaling pathways, and their negative regulators in both the inflammatory intestinal injury and the beneficial effects of immunobiotics in general, and Lactobacillus jensenii TL2937 in particular. This review article emphasizes the cellular and molecular interactions of immunobiotics with IECs and immune cells through TLRs and their application for improving animal and human health.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group , Tucuman , Argentina ; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) , Tucuman , Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| |
Collapse
|
654
|
Reynolds LA, Finlay BB. A case for antibiotic perturbation of the microbiota leading to allergy development. Expert Rev Clin Immunol 2014; 9:1019-30. [DOI: 10.1586/1744666x.2013.851603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
655
|
Abstract
The bacterial microbiota of the human large bowel is a complex ecosystem consisting of several hundred, mostly anaerobic, species. To maintain colonization of the gut lumen and maximize growth in the presence of nutritional competitors, highly diverse metabolic pathways have evolved, with each microbe utilizing a different "winning strategy" for nutrient acquisition and utilization. Conditions and diseases leading to intestinal inflammation are accompanied by a severe disruption the microbiota composition characterized by an expansion of facultative anaerobic Enterobacteriaceae. Here, we review evidence that the local inflammatory response creates a unique nutritional environment that is conducive to a bloom of bacterial species whose genomes encode the capability of utilizing inflammation-derived nutrients.
Collapse
|
656
|
Winter SE, Bäumler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept. Cell Microbiol 2013; 16:179-84. [PMID: 24286560 DOI: 10.1111/cmi.12245] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
The large intestine is host to a complex ecological community composed predominantly of obligate anaerobic bacteria belonging to the classes Bacteroidia and Clostridia. This community confers benefits through its metabolic activities and host interactions. However, a microbial imbalance (dysbiosis) characterized by a decreased abundance of Clostridia and a bloom of facultative anaerobic Proteobacteria is commonly observed during inflammation in the large bowel. Here we review recent insights into the principles that favour simultaneous increases in the abundance of closely related species belonging to the Proteobacteria during inflammation, which provides important clues for the rational design of strategies to treat dysbiosis.
Collapse
Affiliation(s)
- Sebastian E Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | | |
Collapse
|
657
|
Abstract
The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer.
Collapse
|
658
|
McHardy IH, Li X, Tong M, Ruegger P, Jacobs J, Borneman J, Anton P, Braun J. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. MICROBIOME 2013; 1:26. [PMID: 24451087 PMCID: PMC3971626 DOI: 10.1186/2049-2618-1-26] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/03/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Regardless of infection route, the intestine is the primary site for HIV-1 infection establishment and results in significant mucosal CD4+ T lymphocyte depletion, induces an inflammatory state that propagates viral dissemination, facilitates microbial translocation, and fosters establishment of one of the largest HIV reservoirs. Here we test the prediction that HIV infection modifies the composition and function of the mucosal commensal microbiota. RESULTS Rectal mucosal microbiota were collected from human subjects using a sponge-based sampling methodology. Samples were collected from 20 HIV-positive men not receiving combination anti-retroviral therapy (cART), 20 HIV-positive men on cART and 20 healthy, HIV-negative men. Microbial composition of samples was analyzed using barcoded 16S Illumina deep sequencing (85,900 reads per sample after processing). Microbial metagenomic information for the samples was imputed using the bioinformatic tools PICRUST and HUMAnN. Microbial composition and imputed function in HIV-positive individuals not receiving cART was significantly different from HIV-negative individuals. Genera including Roseburia, Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were depleted in HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive subjects receiving cART exhibited similar depletion and enrichment for these genera, but were of intermediate magnitude and did not achieve statistical significance. Imputed metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and siderophore biosynthesis differed significantly between healthy controls and HIV-infected subjects not receiving cART. CONCLUSIONS HIV infection was associated with rectal mucosal changes in microbiota composition and imputed function that cART failed to completely reverse. HIV infection was associated with depletion of some commensal species and enrichment of a few opportunistic pathogens. Many imputed metagenomic functions differed between samples from HIV-negative and HIV-positive subjects not receiving cART, possibly reflecting mucosal metabolic changes associated with HIV infection. Such functional pathways may represent novel interventional targets for HIV therapy if normalizing the microbial composition or functional activity of the microbiota proves therapeutically useful.
Collapse
Affiliation(s)
- Ian H McHardy
- Pathology and Laboratory Medicine, UCLA, 10833 Le Conte Ave 13-188 CHS, Los Angeles, CA 90095, USA
| | - Xiaoxiao Li
- Inflammatory Bowel Disease & Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles 90048, USA
| | | | - Paul Ruegger
- Plant Pathology, UC Riverside, Riverside, CA, USA
| | - Jonathan Jacobs
- Pathology and Laboratory Medicine, UCLA, 10833 Le Conte Ave 13-188 CHS, Los Angeles, CA 90095, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Peter Anton
- Department of Medicine, UCLA, Los Angeles, CA, USA
- Center for HIV Prevention Research, UCLA AIDS Institute, Los Angeles, CA, USA
| | - Jonathan Braun
- Pathology and Laboratory Medicine, UCLA, 10833 Le Conte Ave 13-188 CHS, Los Angeles, CA 90095, USA
| |
Collapse
|
659
|
Denning TL, Parkos CA. Neutrophils enlist IL-22 to restore order in the gut. Proc Natl Acad Sci U S A 2013; 110:12509-10. [PMID: 23872844 PMCID: PMC3732960 DOI: 10.1073/pnas.1310907110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Timothy L. Denning
- Departments of Pathology and Laboratory Medicine and
- Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Charles A. Parkos
- Departments of Pathology and Laboratory Medicine and
- Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
660
|
White AK, Smith RJ, Bigler CR, Brooke WF, Schauer PR. Head and neck manifestations of neurofibromatosis. Laryngoscope 1986; 47:75-85. [PMID: 3088347 DOI: 10.1249/jes.0000000000000183] [Citation(s) in RCA: 285] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurofibromatosis is a neurocutaneous systemic disease that occurs in 1:2500 to 3300 live births. Prevalence figures have shown it to be as common as cystic fibrosis or Down's syndrome and more than twice as common as muscular dystrophy. In this study, our experience with 257 cases of neurofibromatosis seen since 1972 is reviewed. Intracranial, bony, and extracranial anomalies are described in the 223 patients (87%) who presented with, or ultimately developed, head and neck manifestations of the disease. The most common intracranial tumor was optic glioma, found in 35 patients (14%), 19 younger than 10 years of age. Acoustic neuromas were diagnosed in eight individuals (3%) and were bilateral in three. The most common skull anomaly was macrocephaly, noted 78 times (30%). Absence of the sphenoid wing occurred in 11 patients (4%) and 19 others (7%) had facial asymmetry due to other skull abnormalities. Extracranial manifestations included neurofibromas of the plexiform and nonplexiform type, Lisch nodules, and cafe-au-lait spots.
Collapse
|