701
|
Wang S, Hong W, Dong S, Zhang ZT, Zhang J, Wang L, Wang Y. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system. Clin Microbiol Infect 2018; 24:1095-1099. [PMID: 29604353 DOI: 10.1016/j.cmi.2018.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Clostridium difficile is a notorious pathogenic species that can cause severe gastrointestinal infections in humans and animals. C. difficile infection (CDI) results in thousands of deaths worldwide every year. The elucidation of related mechanisms of CDI and exploration of potential therapeutic strategies are largely delayed due to the lack of efficient genetic engineering tools for C. difficile strains. METHODS Plasmids carrying the CRISPR-Cas9 system were constructed and transformed into C. difficile through conjugation. Mutants were identified using colony PCR with primers annealing to the regions flanking the target gene deletion/integration locus. Heat-survival assay was used to compare the sporulation frequency between the mutant with spo0A deletion and the wild type strain. The fluorescence in the mutant with the insertion of the green fluorescent protein (GFP) gene was inspected under a fluorescent microscope. RESULTS An efficient genome editing tool was developed for C. difficile based on the CRISPR-Cas9 system. With this tool, spo0A was deleted with a 100% mutation efficiency. Conversely, an anaerobic GFP gene was successfully inserted into the C. difficile chromosome (with a mutation efficiency of 80%). CONCLUSIONS The developed CRISPR-Cas9-based genome engineering tool will facilitate functional genomic studies in C. difficile as well as the elucidation of mechanisms related to host-bacteria interaction and pathogenesis of CDI. This will be highly beneficial for the development of innovative strategies for CDI diagnostics and therapies.
Collapse
Affiliation(s)
- S Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - W Hong
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA; Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, People's Republic of China
| | - S Dong
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - Z-T Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - J Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - L Wang
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Y Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
702
|
Tashiro Y, Hirano S, Matson MM, Atsumi S, Kondo A. Electrical-biological hybrid system for CO 2 reduction. Metab Eng 2018; 47:211-218. [PMID: 29580924 DOI: 10.1016/j.ymben.2018.03.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Here we have developed an electrochemical-biological hybrid system to fix CO2. Natural biological CO2 fixation processes are relatively slow. To increase the speed of fixation we applied electrocatalysts to reduce CO2 to formate. We chose a user-friendly organism, Escherichia coli, as host. Overall, the newly constructed CO2 and formate fixation pathway converts two formate and one CO2 to one pyruvate via glycine and L-serine in E. coli. First, one formate and one CO2 are converted to one glycine. Second, L-serine is produced from one glycine and one formate. Lastly, L-serine is converted to pyruvate. E. coli's genetic tractability allowed us to balance various parameters of the pathway. The carbon flux of the pathway was sufficient to compensate L-serine auxotrophy in the strain. In total, we integrated both electrocatalysis and biological systems into a single pot to support E. coli growth with CO2 and electricity. Results show promise for using this hybrid system for chemical production from CO2 and electricity.
Collapse
Affiliation(s)
- Yohei Tashiro
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurimi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Shinichi Hirano
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Morgan M Matson
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA.
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurimi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
703
|
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915-3937. [DOI: 10.1007/s00253-018-8896-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
|
704
|
Sun J, Wang Q, Jiang Y, Wen Z, Yang L, Wu J, Yang S. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb Cell Fact 2018. [PMID: 29534717 PMCID: PMC5851096 DOI: 10.1186/s12934-018-0887-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The soil bacterium Pseudomonas putida KT2440 is a “generally recognized as safe”-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing tool. Results In this study, we established a fast and convenient CRISPR–Cas9 method in P. putida KT2440. Gene deletion, gene insertion and gene replacement could be achieved within 5 days, and the mutation efficiency reached > 70%. Single nucleotide replacement could be realized, overcoming the limitations of protospacer adjacent motif sequences. We also applied nuclease-deficient Cas9 binding at three locations upstream of enhanced green fluorescent protein (eGFP) for transcriptional inhibition, and the expression intensity of eGFP reduced to 28.5, 29.4, and 72.1% of the control level, respectively. Furthermore, based on this CRISPR–Cas9 system, we also constructed a CRISPR–Cpf1 system, which we validated for genome editing in P. putida KT2440. Conclusions In this research, we established CRISPR based genome editing and regulation control systems in P. putida KT2440. These fast and efficient approaches will greatly facilitate the application of P. putida KT2440.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0887-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingzhuo Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, 201206, China
| | - Zhiqiang Wen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, 201206, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing, 210009, China.
