701
|
Abstract
Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.
Collapse
Affiliation(s)
- Gabriel Ichim
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
702
|
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in mitochondria function contributes to aging. In particular, we discuss how mitochondria contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and the age-dependent decline in stem cell activity. Signaling pathways regulating the mitochondrial unfolded protein response and mitophagy are also reviewed, with particular emphasis placed on how these pathways might, in turn, regulate longevity. Taken together, these observations suggest that mitochondria influence or regulate a number of key aspects of aging and suggest that strategies directed at improving mitochondrial quality and function might have far-reaching beneficial effects.
Collapse
Affiliation(s)
- Nuo Sun
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
703
|
The expanding regulatory network of STING-mediated signaling. Curr Opin Microbiol 2016; 32:144-150. [PMID: 27414485 PMCID: PMC4983512 DOI: 10.1016/j.mib.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023]
Abstract
The identification and characterization of DNA-sensing pathways has been a subject of intensive investigation for the last decade. This interest, in part, is supported by the fact that the main outcome of DNA-responses is production of type I interferon (IFN-I), which, if produced in excessive amounts, leads to various pathologies. STING (stimulator of interferon genes) is positioned in the center of these responses and is activated either via direct sensing of second messengers or via interaction with upstream sensors of dsDNA. STING mediates responses to pathogens as well as host-derived DNA and is, therefore, linked to various autoimmune diseases, cancer predisposition and ageing. Recent mouse models of DNA damage showed the adaptor STING to be crucial for heightened resting levels of IFN-I. In this review, we will focus on recent advances in understanding the regulation of STING-signaling and identification of its novel components.
Collapse
|
704
|
Vince JE, Silke J. The intersection of cell death and inflammasome activation. Cell Mol Life Sci 2016; 73:2349-67. [PMID: 27066895 PMCID: PMC11108284 DOI: 10.1007/s00018-016-2205-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes.
Collapse
Affiliation(s)
- James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
705
|
The role of cGAS in innate immunity and beyond. J Mol Med (Berl) 2016; 94:1085-1093. [DOI: 10.1007/s00109-016-1423-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
706
|
Abstract
The lifespan of platelets in circulation is brief, close to 10 days in humans and 5 days in mice. Bone marrow residing megakaryocytes produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes, but rather their lifespan is controlled by programmed cell death, a canonical intrinsic apoptosis program. In the last decade, insights from genetically manipulated mouse models and pharmacological developments have helped to define the components of the intrinsic, or mitochondrial, apoptosis pathway that controls platelet lifespan. This review focuses on the molecular regulation of apoptosis in platelet survival, reviews thrombocytopenic conditions linked to enhanced platelet death, examines implications of chemotherapy-induced thrombocytopenia through apoptosis-inducing drugs in cancer therapy as well as discusses ex vivo aging of platelets.
Collapse
Affiliation(s)
- Marion Lebois
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
707
|
Cherry C, Thompson B, Saptarshi N, Wu J, Hoh J. 2016: A 'Mitochondria' Odyssey. Trends Mol Med 2016; 22:391-403. [PMID: 27151392 DOI: 10.1016/j.molmed.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Abstract
The integration of the many roles of mitochondria in cellular function and the contribution of mitochondrial dysfunction to disease are major areas of research. Within this realm, the roles of mitochondria in immune defense, epigenetics, and stem cell (SC) development have recently come into the spotlight. With new understanding, mitochondria may bring together these seemingly unrelated fields, a crucial process in treatment and prevention for various diseases. In this review we describe novel findings in these three arenas, discussing the significance of the interplay between mitochondria and the cell nucleus in response to environmental cues. While we optimistically anticipate that further research in these areas can have a profound impact on disease management, we also bring forth some of the key questions and challenges that remain.
Collapse
Affiliation(s)
- Catherine Cherry
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Brian Thompson
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Neil Saptarshi
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Jianyu Wu
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Josephine Hoh
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA.
| |
Collapse
|
708
|
Saas P, Daguindau E, Perruche S. Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells 2016; 34:1464-73. [PMID: 27018198 DOI: 10.1002/stem.2361] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Etienne Daguindau
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France.,CHRU Besançon, Hématologie, Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| |
Collapse
|
709
|
Abstract
Stimulator of interferon genes (STING) is activated by binding to cyclic dinucleotides (CDNs), which results in potent cytokine production. CDNs are produced by certain intracellular bacteria and are generated by the cyclic GMP–AMP synthase (cGAS) following binding to cytosolic DNA species, such as viral DNA. STING-inducible innate immune molecules are essential for protection of the host against pathogens and are important for the stimulation of adaptive immunity. Self-DNA, for example from the nucleus or mitochondria, can leak into the cytosolic compartment and stimulate STING activity to cause autoinflammatory disease. Certain mutations in the gene encoding STING can cause the protein to become permanently active and similarly induce autoinflammatory responses. STING can be activated in phagocytes by DNA released from engulfed tumour cells and drive the production of cytokines necessary for generating robust antitumour T cell responses. DNA-damaging agents can cause the release of nuclear DNA into the cytosol that stimulates STING-dependent cytokine production and phagocyte infiltration. This may be essential for eliminating damaged cells and generating antitumour T cell responses, but chronic stimulation may also promote inflammation-aggravated cancer. STING agonists exert potent antitumour activity and may be effective, novel adjuvants in vaccine formulations. In contrast, inhibitors of STING signalling may be beneficial for the treatment of autoinflammatory disease, such as systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS) and STING-associated vasculopathy with onset in infancy (SAVI).
