651
|
Dell'Accio F, De Bari C, Luyten FP. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. ARTHRITIS AND RHEUMATISM 2001; 44:1608-19. [PMID: 11465712 DOI: 10.1002/1529-0131(200107)44:7<1608::aid-art284>3.0.co;2-t] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To establish a model and associated molecular markers for monitoring the capacity of in vitro-expanded chondrocytes to generate stable cartilage in vivo. METHODS Adult human articular chondrocytes (AHAC) were prepared by collagenase digestion of samples obtained postmortem and were expanded in monolayer. Upon passaging, aliquots of chondrocyte suspensions were either injected intramuscularly into nude mice, cultured in agarose, or used for gene expression analysis. Cartilage formation in vivo was documented by histology, histochemistry, immunofluorescence for type II collagen, and proteoglycan analysis by 35S-sulfate incorporation and molecular sieve chromatography of the radiolabeled macromolecules. In situ hybridization for species-specific genomic repeats was used to discriminate human-derived from mouse-derived cells. Gene expression dynamics were analyzed by semiquantitative reverse transcription-polymerase chain reaction. RESULTS Intramuscular injection of freshly isolated AHAC into nude mice resulted in stable cartilage implants that were resistant to mineralization, vascular invasion, and replacement by bone. In vitro expansion of AHAC resulted in the loss of in vivo cartilage formation. This capacity was positively associated with the expression of fibroblast growth factor receptor 3, bone morphogenetic protein 2, and alpha1(II) collagen (COL2A1), and its loss was marked by the up-regulation of activin receptor-like kinase 1 messenger RNA. Anchorage-independent growth and the reexpression of COL2A1 in agarose culture were insufficient to predict cartilage formation in vivo. CONCLUSION AHAC have a finite capacity to form stable cartilage in vivo; this capacity is lost throughout passaging and can be monitored using a nude mouse model and associated molecular markers. This cartilage-forming ability in vivo may be pivotal for successful cell-based joint surface defect repair protocols.
Collapse
Affiliation(s)
- F Dell'Accio
- University Hospitals Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
652
|
Zwijsen A, van Grunsven LA, Bosman EA, Collart C, Nelles L, Umans L, Van de Putte T, Wuytens G, Huylebroeck D, Verschueren K. Transforming growth factor beta signalling in vitro and in vivo: activin ligand-receptor interaction, Smad5 in vasculogenesis, and repression of target genes by the deltaEF1/ZEB-related SIP1 in the vertebrate embryo. Mol Cell Endocrinol 2001; 180:13-24. [PMID: 11451567 DOI: 10.1016/s0303-7207(01)00505-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification and characterization of components of the transforming growth factor beta (TGFbeta) signalling pathway are proceeding at a very fast pace. To illustrate a number of our activities in this field, we first summarize our work aiming at the selection from a large collection of single residue substitution mutants of two activin A polypeptides in which D27 and K102, respectively, have been modified. This work has highlighted the importance of K102 and its positive charge for binding to activin type II receptors. Activin K102E, which did not bind to high-affinity receptor complexes, may be a valuable beta chain, when incorporated in recombinant inhibin to unambiguously detect novel inhibin binding sites at the cell surface. We then illustrate how Smad5 knockout mice and an overexpression approach with a truncated TGFbeta type II receptor in the mouse embryo can contribute to the identification of a novel TGFbeta-->TbetaRII/ALK1-->Smad5 pathway in endothelial cells in the embryo proper and the yolk sac vasculature. We conclude with a summary of our results with a Smad-interacting transcriptional repressor but focus on its biological significance in the vertebrate embryo.
