701
|
Manoel EA, Robert JM, Pinto MCC, Machado ACO, Besteti MD, Coelho MAZ, Simas ABC, Fernandez-Lafuente R, Pinto JC, Freire DMG. Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Adv 2016. [DOI: 10.1039/c5ra22508f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper shows the production of lipase B fromCandida antarctica(LIPB) after cloning the gene that encoded it inPichia pastorisusing PGK as a constitutive promoter. The lipase was immobilized on different home-made supports for distinct reactions.
Collapse
Affiliation(s)
- Evelin A. Manoel
- Laboratório Integrado de Pesquisas em Biotecnologia
- Departamento de Biotecnologia Farmacêutica
- Faculdade de Farmácia
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Julia M. Robert
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Martina C. C. Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Antonio C. O. Machado
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Marina D. Besteti
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Maria Alice Z. Coelho
- Biological System Engineering Group Laboratory
- Departamento de Engenharia Bioquímica
- Escola de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Alessandro B. C. Simas
- Laboratório Roderick Barnes
- Instituto de Pesquisas e Produtos Naturais
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | - Jose Carlos Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Denise M. G. Freire
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| |
Collapse
|
702
|
Peirce S, Virgen-Ortíz JJ, Tacias-Pascacio VG, Rueda N, Bartolome-Cabrero R, Fernandez-Lopez L, Russo ME, Marzocchella A, Fernandez-Lafuente R. Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Adv 2016. [DOI: 10.1039/c6ra10906c] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The paper shows the coimmobilization of two enzymes using different immobilization strategies suitable for each enzyme and enabling the reuse of the most stable one.
Collapse
Affiliation(s)
- Sara Peirce
- Departamento de Biocatálisis
- Instituto de Catálisis-CSIC
- Madrid
- Spain
- Dipartimento di Ingegneria Chimica
| | | | - Veymar G. Tacias-Pascacio
- Departamento de Biocatálisis
- Instituto de Catálisis-CSIC
- Madrid
- Spain
- Unidad de Investigación y Desarrollo en Alimentos
| | - Nazzoly Rueda
- Departamento de Biocatálisis
- Instituto de Catálisis-CSIC
- Madrid
- Spain
- Escuela de Química
| | | | | | - Maria Elena Russo
- Istituto di Ricerche sulla Combustione – Consiglio Nazionale delle Ricerche
- Napoli
- Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica
- dei Materiali e della Produzione Industriale
- Universita' degli Studi di Napoli Federico II
- Italy
| | | |
Collapse
|
703
|
Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016. [DOI: 10.1039/c6ra22047a] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advantages, drawbacks and trends in nanomaterials for enzyme immobilization.
Collapse
Affiliation(s)
- Eliane P. Cipolatti
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
- Biochemistry Department
| | - Alexsandra Valério
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Rosana O. Henriques
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise E. Moritz
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Jorge L. Ninow
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise M. G. Freire
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | - Evelin A. Manoel
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | | | - Débora de Oliveira
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| |
Collapse
|
704
|
Herbst A, Janiak C. Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. NEW J CHEM 2016. [DOI: 10.1039/c6nj01399f] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOFs are also making progress in catalytic biomass transformation, here in the 5-HMF production with increased yield from glucose in low boiling solvents.
Collapse
Affiliation(s)
- Annika Herbst
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
705
|
Rueda N, Santos JCD, Ortiz C, Barbosa O, Fernandez-Lafuente R, Torres R. Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.05.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
706
|
Morgado G, Gerngross D, Roberts TM, Panke S. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:117-146. [PMID: 27757475 DOI: 10.1007/10_2016_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Collapse
Affiliation(s)
- Gaspar Morgado
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
707
|
Moreno-Pérez S, Fernández-Lorente G, Romero O, Guisán JM, López-Gallego F. Fabrication of heterogeneous biocatalyst tethering artificial prosthetic groups to obtain omega-3-fatty acids by selective hydrolysis of fish oils. RSC Adv 2016. [DOI: 10.1039/c6ra21121f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immobilized enzymes tethering artificial prosthetic groups improve both the hydrolysis rate and the selectivity towards the eicosapentaenoic acid acyl chains.