Activation of STING (stimulator of interferon genes) by cytosolic aberrant DNA species or cyclic dinucleotides triggers transcription of numerous innate immune genes. In this Review, the author summarizes recent insights into the regulation of STING signalling and its role in autoinflammatory disease and cancer. The rapid detection of microbial agents is essential for the effective initiation of host defence mechanisms against infection. Understanding how cells detect cytosolic DNA to trigger innate immune gene transcription has important implications — not only for comprehending the immune response to pathogens but also for elucidating the causes of autoinflammatory disease involving the sensing of self-DNA and the generation of effective antitumour adaptive immunity. The discovery of the STING (stimulator of interferon genes)-controlled innate immune pathway, which mediates cytosolic DNA-induced signalling events, has recently provided important insights into these processes, opening the way for the development of novel immunization regimes, as well as therapies to treat autoinflammatory disease and cancer.
Collapse
Affiliation(s)
- Glen N Barber
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
710
|
Schattenberg JM, Lee MS. Extracellular Vesicles as Messengers Between Hepatocytes and Macrophages in Nonalcoholic Steatohepatitis. Gastroenterology 2016; 150:815-8. [PMID: 26924096 DOI: 10.1053/j.gastro.2016.02.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
711
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
712
|
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. Int J Cancer 2016; 139:736-41. [PMID: 26939583 DOI: 10.1002/ijc.30074] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the diverse pathophysiological functions of mitochondria beyond traditional energetic metabolism in cells. Mitochondria-released damage-associated molecular patterns, particularly mitochondrial deoxyribonucleic acid (mtDNA), play a central role in host immune defenses against foreign pathogens. Newly discovered cGAS-STING signaling is responsible for microbial DNA recognition, and potentially participates in mitochondrial DNA sensing. Inappropriate inflammatory signaling mediated by mtDNA is implicated in various human diseases, especially infectious/inflammatory disease and cancer. In addition, mtDNA horizontal transfer between tumor cells and surrounding somatic cells has been recently observed and been associated with tumorigenesis and cancer progression. In this review, we will summarize the molecular signaling of mtDNA recognition (especially STING signaling), and discuss the underlying mechanism by which mtDNA transfer triggers cancer progression in human. Besides, we will highlight the central role of mtDNA in host immunity, with particular emphasis on mtDNA-induced NETs (neutrophil extracellular traps) formation, apoptosis and autophagy.
Collapse
Affiliation(s)
- Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
713
|
Abstract
In this issue of Cell Reports, Cullen et al. demonstrate that the release of mature interleukin-1β relies on necrotic plasma membrane permeabilization. Thus, caspases may have evolved to modulate the inflammatory potential of cell death, not to execute it.
Collapse
|
714
|
The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016; 44:597-608. [PMID: 26944200 DOI: 10.1016/j.immuni.2016.02.004] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/17/2023]
Abstract
The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.
Collapse
|
715
|
Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis. Curr Opin Hematol 2016; 22:293-301. [PMID: 26049749 DOI: 10.1097/moh.0000000000000148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW A feature of the innate immune response that is conserved across kingdoms is the induction of cell death. In this review, we discuss the direct and indirect effects of increased inflammatory cell death, including pyroptosis - a caspase-1-dependent cell death - and necroptosis - a receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein-dependent, caspase-independent cell death - on emergency hematopoiesis. RECENT FINDINGS Activation of nonapoptotic cell death pathways during infection can trigger release of cytokines and/or damage-associated molecular patterns such as interleukin (IL)-1α, IL-1β, IL-18, IL-33, high-mobility group protein B1, and mitochondrial DNA to promote emergency hematopoiesis. During systemic infection, pyroptosis and necroptosis can directly kill hematopoietic stem and progenitor cells, which results in impaired hematopoiesis, cytopenia, and immunosuppression. Although originally described as discrete entities, there now appear to be more intimate connections between the nonapoptotic and death receptor signaling pathways. SUMMARY The choice to undergo pyroptotic and necroptotic cell death constitutes a rapid response system serving to eliminate infected cells, including hematopoietic stem and progenitor cells. This system has the potential to be detrimental to emergency hematopoiesis during severe infection. We discuss the potential of pharmacological intervention for the pyroptosis and necroptosis pathways that may be beneficial during periods of infection and emergency hematopoiesis.
Collapse
|
716
|
Galluzzi L, López-Soto A, Kumar S, Kroemer G. Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity 2016; 44:221-31. [DOI: 10.1016/j.immuni.2016.01.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/01/2023]
|
717
|
Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22:146-53. [PMID: 26779811 PMCID: PMC4742415 DOI: 10.1038/nm.4027] [Citation(s) in RCA: 1115] [Impact Index Per Article: 123.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.