Collapse
Affiliation(s)
- A Zwijsen
- Laboratory of Molecular Biology (Celgen), Department of Cell Growth, Differentiation and Development (VIB-07), Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Abstract
The transforming growth factor beta (TGF-beta) superfamily has profound effects on many aspects of animal development. In the last decade, our laboratory and others have performed in vivo functional studies on multiple components of the TGF-beta superfamily signal transduction pathway, including upstream ligands, transmembrane receptors, receptor-associated proteins and downstream Smad proteins. We have taken gene knockout approaches to generate null alleles of the genes of interest, as well as a gene knockin approach to replace the mature region of one TGF-beta superfamily ligand with another. We found that activin betaB, expressed in the spatiotemporal pattern of activin betaA, can function as a hypomorphic allele of activin betaA and rescue the craniofacial defects and neonatal lethal phenotype of activin betaA-deficient mice. With the knockout approach, we have shown that the expression pattern of a component in the TGF-beta superfamily signal transduction cascade does not necessarily predict its in vivo function. Two liver-specific activins, activin betaC and activin betaE are dispensable for liver development, regeneration and function, whereas ubiquitously expressed Smad5 has specific roles in the development of multiple embryonic and extraembryonic tissues.
Collapse
Affiliation(s)
- H Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA
| | | | | |
Collapse
|
654
|
Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 2001; 105:863-75. [PMID: 11439183 DOI: 10.1016/s0092-8674(01)00396-8] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vascular development requires an orderly exchange of signals between growing vessels and their supporting tissues, but little is known of the intracellular signaling pathways underlying this communication. We find that mice with disruptions of both NFATc4 and the related NFATc3 genes die around E11 with generalized defects in vessel assembly as well as excessive and disorganized growth of vessels into the neural tube and somites. Since calcineurin is thought to control nuclear localization of NFATc proteins, we introduced a mutation into the calcineurin B gene that prevents phosphatase activation by Ca(2+) signals. These CnB mutant mice exhibit vascular developmental abnormalities similar to the NFATc3/c4 null mice. We show that calcineurin function is transiently required between E7.5 and E8.5. Hence, early calcineurin/NFAT signaling initiates the later cross-talk between vessels and surrounding tissues that pattern the vasculature.
Collapse
Affiliation(s)
- I A Graef
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
655
|
Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M. Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2011-20. [PMID: 11395379 PMCID: PMC1891990 DOI: 10.1016/s0002-9440(10)64673-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder because of mutations in the genes coding for endoglin (HHT1) or ALK-1 (HHT2). The disease is associated with haploinsufficiency and a murine model was obtained by engineering mice that express a single Endoglin allele. Of a total of 171 mice that were observed for 1 year, 50 developed clinical signs of HHT. Disease prevalence was high in 129/Ola strain (72%), intermediate in the intercrosses (36%), and low in C57BL/6 backcrosses (7%). Most mice first presented with an ear telangiectasia and/or recurrent external hemorrhage. One-third of mice with HHT showed severe vascular abnormalities such as dilated vessels, hemorrhages, liver and lung congestion, and/or brain and heart ischemia. Disease sequelae included stroke, hydrocephalus, fatal hemorrhage, and congestive heart failure. Thus the murine model reproduces the multiorgan manifestations of the human disease. Levels of circulating latent transforming growth factor (TGF)-beta1 were significantly lower in the 129/Ola than in the C57BL/6 strain. Intercrosses and 129/Ola mice expressing reduced endoglin also showed lower plasma TGF-beta1 levels than control. These data suggest that modifier genes involved in the regulation of TGF-beta1 expression act in combination with a single functional copy of endoglin in the development of HHT.
Collapse
Affiliation(s)
- A Bourdeau
- Cancer and Blood Program, The Hospital for Sick Children and Department of Immunology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
656
|
Abstract
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.