Collapse
Affiliation(s)
- S. Moreno-Pérez
- Enzymatic Engineering Group
- Instituto de Catálisis y Petroleoquímica
- CSIC
- Madrid
- Spain
| | - G. Fernández-Lorente
- Food Microbiology and Biocatalysis Group
- Institute of Food Science Research
- CSIC
- Madrid
- Spain
| | - O. Romero
- Enzymatic Engineering Group
- Instituto de Catálisis y Petroleoquímica
- CSIC
- Madrid
- Spain
| | - J. M. Guisán
- Enzymatic Engineering Group
- Instituto de Catálisis y Petroleoquímica
- CSIC
- Madrid
- Spain
| | - F. López-Gallego
- Heterogeneus Biocatalysis Group
- CIC BiomaGUNE
- San Sebastian-Donostia
- Spain
- Ikerbasque, Basque Foundation for Science
| |
Collapse
|
708
|
Correro MR, Takacs M, Sykora S, Corvini PFX, Shahgaldian P. Supramolecular enzyme engineering in complex nanometer-thin biomimetic organosilica layers. RSC Adv 2016. [DOI: 10.1039/c6ra17775a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzyme shielding at the surface of silica nanoparticles was performed using different mixtures of biomimetic building blocks. The performances of the nanobiocatalysts are strongly impacted by the chemical composition of the shielding layer.
Collapse
Affiliation(s)
- M. Rita Correro
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Michael Takacs
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Sabine Sykora
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Philippe F.-X. Corvini
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
- Nanjing University
| | - Patrick Shahgaldian
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| |
Collapse
|
709
|
Zhuang W, Zhang Y, Zhu J, An R, Li B, Mu L, Ying H, Wu J, Zhou J, Chen Y, Lu X. Influences of geometrical topography and surface chemistry on the stable immobilization of adenosine deaminase on mesoporous TiO 2. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
710
|
Liang K, Coghlan CJ, Bell SG, Doonan C, Falcaro P. Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem Commun (Camb) 2016; 52:473-6. [DOI: 10.1039/c5cc07577g] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have demonstrated that metal–organic frameworks can be employed as protective coatings for enzymes.
Collapse
Affiliation(s)
- Kang Liang
- CSIRO Manufacturing Flagship
- Clayton South
- Australia
| | | | - Stephen G. Bell
- School of Chemistry and Physics
- The University of Adelaide
- Adelaide
- Australia
| | - Christian Doonan
- School of Chemistry and Physics
- The University of Adelaide
- Adelaide
- Australia
| | | |
Collapse
|
711
|
Song J, Su P, Yang Y, Wang T, Yang Y. DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability. J Mater Chem B 2016; 4:5873-5882. [DOI: 10.1039/c6tb01857b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel enzyme immobilization procedure was developed. The immobilized enzyme composites exhibited significantly improved digestion performance, excellent reusability, stability and dynamic reversible reproducibility.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ting Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
712
|
Kumar V, Misra N, Goel NK, Thakar R, Gupta J, Varshney L. A horseradish peroxidase immobilized radiation grafted polymer matrix: a biocatalytic system for dye waste water treatment. RSC Adv 2016. [DOI: 10.1039/c5ra20513a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A single step-environment friendly-water based-radiation grafting process was used to fabricate an epoxy functionalized polymer support for one step-covalent immobilization of enzyme HRP in ambient conditions, and tested for dye waste water treatment.