Collapse
Affiliation(s)
- Christian Lood
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Luz P Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Monica M Purmalek
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suk S De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carolyne K Smith
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jeffrey A Ledbetter
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
718
|
Sharma S, Fitzgerald KA, Cancro MP, Marshak-Rothstein A. Nucleic Acid-Sensing Receptors: Rheostats of Autoimmunity and Autoinflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3507-12. [PMID: 26432899 DOI: 10.4049/jimmunol.1500964] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Distinct families of germline-encoded pattern recognition receptors can sense both microbial and endogenous nucleic acids. These DNA and RNA sensors include endosomal TLRs and cytosolic sensors upstream of stimulator of type I IFN genes (STING) and MAVS. The existence of overlapping specificities for both foreign and self nucleic acids suggests that, under optimal conditions, the activity of these receptors is finely tuned to effectively mediate host defense yet constrain pathogenic self-reactivity. This equilibrium becomes disrupted with the loss of either TLR9 or STING. To maintain immune protection, this loss can be counterbalanced by the elevated response of an alternative receptor(s). Unfortunately, this adjustment can lead to an increased risk for the development of systemic autoimmunity, as evidenced by the exacerbated clinical disease manifestations of TLR9-deficient and STING-deficient autoimmune-prone mice. These studies underscore the delicate balance normally maintained by tonic signals that prevent unchecked immune responses to nucleic acids released during infections and cellular duress or death.
Collapse
Affiliation(s)
- Shruti Sharma
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Katharine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
719
|
Giampazolias E, Tait SWG. Mitochondria and the hallmarks of cancer. FEBS J 2015; 283:803-14. [PMID: 26607558 DOI: 10.1111/febs.13603] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
Mitochondria have traditionally been viewed as the powerhouse of the cell, where they serve, amongst other functions, as a major source of ATP generation. More recently, mitochondria have also been shown to have active roles in a variety of other processes, including apoptotic cell death and inflammation. Here we review the various ways in which mitochondrial functions affect cancer. Although there are many diverse types of cancer, hallmarks have been defined that are applicable to most cancer types. We provide an overview of how mitochondrial functions affect some of these hallmarks, which include evasion of cell death, de-regulated bioenergetics, genome instability, tumour-promoting inflammation and metastasis. In addition to discussing the underlying mitochondrial roles in each of these processes, we also highlight the considerable potential of targeting mitochondrial functions to improve cancer treatment.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Cancer Research UK Beatson Institute, University of Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, University of Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
720
|
Yamashita M, Nitta E, Suda T. Regulation of hematopoietic stem cell integrity through p53 and its related factors. Ann N Y Acad Sci 2015; 1370:45-54. [DOI: 10.1111/nyas.12986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Masayuki Yamashita
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology; Department of Medicine, University of California San Francisco; San Francisco California
| | - Eriko Nitta
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Cancer Science Institute; National University of Singapore; Singapore
- International Research Center for Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
721
|
Liddicoat BJ, Chalk AM, Walkley CR. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:157-72. [PMID: 26692549 DOI: 10.1002/wrna.1322] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain. In contrast, the biology and substrates responsible for the Adar1(-/-) phenotype have remained more elusive. Several recent studies have identified that a feature of absence or reductions of ADAR1 activity, conserved across human and mouse models, is a profound activation of interferon-stimulated gene signatures and innate immune responses. Further analysis of this observation has lead to the conclusion that editing by ADAR1 is required to prevent activation of the cytosolic innate immune system, primarily focused on the dsRNA sensor MDA5 and leading to downstream signaling via MAVS. The delineation of this mechanism places ADAR1 at the interface between the cells ability to differentiate self- from non-self dsRNA. Based on MDA5 dsRNA recognition requisites, the mechanism indicates that the type of dsRNA must fulfil a particular structural characteristic, rather than a sequence-specific requirement. While additional studies are required to molecularly verify the genetic model, the observations to date collectively identify A-to-I editing by ADAR1 as a key modifier of the cellular response to endogenous dsRNA.
Collapse
Affiliation(s)
- Brian J Liddicoat
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
722
|
Feng D, Tian F, Qin W, Qian X. A dual-functional lanthanide nanoprobe for both living cell imaging and ICP-MS quantification of active protease. Chem Sci 2015; 7:2246-2250. [PMID: 29910913 PMCID: PMC5977404 DOI: 10.1039/c5sc03363b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
A novel nanoprobe is successfully developed for simultaneous living cell imaging and sensitive quantification of caspase-3 in cancer cells.
Real-time imaging and quantitative monitoring of dynamic changes in biomolecules in bioprocesses is in urgent need for biological and clinical studies. However, this goal is difficult to achieve due to the incompatibility between the commonly used imaging and quantification methods. To fulfill this need, we developed the first nanoprobe capable of both living cell imaging and ultrasensitive quantification of proteases in cancer cells by taking advantage of the characteristic luminescence and ICP-MS response of lanthanide metals. The nanoprobe is composed of a lanthanide metal-based luminescent donor/mass tag and a gold nanoparticle quencher linked by a specific peptide recognized by proteases. The protease activity in living cells is both visualized and quantified by monitoring the enzymatically released lanthanide metal using fluorescence imaging and ICP-MS. The low ppb level sensitivity of this method demonstrates its potential in the study of protease-dependent pathways and related diseases.