Collapse
Affiliation(s)
- K Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo Japan.
| | | | | |
Collapse
|
657
|
Abstract
Platelet-derived growth factor (PDGF) was originally identified in platelets and in serum as a mitogen for fibroblasts, smooth muscle cells (SMC) and glia cells in culture. PDGF has since expanded to a family of dimers of at least four gene products, whose biological actions are mediated through two receptor tyrosine kinases, PDGFRs. The present review summarizes and discusses the biological functions of PDGFs and PDGFRs in developmental processes, mainly as revealed through genetic analysis in mice. Such studies have demonstrated multiple critical roles of PDGFs and PDGFRs in embryonic and postnatal development. PDGFs seem to act upon specific populations of progenitor cells that give rise to several different cell types with distinct functions in a variety of developmental processes. Analogies are seen between the cell functions and the developmental processes controlled by PDGFs. This suggests that ancestral PDGF and PDGFR expression patterns and functions may have been iterated in related sets of morphogenetic processes in the course of evolution.
Collapse
Affiliation(s)
- C Betsholtz
- Department of Medical Biochemistry, University of Göteborg, Sweden.
| | | | | |
Collapse
|
658
|
|
659
|
Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001; 153:543-53. [PMID: 11331305 PMCID: PMC2190573 DOI: 10.1083/jcb.153.3.543] [Citation(s) in RCA: 789] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The association of pericytes (PCs) to newly formed blood vessels has been suggested to regulate endothelial cell (EC) proliferation, survival, migration, differentiation, and vascular branching. Here, we addressed these issues using PDGF-B-- and PDGF receptor-beta (PDGFR-beta)--deficient mice as in vivo models of brain angiogenesis in the absence of PCs. Quantitative morphological analysis showed that these mutants have normal microvessel density, length, and number of branch points. However, absence of PCs correlates with endothelial hyperplasia, increased capillary diameter, abnormal EC shape and ultrastructure, changed cellular distribution of certain junctional proteins, and morphological signs of increased transendothelial permeability. Brain endothelial hyperplasia was observed already at embryonic day (E) 11.5 and persisted throughout development. From E 13.5, vascular endothelial growth factor-A (VEGF-A) and other genes responsive to metabolic stress became upregulated, suggesting that the abnormal microvessel architecture has systemic metabolic consequences. VEGF-A upregulation correlated temporally with the occurrence of vascular abnormalities in the placenta and dilation of the heart. Thus, although PC deficiency appears to have direct effects on EC number before E 13.5, the subsequent increased VEGF-A levels may further abrogate microvessel architecture, promote vascular permeability, and contribute to formation of the edematous phenotype observed in late gestation PDGF-B and PDGFR-beta knock out embryos.
Collapse
Affiliation(s)
- Mats Hellström
- Department of Medical Biochemistry, Göteborg University, SE-405 30 Göteborg, Sweden
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Holger Gerhardt
- Department of Medical Biochemistry, Göteborg University, SE-405 30 Göteborg, Sweden
- Institute of Pathology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Mattias Kalén
- Department of Medical Biochemistry, Göteborg University, SE-405 30 Göteborg, Sweden
| | - Xuri Li
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Ulf Eriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Hartwig Wolburg
- Institute of Pathology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christer Betsholtz
- Department of Medical Biochemistry, Göteborg University, SE-405 30 Göteborg, Sweden
| |
Collapse
|
660
|
Larsson J, Goumans MJ, Sjöstrand LJ, van Rooijen MA, Ward D, Levéen P, Xu X, ten Dijke P, Mummery CL, Karlsson S. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 2001; 20:1663-73. [PMID: 11285230 PMCID: PMC145465 DOI: 10.1093/emboj/20.7.1663] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deletion of the transforming growth factor beta1 (TGF-beta1) gene in mice has previously suggested that it regulates both hematopoiesis and angiogenesis. To define the function of TGF-beta more precisely, we inactivated the TGF-beta type I receptor (TbetaRI) gene by gene targeting. Mice lacking TbetaRI die at midgestation, exhibiting severe defects in vascular development of the yolk sac and placenta, and an absence of circulating red blood cells. However, despite obvious anemia in the TbetaRI(-/-) yolk sacs, clonogenic assays on yolk sac-derived hematopoietic precursors in vitro revealed that TbetaRI(-/-) mice exhibit normal hematopoietic potential compared with wild-type and heterozygous siblings. Endothelial cells derived from TbetaRI-deficient embryos show enhanced cell proliferation, improper migratory behavior and impaired fibronectin production in vitro, defects that are associated with the vascular defects seen in vivo. We thus demonstrate here that, while TbetaRI is crucial for the function of TGF-beta during vascular development and can not be compensated for by the activin receptor-like kinase-1 (ALK-1), functional hematopoiesis and development of hematopoietic progenitors is not dependent on TGF-beta signaling via TbetaRI.