| |
Collapse
|
705
|
Zhang J, Zong W, Hong W, Zhang ZT, Wang Y. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 2018. [PMID: 29530750 DOI: 10.1016/j.ymben.2018.03.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel and biochemical production using the CRISPR-Cas based genome engineering toolkit.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Wenming Zong
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hong
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang 550000, China
| | - Zhong-Tian Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
706
|
Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S. Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol Syst Biol 2018; 14:e7899. [PMID: 29519933 PMCID: PMC5842579 DOI: 10.15252/msb.20177899] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, tools that make use of the Cas9 nuclease have led to many breakthroughs, including in the control of gene expression. The catalytically dead variant of Cas9 known as dCas9 can be guided by small RNAs to block transcription of target genes, in a strategy also known as CRISPRi. Here, we reveal that the level of complementarity between the guide RNA and the target controls the rate at which RNA polymerase "kicks out" dCas9 from the target and completes transcription. We use this mechanism to precisely and robustly reduce gene expression by defined relative amounts. Alternatively, tuning repression by changing dCas9 concentration is noisy and promoter-strength dependent. We demonstrate broad applicability of this method to the study of genetic regulation and cellular physiology. First, we characterize feedback strength of a model auto-repressor. Second, we study the impact of amount variations of cell-wall synthesizing enzymes on cell morphology. Finally, we multiplex the system to obtain any combination of fractional repression of two genes.
Collapse
Affiliation(s)
- Antoine Vigouroux
- Synthetic Biology Laboratory, Institut Pasteur, Paris, France
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Enno Oldewurtel
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Lun Cui
- Synthetic Biology Laboratory, Institut Pasteur, Paris, France
| | - David Bikard
- Synthetic Biology Laboratory, Institut Pasteur, Paris, France
| | - Sven van Teeffelen
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| |
Collapse
|
707
|
Gyulev IS, Willson BJ, Hennessy RC, Krabben P, Jenkinson ER, Thomas GH. Part by Part: Synthetic Biology Parts Used in Solventogenic Clostridia. ACS Synth Biol 2018; 7:311-327. [PMID: 29186949 DOI: 10.1021/acssynbio.7b00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solventogenic Clostridia are of interest to the chemical industry because of their natural ability to produce chemicals such as butanol, acetone and ethanol from diverse feedstocks. Their use as whole cell factories presents multiple metabolic engineering targets that could lead to improved sustainability and profitability of Clostridium industrial processes. However, engineering efforts have been held back by the scarcity of genetic and synthetic biology tools. Over the past decade, genetic tools to enable transformation and chromosomal modifications have been developed, but the lack of a broad palette of synthetic biology parts remains one of the last obstacles to the rapid engineered improvement of these species for bioproduction. We have systematically reviewed existing parts that have been used in the modification of solventogenic Clostridia, revealing a narrow range of empirically chosen and nonengineered parts that are in current use. The analysis uncovers elements, such as promoters, transcriptional terminators and ribosome binding sites where increased fundamental knowledge is needed for their reliable use in different applications. Together, the review provides the most comprehensive list of parts used and also presents areas where an improved toolbox is needed for full exploitation of these industrially important bacteria.
Collapse
Affiliation(s)
- Ivan S. Gyulev
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Benjamin J. Willson
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Rosanna C. Hennessy
- Department
of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Preben Krabben
- Green Biologics Limited, Milton Park, Abingdon, Oxfordshire OX14 4RU, United Kingdom
| | | | - Gavin H. Thomas
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
708
|
Alonso‐Gutierrez J, Koma D, Hu Q, Yang Y, Chan LJG, Petzold CJ, Adams PD, Vickers CE, Nielsen LK, Keasling JD, Lee TS. Toward industrial production of isoprenoids in
Escherichia coli
: Lessons learned from CRISPR‐Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol Bioeng 2018; 115:1000-1013. [DOI: 10.1002/bit.26530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Jorge Alonso‐Gutierrez
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Daisuke Koma
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- Osaka Municipal Technical Research InstituteOsakaJapan
| | - Qijun Hu
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Yuchen Yang
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Leanne J. G. Chan
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Christopher J. Petzold
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Paul D. Adams
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Jay D. Keasling
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkHorsholmDenmark
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Taek S. Lee
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| |
Collapse
|
709
|
Donohoue PD, Barrangou R, May AP. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends Biotechnol 2018; 36:134-146. [PMID: 28778606 DOI: 10.1016/j.tibtech.2017.07.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022]
Abstract
The term 'clustered regularly interspaced short palindromic repeats' (CRISPR) has recently become synonymous with the genome-editing revolution. The RNA-guided endonuclease CRISPR-associated protein 9 (Cas9), in particular, has attracted attention for its promise in basic research and gene editing-based therapeutics. CRISPR-Cas systems are efficient and easily programmable nucleic acid-targeting tools, with uses reaching beyond research and therapeutic development into the precision breeding of plants and animals and the engineering of industrial microbes. CRISPR-Cas systems have potential for many microbial engineering applications, including bacterial strain typing, immunization of cultures, autoimmunity or self-targeted cell killing, and the engineering or control of metabolic pathways for improved biochemical synthesis. In this review, we explore the fundamental characteristics of CRISPR-Cas systems and highlight how these features can be used in industrial settings.