Collapse
Affiliation(s)
- Duan Feng
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Beijing Institute of Radiation Medicine , Beijing , China 102206 . ;
| | - Fang Tian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Beijing Institute of Radiation Medicine , Beijing , China 102206 . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Beijing Institute of Radiation Medicine , Beijing , China 102206 . ;
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Beijing Institute of Radiation Medicine , Beijing , China 102206 . ;
| |
Collapse
|
723
|
Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2015; 16:7-21. [PMID: 26655628 DOI: 10.1038/nri.2015.7] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory and apoptotic caspases are central players in inflammation and apoptosis, respectively. However, recent studies have revealed that these caspases have functions beyond their established roles. In addition to mediating cleavage of the inflammasome-associated cytokines interleukin-1β (IL-1β) and IL-18, inflammatory caspases modulate distinct forms of programmed cell death and coordinate cell-autonomous immunity and other fundamental cellular processes. Certain apoptotic caspases assemble structurally diverse and dynamic complexes that direct inflammasome and interferon responses to fine-tune inflammation. In this Review, we discuss the expanding and interconnected roles of caspases that highlight new aspects of this family of cysteine proteases in innate immunity.
Collapse
|
724
|
Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem 2015; 291:2379-88. [PMID: 26668314 DOI: 10.1074/jbc.m115.685008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
A signature event during the cell intrinsic apoptotic pathway is mitochondrial outer membrane permeabilization, leading to formation of the apoptosome, a caspase activation complex. The cellular apoptosis susceptibility protein (CAS) can facilitate apoptosome assembly by stimulating nucleotide exchange on Apaf-1 following binding of cytochrome c. We report here that CAS expression itself is up-regulated during tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, and knockdown of CAS renders cells resistant to TRAIL. We find that TRAIL induces up-regulation of CAS in a posttranscriptional, caspase-8-dependent manner through degradation of cIAP1, an E3 ligase that targets CAS for ubiquitin-dependent proteasomal degradation. We identified a novel signaling pathway whereby caspase-8 engages a feedforward cascade that leads to CAS up-regulation and amplifies the apoptotic signal. Furthermore, in silico analysis revealed that expression of CAS is up-regulated at both the mRNA and DNA levels in human breast tumors, consistent with its role in promoting cell proliferation. Overexpression of various oncogenes led to CAS up-regulation in non-transformed cells. Intriguingly, oncogene-induced CAS up-regulation also resulted in greater susceptibility to TRAIL-induced cell death, consistent with its proapoptotic function. These findings suggest that CAS plays contrasting roles in proliferation and apoptosis and that overexpression of CAS in tumors could serve as a potential biomarker to guide therapeutic choices.
Collapse
Affiliation(s)
- Prashant Monian
- From the Cell Biology Program and Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Xuejun Jiang
- From the Cell Biology Program and Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
725
|
York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH, Cunningham CR, Tarling EJ, Wilks MQ, Casero D, Gray DH, Yu AK, Wang ES, Brooks DG, Sun R, Kitchen SG, Wu TT, Reue K, Stetson DB, Bensinger SJ. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 2015; 163:1716-29. [PMID: 26686653 DOI: 10.1016/j.cell.2015.11.045] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.
Collapse
Affiliation(s)
- Autumn G York
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph P Argus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quan D Zhou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gurpreet Brar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Elizabeth E Gray
- Department of Immunology, University of Washington, 750 Republican Street, Box 358059, Seattle, WA 98109, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Nicholas C Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas H Yamada
- Immuno-Oncology Discovery Research; Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Cameron R Cunningham
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth J Tarling
- Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Moses Q Wilks
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - David H Gray
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy K Yu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric S Wang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David G Brooks
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott G Kitchen
- Division of Hematology/Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, 750 Republican Street, Box 358059, Seattle, WA 98109, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
726
|
Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal 2015; 23:1329-50. [PMID: 26067258 PMCID: PMC4685486 DOI: 10.1089/ars.2015.6407] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. RECENT ADVANCES Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. CRITICAL ISSUES Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. FUTURE DIRECTIONS Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid.
Collapse
Affiliation(s)
- Kiichi Nakahira
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Shu Hisata
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Augustine M K Choi
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
727
|
Pernas L, Scorrano L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol 2015; 78:505-31. [PMID: 26667075 DOI: 10.1146/annurev-physiol-021115-105011] [Citation(s) in RCA: 569] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Permanent residency in the eukaryotic cell pressured the prokaryotic mitochondrial ancestor to strategize for intracellular living. Mitochondria are able to autonomously integrate and respond to cellular cues and demands by remodeling their morphology. These processes define mitochondrial dynamics and inextricably link the fate of the mitochondrion and that of the host eukaryote, as exemplified by the human diseases that result from mutations in mitochondrial dynamics proteins. In this review, we delineate the architecture of mitochondria and define the mechanisms by which they modify their shape. Key players in these mechanisms are discussed, along with their role in manipulating mitochondrial morphology during cellular action and development. Throughout, we highlight the evolutionary context in which mitochondrial dynamics emerged and consider unanswered questions whose dissection might lead to mitochondrial morphology-based therapies.