Collapse
Affiliation(s)
| | - Marie-José Goumans
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| | | | - Marga A. van Rooijen
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| | - Dorien Ward
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| | | | | | - Peter ten Dijke
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| | - Christine L. Mummery
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Department of Medicine, Lund University Hospital, Lund, Sweden,
Netherlands Cancer Institute, Amsterdam and Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands Corresponding author e-mail:
| |
Collapse
|
661
|
Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 2001; 128:859-69. [PMID: 11222141 DOI: 10.1242/dev.128.6.859] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TGFbeta signaling pathways of the bone morphogenetic protein (BMP) subclass are essential for dorsoventral pattern formation of both vertebrate and invertebrate embryos. Here we determine by chromosomal mapping, linkage analysis, cDNA sequencing and mRNA rescue that the dorsalized zebrafish mutant lost-a-fin (laf) is defective in the gene activin receptor-like kinase 8 (alk8), which encodes a novel type I TGFbeta receptor. The alk8 mRNA is expressed both maternally and zygotically. Embyros that lack zygotic, but retain maternal Laf/Alk8 activity, display a weak dorsalization restricted to the tail and die by 3 days postfertilization. We rescued the laf dorsalized mutant phenotype by alk8 mRNA injection and generated homozygous laf/alk8 mothers to investigate the maternal role of Laf/Alk8 activity. Adult fish lacking Laf/Alk8 activity are fertile, exhibit a growth defect and are significantly smaller than their siblings. Embryos derived from homozygous females, which lack both maternal and zygotic Laf/Alk8 activity, display a strongly dorsalized mutant phenotype, no longer limited to the tail. These mutant embryos lack almost all gastrula ventral cell fates, with a concomitant expansion of dorsal cell types. During later stages, most of the somitic mesoderm and neural tissue circumscribe the dorsoventral axis of the embryo. Zygotic laf/alk8 mutants can be rescued by overexpression of the BMP signal transducer Smad5, but not the Bmp2b or Bmp7 ligands, consistent with the Laf/Alk8 receptor acting within a BMP signaling pathway, downstream of a Bmp2b/Bmp7 signal. Antibodies specific for the phosphorylated, activated form of Smad1/5, show that BMP signaling is nearly absent in gastrula lacking both maternal and zygotic Laf/Alk8 activity, providing further evidence that Laf/Alk8 transduces a BMP signal. In total, our work strongly supports the role of Laf/Alk8 as a type I BMP receptor required for the specification of ventral cell fates.