Collapse
Affiliation(s)
- Virendra Kumar
- Radiation Technology Development Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Nilanjal Misra
- Radiation Technology Development Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Narender Kumar Goel
- Radiation Technology Development Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Rucha Thakar
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Jagannath Gupta
- Technical Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Lalit Varshney
- Radiation Technology Development Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
713
|
Xu Z, Wu Q, Yang M, Wang S, Wang Z, Xu X. Efficient asymmetric biosynthesis of (R)-(−)-epinephrine in hydrophilic ionic liquid-containing systems. RSC Adv 2016. [DOI: 10.1039/c6ra22140h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter sp. UN-16 cell biocatalytic process with [HOOCEMIM]NO3 is very promising for efficient preparation of (R)-(−)-epinephrine.
Collapse
Affiliation(s)
- Zhiqun Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Qiao Wu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Meixia Yang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Shuai Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Zhenshou Wang
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| | - Xiaoping Xu
- Key Laboratory of Biopharmaceutical
- College of Chemistry
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
714
|
Saravanamurugan S, Riisager A, Taarning E, Meier S. Mechanism and stereoselectivity of zeolite-catalysed sugar isomerisation in alcohols. Chem Commun (Camb) 2016; 52:12773-12776. [DOI: 10.1039/c6cc05592c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinstinction of carbohydrate isotopomers in solution allows mapping the reaction landscape of zeolite-catalysed glucose to fructose isomerisation at great detail.
Collapse
Affiliation(s)
- Shunmugavel Saravanamurugan
- Technical University of Denmark
- Department of Chemistry
- 2800-Kgs. Lyngby
- Denmark
- Center of Innovative and Applied Bioprocessing (CIAB)
| | - Anders Riisager
- Technical University of Denmark
- Department of Chemistry
- 2800-Kgs. Lyngby
- Denmark
| | - Esben Taarning
- Haldor Topsøe A/S
- Haldor Topsøes Allé 1
- 2800-Kgs. Lyngby
- Denmark
| | - Sebastian Meier
- Technical University of Denmark
- Department of Chemistry
- 2800-Kgs. Lyngby
- Denmark
| |
Collapse
|
715
|
Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C. Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. FRONTIERS IN PLANT SCIENCE 2015; 6:1137. [PMID: 26734040 PMCID: PMC4689848 DOI: 10.3389/fpls.2015.01137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 05/22/2023]
Abstract
Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional "high-binding" microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.
Collapse
Affiliation(s)
- Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Katrin Wabbel
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fabian J. Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Peter Krolla-Sidenstein
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Carlos Azucena
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Hartmut Gliemann
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fania Geiger
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent SystemsStuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| |
Collapse
|
716
|
Cipolatti EP, Moreno-Pérez S, Souza LTDA, Valério A, Guisán JM, Araújo PH, Sayer C, Ninow JL, Oliveira DD, Pessela BC. Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
717
|
Moridi N, Corvini PF, Shahgaldian P. Reversible Supramolecular Surface Attachment of Enzyme–Polymer Conjugates for the Design of Biocatalytic Filtration Membranes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Negar Moridi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
| | - Philippe F.‐X. Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
- School of the Environment, Nanjing University, 210093 Nanjing (China)
| | - Patrick Shahgaldian
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
| |
Collapse
|
718
|
Sührer I, Langemann T, Lubitz W, Weuster-Botz D, Castiglione K. A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb Cell Fact 2015; 14:180. [PMID: 26577293 PMCID: PMC4650107 DOI: 10.1186/s12934-015-0371-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole cell biocatalysts and isolated enzymes are considered as state of the art in biocatalytic preparations for industrial applications. Whole cells as biocatalysts are disadvantageous if substrate or products are toxic to the cells or undesired byproducts are formed due to the cellular metabolism. The use of isolated enzymes in comparison is more expensive due to the required downstream processing. Immobilization of enzymes after purification increases preparation costs for biocatalysts significantly, but allows for the efficient reuse of the enzymes in the biocatalytic process. For a more rapid processing one-step expression and immobilization is desirable. RESULTS This study focused on the development of a new one-step expression and immobilization technique for enzymes on the example of the β-galactosidase from Escherichia coli K12. The enzyme was expressed in E. coli with a C-terminal membrane anchor originating from cytochrome b5 from rabbit liver and was thus in situ immobilized to the inner surface of the cytosolic membrane. Then, the expression of a lytic phage protein (gene E from PhiX174) caused the formation of a pore in the cell wall of E. coli, which resulted in release of the cytosol. The cellular envelopes with immobilized enzymes were retained. Batch and fed-batch processes were developed for efficient production of these biocatalysts. It was possible to obtain cellular envelopes with up to 27,200 ± 10,460 immobilized enzyme molecules per cellular envelope (753 ± 190 U/gdry weight). A thorough characterization of the effects of membrane immobilization was performed. Comparison to whole cells showed that mass transfer limitation was reduced in cellular envelopes due to the pore formation. CONCLUSION In this study the feasibility of a new one-step expression and immobilization technique for the generation of biocatalytic preparations was demonstrated. The technique could be a useful tool especially for enzyme systems, which are not suitable for whole-cell biocatalysts due to severe mass transfer limitations or undesired side reactions mediated by cytosolic enzymes.