Collapse
Affiliation(s)
- Lena Pernas
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; ,
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; ,
| |
Collapse
|
728
|
Li WJ, Nie SP, Yao YF, Liu XZ, Shao DY, Gong DM, Cui SW, Phillips GO, He M, Xie MY. Ganoderma atrum Polysaccharide Ameliorates Hyperglycemia-Induced Endothelial Cell Death via a Mitochondria-ROS Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8182-8191. [PMID: 26323486 DOI: 10.1021/acs.jafc.5b03462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to examine the role of Ganoderma atrum polysaccharide (PSG-1) in reactive oxygen species (ROS) generation and mitochondrial function in hyperglycemia-induced angiopathy. In this work, ROS scavenger, oxidizing agent tert-butylhydroperoxide (tBH), mitochondrial permeability transition pore (mPTP) blockers, and caspase inhibition are used to investigate whether PSG-1 may promote survival of human umbilical vein cells (HUVECs) through preventing the overproduction of ROS and mitochondrial dysfunction. Experimental results show that exposure of HUVECs to 35.5 mmol/L glucose increases the proportion of cells undergoing apoptosis. PSG-1, mPTP blocker, or caspase inhibition can reduce apoptosis and ROS generation. PSG-1 also increases mitochondrial Bcl-2 protein formation and mitochondrial membrane potential (ΔΨm) but inhibits Bax translocation, cytochrome c release, and caspase activation. In summary, vascular protection of PSG-1 can be mediated by a mitochondria-ROS pathway. ROS generation and mPTP induction are critical for high glucose-mediated apoptosis. PSG-1 ameliorates endothelial dysfunction by inhibiting oxidative stress and subsequent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Fei Yao
- China People's Liberation Army No. 94 Hospital, No. 1028, Jinggangshan Avenue, Nanchang 330000, China
| | - Xiao-Zhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Deng-Yin Shao
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - De-Ming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- School of Biological Sciences, The University of Auckland , Auckland, Private Bag 92019, New Zealand
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Glyn O Phillips
- Phillips Hydrocolloids Research Centre, Glyndwr University , Wrexham, LL11 2AW Wales, U.K
| | - Ming He
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
- Departments of Pharmaceutical Science, Nanchang University , Nanchang 330006, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
729
|
Deng L, Liang H, Fu S, Weichselbaum RR, Fu YX. From DNA Damage to Nucleic Acid Sensing: A Strategy to Enhance Radiation Therapy. Clin Cancer Res 2015; 22:20-5. [PMID: 26362999 DOI: 10.1158/1078-0432.ccr-14-3110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Local irradiation (IR) is widely used in the treatment of primary and metastatic tumors. However, the impact of IR on the immune response is currently being defined. Local and distant relapse after radiotherapy often occurs. The current rationale for the use of IR is based on direct cytotoxicity to cancer cells; however, recent studies have shown that reduction of tumor burden following ablative (large-dose) IR largely depends on type I IFN signaling and CD8(+) T-cell response. Here, we review recent findings indicating that antitumor effects of radiation are contributed by both innate and adaptive immune responses. We focus on immune mechanisms, including cytosolic DNA sensing pathways that bridge the traditional view of IR-mediated DNA damage to DNA-sensing immune pathways. Also, we discuss how the efficacy of radiotherapy might be enhanced by targeting nucleic acid-sensing pathways. These findings highlight the mechanisms governing tumor escape from the immune response and the therapeutic potential of synergistic strategies to improve the efficacy of radiotherapy via immunotherapeutic intervention.
Collapse
Affiliation(s)
- Liufu Deng
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois.