Collapse
MESH Headings
- Activin Receptors
- Animals
- Body Patterning/genetics
- Body Patterning/physiology
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Protein Receptors
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/physiology
- Chromosome Mapping
- Crosses, Genetic
- Embryo, Nonmammalian/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Genetic Linkage
- Genomic Imprinting
- Male
- Mutation
- Mutation, Missense
- Polymorphism, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Growth Factor
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Signal Transduction
- Transcription, Genetic
- Transforming Growth Factor beta
- Zebrafish/embryology
- Zebrafish/genetics
- Zygote/physiology
Collapse
Affiliation(s)
- K A Mintzer
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
662
|
Wakefield LM, Piek E, Böttinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2001; 6:67-82. [PMID: 11467453 DOI: 10.1023/a:1009568532177] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ligands of the TGF-beta superfamily are unique in that they signal through transmembrane receptor serine-threonine kinases, rather than tyrosine kinases. The receptor complex couples to a signal transduction pathway involving a novel family of proteins, the Smads. On phosphorylation, Smads translocate to the nucleus where they modulate transcriptional responses. However, TGF-betas can also activate the mitogen-activated protein kinase (MAPK)4 pathway, and the different biological responses to TGF-beta depend to varying degrees on activation of either or both of these two pathways. The Smad pathway is a nexus for cross-talk with other signal transduction pathways and for modulation by many different interacting proteins. Despite compelling evidence that TGF-beta has tumor suppressor activity in the mammary gland, neither TGF-beta receptors nor Smads are genetically inactivated in human breast cancer, though receptor expression is reduced. Possible reasons are discussed in relation to the dual role of TGF-beta as tumor suppressor and oncogene.
Collapse
Affiliation(s)
- L M Wakefield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
663
|
Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Signaling of transforming growth factor-beta family members through Smad proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6954-67. [PMID: 11106403 DOI: 10.1046/j.1432-1327.2000.01828.x] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Smads are pivotal intracellular nuclear effectors of transforming growth factor-beta (TGF-beta) family members. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity trigger phosphorylation of receptor-regulated Smads (R-Smads), whereas Smad2 and Smad3 are phosphorylated by TGF-beta, and activin type I receptors, Smad1, Smad5 and Smad8, act downstream of BMP type I receptors. Activated R-Smads form heteromeric complexes with common-partner Smads (Co-Smads), e.g. Smad4, which translocate efficiently to the nucleus, where they regulate, in co-operation with other transcription factors, coactivators and corepressors, the transcription of target genes. Inhibitory Smads act in most cases in an opposite manner from R- and Co-Smads. Like other components in the TGF-beta family signaling cascade, Smad activity is intricately regulated. The multifunctional and context dependency of TGF-beta family responses are reflected in the function of Smads as signal integrators. Certain Smads are somatically mutated at high frequency in particular types of human cancers. Gene ablation of Smads in the mouse has revealed their critical roles during embryonic development. Here we review the latest advances in our understanding of the Smad mechanism of action and their in vivo functions.
Collapse
Affiliation(s)
- S Itoh
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
664
|
Huang S, Flanders KC, Roberts AB. Characterization of the mouse Smad1 gene and its expression pattern in adult mouse tissues. Gene 2000; 258:43-53. [PMID: 11111041 DOI: 10.1016/s0378-1119(00)00396-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Smad1 belongs to a family of receptor-activated proteins which mediate signals from TGF-beta superfamily ligands, including TGF-beta and BMPs. Although much is known about the biochemistry of Smad1 signal transduction, the role of Smad1 in vivo is still unclear. Here we present the first description of the genomic structure of the mouse Smad1 gene and the characterization of its expression pattern in adult mouse tissues by immunohistochemistry. The Smad1 gene contains 7 exons and spans >42 kb of genomic DNA. Its coding region is contained within 6 exons and all introns, except intron 1, follow the GT/AG rule. Immunohistochemical analysis shows that Smad1 is widely expressed in adult mouse tissues, with a varying degree of nuclear localization in different cell types, suggesting a regulated function for this protein. This study assigns all of the exon-intron boundaries of the mouse Smad1 gene and provides the basis for assessing the functional significance of this gene using targeted gene manipulation in the mouse.
Collapse
Affiliation(s)
- S Huang
- Laboratory of Cell Regulation and Carcinogenesis, NCI, 41 Library Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
665
|
Affiliation(s)
- J Massagué
- Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
666
|
Affiliation(s)
- G C Blobe
- Whitehead Institute for Biomedical Research, Cambridge, Mass 02142, USA
| | | | | |
Collapse
|