Collapse
Affiliation(s)
- Ilka Sührer
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Timo Langemann
- BIRD-C GmbH & Co KG, Erne-Seder-Gasse 4/2, 1030, Vienna, Austria.
| | - Werner Lubitz
- BIRD-C GmbH & Co KG, Erne-Seder-Gasse 4/2, 1030, Vienna, Austria.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
719
|
Mallardi A, Angarano V, Magliulo M, Torsi L, Palazzo G. General Approach to the Immobilization of Glycoenzyme Chains Inside Calcium Alginate Beads for Bioassay. Anal Chem 2015; 87:11337-44. [DOI: 10.1021/acs.analchem.5b02636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Antonia Mallardi
- CNR-IPCF, Istituto
per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Via Orabona
4, 70126 Bari, Italy
| | - Valeria Angarano
- Dipartimento di Chimica and CSGI, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Maria Magliulo
- Dipartimento di Chimica and CSGI, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and CSGI, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Gerardo Palazzo
- Dipartimento di Chimica and CSGI, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
720
|
Li W, Shen H, Ma M, Liu L, Cui C, Chen B, Fan D, Tan T. Synthesis of ethyl oleate by esterification in a solvent-free system using lipase immobilized on PDMS-modified nonwoven viscose fabrics. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
721
|
Pröschel M, Detsch R, Boccaccini AR, Sonnewald U. Engineering of Metabolic Pathways by Artificial Enzyme Channels. Front Bioeng Biotechnol 2015; 3:168. [PMID: 26557643 PMCID: PMC4617052 DOI: 10.3389/fbioe.2015.00168] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.
Collapse
Affiliation(s)
- Marlene Pröschel
- Department of Biology, Biochemistry Division, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Uwe Sonnewald
- Department of Biology, Biochemistry Division, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
722
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Druckbare Bioelektronik zur Untersuchung funktioneller biologischer Grenzflächen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
723
|
Moridi N, Corvini PF, Shahgaldian P. Reversible Supramolecular Surface Attachment of Enzyme–Polymer Conjugates for the Design of Biocatalytic Filtration Membranes. Angew Chem Int Ed Engl 2015; 54:14800-4. [DOI: 10.1002/anie.201507020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Negar Moridi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
| | - Philippe F.‐X. Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
- School of the Environment, Nanjing University, 210093 Nanjing (China)
| | - Patrick Shahgaldian
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH‐4132 (Switzerland)
| |
Collapse
|
724
|
Chemical improvement of chitosan-modified beads for the immobilization of Enterococcus faecium DBFIQ E36 l-arabinose isomerase through multipoint covalent attachment approach. ACTA ACUST UNITED AC 2015; 42:1325-40. [DOI: 10.1007/s10295-015-1662-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 01/25/2023]
Abstract
Abstract
d-tagatose is produced from d-galactose by the enzyme l-arabinose isomerase (L-AI) in a commercially viable bioprocess. An active and stable biocatalyst was obtained by modifying chitosan gel structure through reaction with TNBS, d-fructose or DMF, among others. This led to a significant improvement in L-AI immobilization via multipoint covalent attachment approach. Synthetized derivatives were compared with commercial supports such as Eupergit® C250L and glyoxal-agarose. The best chitosan derivative for L-AI immobilization was achieved by reacting 4 % (w/v) d-fructose with 3 % (w/v) chitosan at 50 °C for 4 h. When compared to the free enzyme, the glutaraldehyde-activated chitosan biocatalyst showed an apparent activity of 88.4 U ggel −1 with a 211-fold stabilization factor while the glyoxal-agarose biocatalyst gave an apparent activity of 161.8 U ggel −1 with an 85-fold stabilization factor. Hence, chitosan derivatives were comparable to commercial resins, thus becoming a viable low-cost strategy to obtain high active L-AI insolubilized derivatives.