| | - Hua Liang
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Sherry Fu
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Yang-Xin Fu
- The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois. Department of Pathology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
730
|
Grönberg C, Bengtsson E, Fredrikson GN, Nitulescu M, Asciutto G, Persson A, Andersson L, Nilsson J, Gonçalves I, Björkbacka H. Human Carotid Plaques With High Levels of Interleukin-16 Are Associated With Reduced Risk for Cardiovascular Events. Stroke 2015; 46:2748-54. [PMID: 26330445 DOI: 10.1161/strokeaha.115.009910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Interleukin-16 (IL-16) functions as a regulator of T-cell growth and acts as an inducer of cell migration. The aim of this study was to determine whether IL-16 measured in human carotid plaques was associated with symptoms (eg, stroke, transient ischemic attack, or amaurosis fugax), markers of plaque stability, and postoperative cardiovascular events. METHODS Plaques obtained from patients who had ≥1 cerebrovascular ischemic events within 1 month before endarterectomy (n=111) were compared with plaques from patients without symptoms (n=95). Neutral lipids, smooth muscle cell, and macrophage contents were evaluated histologically, and collagen, elastin, and caspase-3 activity were measured biochemically. IL-16, matrix metalloproteinases, and tissue inhibitors of metalloproteinases were measured in plaque homogenates using a multiplex immunoassay. IL-16, CD3, CD4, and FoxP3 mRNA expressions in carotid plaques were analyzed with quantitative real-time polymerase chain reaction. RESULTS Carotid plaques from asymptomatic patients had higher levels of IL-16 mRNA. High plaque IL-16 protein levels (above median) were associated with reduced incidence of postoperative cardiovascular events during a mean follow-up of 21 months (hazard ratio, 0.47; 95% confidence interval, 0.22-0.99; P=0.047). IL-16 levels correlated with the plaque-stabilizing components: elastin, collagen, matrix metalloproteinase-2, tissue inhibitors of metalloproteinase-1, tissue inhibitors of metalloproteinase-2 and FoxP3 mRNA. CONCLUSIONS This study shows that high levels of IL-16 are associated with asymptomatic carotid plaques, expression of factors contributing to plaque stability, and decreased risk of new cardiovascular events during a 2-year period after surgery, suggesting that IL-16 might have a protective role in human atherosclerotic disease.
Collapse
Affiliation(s)
- Caitríona Grönberg
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden.
| | - Eva Bengtsson
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Gunilla Nordin Fredrikson
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Mihaela Nitulescu
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Giuseppe Asciutto
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Ana Persson
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Linda Andersson
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Jan Nilsson
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Isabel Gonçalves
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | - Harry Björkbacka
- From the Department of Clinical Sciences (C.G., E.B., G.N.F., M.N., A.P., L.A., J.N., I.G., H.B.) and Vascular Centre Malmö-Lund (G.A.), Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| |
Collapse
|
731
|
Abstract
Nucleic acid sensing by innate receptors initiates immune defences against viruses and other pathogens. A hallmark of this response is the release of interferons (IFNs), which promote protective immunity by inducing IFN-stimulated genes (ISGs). A similar ISG signature is found in autoinflammatory and autoimmune conditions, indicating that chronic activation of nucleic acid-sensing pathways may contribute to these diseases. Here, we review how nucleic acid-sensing pathways are currently being targeted pharmacologically with both agonists and antagonists. We discuss how an improved understanding of the biology of these pathways is leading to novel therapies for infections, cancer, and autoimmune and autoinflammatory disorders, and how new therapeutics will, in turn, generate a deeper understanding of these complex diseases.
Collapse
|
732
|
Okazaki T, Higuchi M, Takeda K, Iwatsuki-Horimoto K, Kiso M, Miyagishi M, Yanai H, Kato A, Yoneyama M, Fujita T, Taniguchi T, Kawaoka Y, Ichijo H, Gotoh Y. The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Sci Signal 2015; 8:ra78. [PMID: 26243192 DOI: 10.1126/scisignal.aab1883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral infection activates host defense mechanisms, including the production of type I interferon (IFN) and the apoptosis of infected cells. We investigated whether these two antiviral responses were differentially regulated in infected cells. We showed that the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) apoptosis signal-regulating kinase 1 (ASK1) was activated in cells by the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid [poly(I:C)] and by RNA viruses, and that ASK1 played an essential role in both the induction of the gene encoding IFN-β (IFNB) and apoptotic cell death. In contrast, we found that the MAPKKK ASK2, a modulator of ASK1 signaling, was essential for ASK1-dependent apoptosis, but not for inducing IFNB expression. Furthermore, genetic deletion of either ASK1 or ASK2 in mice promoted the replication of influenza A virus in the lung. These results indicated that ASK1 and ASK2 are components of the antiviral defense mechanism and suggested that ASK2 acts as a key modulator that promotes apoptosis rather than the type I IFN response. Because ASK2 is selectively present in epithelium-rich tissues, such as the lung, ASK2-dependent apoptosis may contribute to an antiviral defense in tissues with a rapid repair rate in which cells could be readily replaced.
Collapse
Affiliation(s)
- Tomohiko Okazaki
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Maiko Higuchi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohsuke Takeda
- Division of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan. Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
733
|
Wang Q, Liu X, Zhou Q, Wang C. Cytosolic sensing of aberrant DNA: arming STING on the endoplasmic reticulum. Expert Opin Ther Targets 2015. [PMID: 26220155 DOI: 10.1517/14728222.2015.1067303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Detection of pathogen-derived nucleic acids is a general and effective strategy used by the host to perceive the presence of invading microorganisms and initiate an innate immune response. However, inappropriate detection of aberrant self nucleic acids is implicated in the development of autoimmune diseases. Recently, ER-resident stimulator of interferon genes (STING) has been uncovered as a key component in the innate immune response to cytosolic nucleic acids and a direct sensor for bacterial cyclic dinucleotides. The elucidation of STING-mediated signaling will provide insight into host-microbial interactions and contribute to the development of novel strategies for anti-infection therapies. AREAS COVERED This review summarizes the cellular and molecular processes of host sensing and responding to microbial or endogenous aberrant DNA species, highlighting the essential function of STING and the corresponding regulatory mechanisms. The authors also attempt to delineate the role for the DNA-sensing signaling during the onset and progression of autoimmune diseases and suggest improvements in the immunogenicity of DNA vaccines. EXPERT OPINION It is essential to elucidate how the STING-dependent signaling mediates the DNA vaccines action as well as the pathogenesis of autoimmune diseases. The relevant knowledge will greatly benefit the treatment of infectious diseases and identify potential targets for effective drug design.
Collapse
Affiliation(s)
- Qiang Wang
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| | - Xing Liu
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| | - Qin Zhou
- b 2 Chongqing Medical University, The College of Laboratory Medicine , 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Chen Wang
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| |
Collapse
|
734
|
Abstract
The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed.
Collapse
|
735
|
Loss of DNase II function in the gonad is associated with a higher expression of antimicrobial genes in Caenorhabditis elegans. Biochem J 2015; 470:145-54. [PMID: 26251453 DOI: 10.1042/bj20150563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/30/2015] [Indexed: 11/17/2022]
Abstract
Three waves of apoptosis shape the development of Caenorhabditis elegans. Although the exact roles of the three DNase II genes (nuc-1, crn-6 and crn-7), which are known to mediate degradation of apoptotic DNA, in the embryonic and larval phases of apoptosis have been characterized, the DNase II acting in the third wave of germ cell apoptosis remains undetermined. In the present study, we performed in vitro and in vivo assays on various mutant nematodes to demonstrate that NUC-1 and CRN-7, but not CRN-6, function in germ cell apoptosis. In addition, in situ DNA-break detection and anti-phosphorylated ERK (extracellular-signal-regulated kinase) staining illustrated the sequential and spatially regulated actions of NUC-1 and CRN-7, at the pachytene zone of the gonad and at the loop respectively. In line with the notion that UV-induced DNA fragment accumulation in the gonad activates innate immunity responses, we also found that loss of NUC-1 and CRN-7 lead to up-regulation of antimicrobial genes (abf-2, spp-1, nlp-29, cnc-2, and lys-7). Our observations suggest that an incomplete digestion of DNA fragments resulting from the absence of NUC-1 or CRN-7 in the gonad could induce the ERK signalling, consequently activating antimicrobial gene expression. Taken together, the results of the present study demonstrate for the first time that nuc-1 and crn-7 play a role in degrading apoptotic DNA in distinct sites of the gonad, and act as negative regulators of innate immunity in C. elegans.
Collapse
|
736
|
Affiliation(s)
- Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, China
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, China
| |
Collapse
|
737
|
Mitochondrial DNA: A disposable genome? Biochim Biophys Acta Mol Basis Dis 2015; 1852:1805-9. [PMID: 26071375 DOI: 10.1016/j.bbadis.2015.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023]
Abstract
In mammalian cells, mitochondria are the only organelles besides the nucleus that house genomic DNA. The mammalian mitochondrial genome is represented by prokaryotic-type, circular, highly compacted DNA molecules. Today, more than a half-century after their discovery, the biology of these small and redundant molecules remains much less understood than that of their nuclear counterparts. One peculiarity of the mitochondrial genome that emerged in recent years is its disposable nature, as evidenced by cells abandoning a fraction of their mitochondrial DNA (mtDNA) in response to various stimuli with little or no physiological consequence. Here, we review some recent developments in the field of mtDNA biology and discuss emerging questions on the disposability and indispensability of mtDNA.
Collapse
|
738
|
Abstract
Dissection of the genetic basis of Aicardi-Goutières syndrome has highlighted a fundamental link between nucleic acid metabolism, innate immune sensors and type I interferon induction. This had led to the concept of the human interferonopathies as a broader set of Mendelian disorders in which a constitutive upregulation of type I interferon activity directly relates to disease pathology. Here, we discuss the molecular and cellular basis of the interferonopathies, their categorization, future treatment strategies and the insights they provide into normal physiology.
Collapse
|
739
|
Abstract
In addition to their roles in cellular metabolism and apoptosis, mitochondria function as signaling platforms in the innate immune response. In Nature, West et al. (2015) demonstrate that mitochondrial stress triggers a type I interferon response and confers viral resistance via release of mtDNA and activation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
740
|
Abstract
Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with favourable disease outcome in several cohorts of patients with cancer. Finally, new anticancer immunotherapies are being developed that are based on recombinant type I IFNs, type I IFN-encoding vectors and type I IFN-expressing cells.