Collapse
|
725
|
|
726
|
|
727
|
Derr L, Dringen R, Treccani L, Hildebrand N, Ciacchi LC, Rezwan K. Physisorption of enzymatically active chymotrypsin on titania colloidal particles. J Colloid Interface Sci 2015; 455:236-44. [DOI: 10.1016/j.jcis.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
728
|
Manoli K, Magliulo M, Mulla MY, Singh M, Sabbatini L, Palazzo G, Torsi L. Printable Bioelectronics To Investigate Functional Biological Interfaces. Angew Chem Int Ed Engl 2015; 54:12562-76. [DOI: 10.1002/anie.201502615] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Indexed: 01/14/2023]
|
729
|
Zanoni M, Habimana O, Amadio J, Casey E. Antifouling activity of enzyme-functionalized silica nanobeads. Biotechnol Bioeng 2015; 113:501-12. [PMID: 26370186 PMCID: PMC5019150 DOI: 10.1002/bit.25835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments.
Collapse
Affiliation(s)
- Michele Zanoni
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Olivier Habimana
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Jessica Amadio
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| |
Collapse
|
730
|
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Sci Rep 2015; 5:14203. [PMID: 26374188 PMCID: PMC4570996 DOI: 10.1038/srep14203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance.
Collapse
|
731
|
In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters. Appl Biochem Biotechnol 2015; 177:1553-64. [PMID: 26378013 DOI: 10.1007/s12010-015-1836-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Photobacterium lipolyticum M37 lipase (LipM37) was immobilized on the surface of intracellular polyhydroxybutyrate (PHB) granules in Escherichia coli. LipM37 was genetically fused to Cupriavidus necator PHA synthase (PhaC Cn ), and the engineered PHB operon containing the lip M37 -phaC Cn successfully mediated the accumulation of PHB granules (85 wt.%) inside E. coli cells. The PHB granules were isolated from the crude cell extract, and the immobilized LipM37 was comparable with the free form of LipM37 except for a favorable increase in thermostability. The immobilized LipM37 was used to synthesize oleic acid methyl ester (biodiesel) and oleic acid dodecyl ester (wax ester), and yielded 98.0 % conversion in esterification of oleic acid and dodecanol. It was suggested that the LipM37-PhaCCn fusion protein successfully exhibited bifunctional activities in E. coli and that in situ immobilization of lipase to the intracellular PHB could be a promising approach for expanding the biocatalytic toolbox for industrial chemical synthesis.