Collapse
|
741
|
Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner. Cell Death Differ 2015; 23:29-40. [PMID: 26001219 DOI: 10.1038/cdd.2015.60] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular necrosis has long been regarded as an incidental and uncontrolled form of cell death. However, a regulated form of cell death termed necroptosis has been identified recently. Necroptosis can be induced by extracellular cytokines, pathogens and several pharmacological compounds, which share the property of triggering the formation of a RIPK3-containing molecular complex supporting cell death. Of interest, most ligands known to induce necroptosis (including notably TNF and FASL) can also promote apoptosis, and the mechanisms regulating the decision of cells to commit to one form of cell death or the other are still poorly defined. We demonstrate herein that intracellular nicotinamide adenine dinucleotide (NAD(+)) has an important role in supporting cell progression to necroptosis. Using a panel of pharmacological and genetic approaches, we show that intracellular NAD(+) promotes necroptosis of the L929 cell line in response to TNF. Use of a pan-sirtuin inhibitor and shRNA-mediated protein knockdown led us to uncover a role for the NAD(+)-dependent family of sirtuins, and in particular for SIRT2 and SIRT5, in the regulation of the necroptotic cell death program. Thus, and in contrast to a generally held view, intracellular NAD(+) does not represent a universal pro-survival factor, but rather acts as a key metabolite regulating the choice of cell demise in response to both intrinsic and extrinsic factors.
Collapse
|
742
|
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42:406-17. [PMID: 25786173 DOI: 10.1016/j.immuni.2015.02.002] [Citation(s) in RCA: 676] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Laura A Sena
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA.
| |
Collapse
|
743
|
Lai XH, Xu Y, Chen XM, Ren Y. Macrophage cell death upon intracellular bacterial infection. ACTA ACUST UNITED AC 2015; 2:e779. [PMID: 26690967 DOI: 10.14800/macrophage.779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Dermato-venerology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA)
| |
Collapse
|
744
|
Divangahi M, King IL, Pernet E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol 2015; 36:307-14. [PMID: 25843635 DOI: 10.1016/j.it.2015.03.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/24/2022]
Abstract
Globally, respiratory infections cause more than 4 million deaths per year, with influenza and tuberculosis (TB) in particular being major causes of mortality and morbidity. Although immune cell activation is critical for killing respiratory pathogens, this response must be tightly regulated to effectively control and eliminate invading microorganisms while minimizing immunopathology and maintaining pulmonary function. The distinct microenvironment of the lung is constantly patrolled by alveolar macrophages (Mφ), which are essential for tissue homeostasis, early pathogen recognition, initiation of the local immune response, and resolution of inflammation. Here, we focus on recent advances that have provided insight into the relation between pulmonary Mφ, type I interferon (IFN) signaling, and the delicate balance between protective and pathological immune responses in the lung.
Collapse
Affiliation(s)
- Maziar Divangahi
- Department of Medicine, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada; Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada.
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
745
|
|
746
|
Teng X, Hardwick JM. Cell death in genome evolution. Semin Cell Dev Biol 2015; 39:3-11. [PMID: 25725369 PMCID: PMC4410082 DOI: 10.1016/j.semcdb.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.
Collapse
Affiliation(s)
- Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, PR China; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
747
|
Abstract
In addition to their role as energy generators, mitochondria play critical and active roles in diverse signalling pathways, from immunity to cell survival and cell fate decisions. However, there remain many open questions and challenges as we work towards integrating this mighty organelle into established paradigms of cellular physiology.
Collapse
Affiliation(s)
- Heidi M McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Rm 622C H3A 2B4, Montreal H3A 0G4, QC, Canada.
| |
Collapse
|
748
|
|
749
|
Targeting cell death pathways with small molecules: playing with life and death at the cellular level to treat diseases. Future Med Chem 2015; 7:2099-102. [PMID: 25590516 DOI: 10.4155/fmc.14.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
750
|
Aouacheria A. [From dualism to multiplicity: seeing BCL-2 family proteins and cell death with new eyes]. Biol Aujourdhui 2015; 209:331-55. [PMID: 27021052 DOI: 10.1051/jbio/2016003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 11/15/2022]
Abstract
The concept of cell death has many links to the concept of death itself, defined as the opposite of life. Achievements obtained through research on apoptosis have apparently allowed us to transcend this Manichean view. Death is no longer outside, but rather inside living systems, as a constitutive force at work within the living matter. Whereas the death of cells can be positive and breed "creation" (e.g. during morphogenesis), its dysregulation can also cause or contribute to fatal diseases including cancer. It is tempting to apply this biological discourse to illuminate the relations between life and death, taken in general terms, but does this generalization actually hold? Is this discourse not essentially a metaphor? If cell death is considered as a vital aspect of various biological processes, then are we not faced with some vitalistic conception of death? Are there one or more meanings to the word "death"? Does the power to self-destruct act in opposition to other key features of living entities, or rather in juxtaposition to them? In this article, we first describe how the field of cell death has been developed on the basis of perceived and built dichotomies, mirroring the original opposition between life and death. We detail the limitations of the current paradigm of apoptosis regulation by BCL-2 family proteins, which nicely illustrate the problem of binary thinking in biology. Last, we try to show a way out of this dualistic matrix, by drawing on the notions of multiplicity, complexity, diversity, evolution and contingency.
Collapse
Affiliation(s)
- Abdel Aouacheria
- LBMC - Laboratoire de Biologie Moléculaire de la Cellule, École Normale Supérieure de Lyon, UMR 5239, CNRS, Université Lyon 1, HCL, 46 Allée d'Italie, 69364 Lyon Cedex 07, France - ISEM - Institut des Sciences de l'Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|