Collapse
|
732
|
Ali G, Moreau T, Forano C, Mousty C, Prevot V, Charmantray F, Hecquet L. Chiral Polyol Synthesis Catalyzed by a Thermostable Transketolase Immobilized on Layered Double Hydroxides in Ionic liquids. ChemCatChem 2015. [DOI: 10.1002/cctc.201500524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ghina Ali
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Thomas Moreau
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Claude Forano
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Christine Mousty
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Vanessa Prevot
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Franck Charmantray
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Laurence Hecquet
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| |
Collapse
|
733
|
Jang E, Shim HW, Ryu BH, An DR, Yoo WK, Kim KK, Kim DW, Kim TD. Preparation of cobalt nanoparticles from polymorphic bacterial templates: A novel platform for biocatalysis. Int J Biol Macromol 2015; 81:747-53. [PMID: 26358553 DOI: 10.1016/j.ijbiomac.2015.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Nanoparticles have gathered significant research attention as materials for enzyme immobilization due to their advantageous properties such as low diffusion rates, ease of manipulation, and large surface areas. Here, polymorphic cobalt nanoparticles of varied sizes and shapes were prepared using Micrococcus lylae, Bacillus subtilis, Escherichia coli, Paracoccus sp., and Haloarcula vallismortis as bacterial templates. Furthermore, nine lipases/carboxylesterases were successfully immobilized on these cobalt nanoparticles. Especially, immobilized forms of Est-Y29, LmH, and Sm23 were characterized in more detail for potential industrial applications. Immobilization of enzymes onto cobalt oxide nanoparticles prepared from polymorphic bacterial templates may have potential for efficient hydrolysis on an industrial-scale, with several advantages such as high retention of enzymatic activity, increased stability, and strong reusability.
Collapse
Affiliation(s)
- Eunjin Jang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hyun-Woo Shim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, SungKyunKwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Deu Rae An
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, SungKyunKwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Wan Ki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, SungKyunKwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, SungKyunKwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
734
|
van Vliet LD, Colin PY, Hollfelder F. Bioinspired genotype-phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins. Interface Focus 2015; 5:20150035. [PMID: 26464791 PMCID: PMC4590426 DOI: 10.1098/rsfs.2015.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments-water-in-oil droplets and gel-shell beads-for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological components.
Collapse
Affiliation(s)
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
735
|
Lu Q, He Y, Liu X. Property Assessment of Steamed Bread Added with Cellulase by Using Fuzzy Mathematical Model. J Texture Stud 2015. [DOI: 10.1111/jtxs.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Lu
- College of Food; Agricultural and Natural Resource Sciences; University of Minnesota; Eckles Ave. 55108 Saint Paul MN
| | - Yaqiang He
- College of Food Science; Henan University of Technology; High-tech Industrial Development Zone; Zhengzhou China
| | - Xiufang Liu
- College of Food Science; Henan University of Technology; High-tech Industrial Development Zone; Zhengzhou China
| |
Collapse
|
736
|
Lv B, Yang Z, Pan F, Zhou Z, Jing G. Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO 2 capture. Int J Biol Macromol 2015; 79:719-25. [DOI: 10.1016/j.ijbiomac.2015.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022]
|
737
|
Abstract
A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.
Collapse
|
738
|
|
739
|
Jain D, Mishra S. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
740
|
|
741
|
Buhl M, Vonhören B, Ravoo BJ. Immobilization of enzymes via microcontact printing and thiol-ene click chemistry. Bioconjug Chem 2015; 26:1017-20. [PMID: 26030726 DOI: 10.1021/acs.bioconjchem.5b00282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Communication describes a bioconjugation method for the generation of enzyme microarrays on surfaces using photochemical thiol-ene chemistry in combination with microcontact printing. Glucose oxidase and lactase were readily immobilized (i.e., printing time 2 min) on alkene terminated self-assembled monolayers on glass as demonstrated by X-ray photoelectron spectroscopy and fluorescence microscopy. Furthermore, the activity of both immobilized enzymes was confirmed in single enzyme as well as cascade transformations.
Collapse
Affiliation(s)
- Moritz Buhl
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Benjamin Vonhören
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
742
|
Lim SI, Kwon I. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids. Crit Rev Biotechnol 2015; 36:803-15. [DOI: 10.3109/07388551.2015.1048504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
743
|
dos Santos JC, Rueda N, Torres R, Barbosa O, Gonçalves LR, Fernandez-Lafuente R. Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
744
|
Sankarraj N, Nallathambi G. Immobilization and characterization of cellulase on concanavalin A (Con A)-layered calcium alginate beads. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1040004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
745
|
Bartsch M, Gassmeyer SK, Köninger K, Igarashi K, Liauw P, Dyczmons-Nowaczyk N, Miyamoto K, Nowaczyk MM, Kourist R. Photosynthetic production of enantioselective biocatalysts. Microb Cell Fact 2015; 14:53. [PMID: 25889799 PMCID: PMC4412116 DOI: 10.1186/s12934-015-0233-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/25/2015] [Indexed: 12/30/2022] Open
Abstract
Background Global resource depletion poses a dramatic threat to our society and creates a strong demand for alternative resources that do not compete with the production of food. Meeting this challenge requires a thorough rethinking of all steps of the value chain regarding their sustainability resource demand and the possibility to substitute current, petrol-based supply-chains with renewable resources. This regards also the production of catalysts for chemical synthesis. Phototrophic microorganisms have attracted considerable attention as a biomanufacturing platform for the sustainable production of chemicals and biofuels. They allow the direct utilization of carbon dioxide and do not compete with food production. Photosynthetic enzyme production of catalysts would be a sustainable supply of these important components of the biotechnological and chemical industries. This paper focuses on the usefulness of recombinant cyanobacteria for the photosynthetic expression of enantioselective catalysts. As a proof of concept, we used the cyanobacterium Synechocystis sp. PCC 6803 for the heterologous expression of two highly enantioselective enzymes. Results We investigated the expression yield and the usefulness of cyanobacterial cell extracts for conducting stereoselective reactions. The cyanobacterial enzyme expression achieved protein yields of 3% of total soluble protein (%TSP) while the expression in E. coli yielded 6-8% TSP. Cell-free extracts from a recombinant strain expressing the recombinant esterase ST0071 from the thermophilic organism Sulfolobus tokodai ST0071 and arylmalonate decarboxylase from Bordetella bronchiseptica showed excellent enantioselectivity (>99% ee) and yield (>91%) in the desymmetrisation of prochiral malonates. Conclusions We were able to present the proof-of-concept of photoautotrophic enzyme expression as a viable alternative to heterotrophic expression hosts. Our results show that the introduction of foreign genes is straightforward. Cell components from Synechocystis did not interfere with the stereoselective transformations, underlining the usability of photoautotrophic organisms for the production of enzymes. Given the considerable commercial value of recombinant biocatalysts, cyanobacterial enzyme expression has thus the potential to complement existing approaches to use phototrophic organisms for the production of chemicals and biofuels.
Collapse
Affiliation(s)
- Maik Bartsch
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Sarah K Gassmeyer
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Katharina Köninger
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Kosuke Igarashi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| | - Pasqual Liauw
- Chair for Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Nina Dyczmons-Nowaczyk
- Chair for Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Kenji Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| | - Marc M Nowaczyk
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
746
|
Kovalenko GA, Perminova LV, Beklemishev AB, Yakovleva EY, Pykhtina MB. Heterogeneous biocatalytic processes of vegetable oil interesterification to biodiesel. CATALYSIS IN INDUSTRY 2015. [DOI: 10.1134/s2070050415010109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
747
|
Schrapers P, Hartmann T, Kositzki R, Dau H, Reschke S, Schulzke C, Leimkühler S, Haumann M. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus. Inorg Chem 2015; 54:3260-71. [PMID: 25803130 DOI: 10.1021/ic502880y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formate dehydrogenase (FDH) enzymes are attractive catalysts for potential carbon dioxide conversion applications. The FDH from Rhodobacter capsulatus (RcFDH) binds a bis-molybdopterin-guanine-dinucleotide (bis-MGD) cofactor, facilitating reversible formate (HCOO(-)) to CO2 oxidation. We characterized the molecular structure of the active site of wildtype RcFDH and protein variants using X-ray absorption spectroscopy (XAS) at the Mo K-edge. This approach has revealed concomitant binding of a sulfido ligand (Mo=S) and a conserved cysteine residue (S(Cys386)) to Mo(VI) in the active oxidized molybdenum cofactor (Moco), retention of such a coordination motif at Mo(V) in a chemically reduced enzyme, and replacement of only the S(Cys386) ligand by an oxygen of formate upon Mo(IV) formation. The lack of a Mo=S bond in RcFDH expressed in the absence of FdsC implies specific metal sulfuration by this bis-MGD binding chaperone. This process still functioned in the Cys386Ser variant, showing no Mo-S(Cys386) ligand, but retaining a Mo=S bond. The C386S variant and the protein expressed without FdsC were inactive in formate oxidation, supporting that both Mo-ligands are essential for catalysis. Low-pH inhibition of RcFDH was attributed to protonation at the conserved His387, supported by the enhanced activity of the His387Met variant at low pH, whereas inactive cofactor species showed sulfido-to-oxo group exchange at the Mo ion. Our results support that the sulfido and S(Cys386) ligands at Mo and a hydrogen-bonded network including His387 are crucial for positioning, deprotonation, and oxidation of formate during the reaction cycle of RcFDH.
Collapse
Affiliation(s)
- Peer Schrapers
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tobias Hartmann
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Ramona Kositzki
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Holger Dau
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Reschke
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Carola Schulzke
- §Institut für Biochemie, Bioanorganische Chemie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany
| | - Silke Leimkühler
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Michael Haumann
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
748
|
Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. NANOSCALE 2015; 7:5852-5858. [PMID: 25757536 DOI: 10.1039/c5nr00438a] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solvent tolerance of graphene oxide immobilized enzyme, will have a profound impact on practical industrial scale uses of enzymes for the conversion of lipids into fuels.
Collapse
Affiliation(s)
- Soňa Hermanová
- Department of Polymers, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|
749
|
Li H, Moncecchi J, Truppo MD. Development of an Immobilized Ketoreductase for Enzymatic (R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethanol Production. Org Process Res Dev 2015. [DOI: 10.1021/op5003215] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongmei Li
- Department of Process Chemistry, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Johannah Moncecchi
- Department of Process Chemistry, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Matthew D. Truppo
- Department of Process Chemistry, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
750
|
Aires-Trapote A, Hoyos P, Alcántara AR, Tamayo A, Rubio J, Rumbero A, Hernáiz MJ. Covalent Immobilization of Pseudomonas stutzeri Lipase on a Porous Polymer: An Efficient Biocatalyst for a Scalable Production of Enantiopure Benzoin Esters under Sustainable Conditions. Org Process Res Dev 2015. [DOI: 10.1021/op500326k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Antonio Aires-Trapote
- Department
of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, 28040 Madrid, Spain
- Department
of Organic Chemistry, Faculty of Science, Autonoma University of Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pilar Hoyos
- Department
of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, 28040 Madrid, Spain
| | - Andrés R. Alcántara
- Department
of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, 28040 Madrid, Spain
| | - Aitana Tamayo
- Department
of Chemistry Physics of Surfaces and Processes, Instituto de Cerámica y Vidrio (CSIC), Kelsen, no. 5, 28049 Madrid, Spain
| | - Juan Rubio
- Department
of Chemistry Physics of Surfaces and Processes, Instituto de Cerámica y Vidrio (CSIC), Kelsen, no. 5, 28049 Madrid, Spain
| | - Angel Rumbero
- Department
of Organic Chemistry, Faculty of Science, Autonoma University of Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María J. Hernáiz
- Department
of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, 28040 Madrid, Spain
| |
Collapse
|