Collapse
Affiliation(s)
- Paul D Donohoue
- Caribou Biosciences, Inc., 2929 7th St., Suite 105, Berkeley, CA 94710, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew P May
- Caribou Biosciences, Inc., 2929 7th St., Suite 105, Berkeley, CA 94710, USA; Current address: Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA.
| |
Collapse
|
710
|
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
711
|
Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat Microbiol 2018; 3:310-318. [PMID: 29379209 DOI: 10.1038/s41564-017-0097-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023]
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
712
|
Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J Ind Microbiol Biotechnol 2018; 45:123-139. [PMID: 29344811 DOI: 10.1007/s10295-018-2003-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor L-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.
Collapse
|
713
|
Kashiwagi FM, Ojima Y, Taya M. Metabolic Engineering of Escherichia coli KO11 with the NADH Regeneration System for Enhancing Ethanol Production. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yoshihiro Ojima
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Masahito Taya
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
714
|
An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization. Methods Mol Biol 2018; 1671:39-61. [PMID: 29170952 DOI: 10.1007/978-1-4939-7295-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
Collapse
|
715
|
Zhang ZT, Jiménez-Bonilla P, Seo SO, Lu T, Jin YS, Blaschek HP, Wang Y. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example. Methods Mol Biol 2018; 1772:297-325. [PMID: 29754236 DOI: 10.1007/978-1-4939-7795-6_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as "clean" mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.
Collapse
Affiliation(s)
- Zhong-Tian Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
- School of Chemistry, National University (UNA), Costa, Rica AL, USA
| | - Seung-Oh Seo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Ting Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Hans P Blaschek
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- The Integrated Bioprocessing Research Laboratory (IBRL), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
716
|
Wu MY, Sung LY, Li H, Huang CH, Hu YC. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. ACS Synth Biol 2017; 6:2350-2361. [PMID: 28854333 DOI: 10.1021/acssynbio.7b00251] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hung Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
717
|
Moreb EA, Hoover B, Yaseen A, Valyasevi N, Roecker Z, Menacho-Melgar R, Lynch MD. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity. ACS Synth Biol 2017; 6:2209-2218. [PMID: 28915012 DOI: 10.1021/acssynbio.7b00174] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.
Collapse
Affiliation(s)
- Eirik Adim Moreb
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Benjamin Hoover
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Adam Yaseen
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nisakorn Valyasevi
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Zoe Roecker
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Romel Menacho-Melgar
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael D. Lynch
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
718
|
An enhanced vector-free allele exchange (VFAE) mutagenesis protocol for genome editing in a wide range of bacterial species. AMB Express 2017. [PMID: 28629206 PMCID: PMC5474227 DOI: 10.1186/s13568-017-0425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vector-free allele exchange (VFAE) is a newly developed protocol for genome editing in Pseudomonas species. Although several parameters have been determined to optimize the procedures for obtaining a stable and high-frequency mutation, numerous false-positive clones still appear on the plate, which increases the difficulty of finding the desired mutants. It has also not been established whether this protocol can be used for genome editing in other bacterial species. In the current study, the protocol was modified to dramatically decrease the occurrence of false-positive colonies using Pseudomonas stutzeri A1501 as a model strain. This improvement was reached by increasing the occurrence of circular-DNA cassettes of the correct size. Furthermore, the enhanced protocol was used to construct mutants in both the gram-negative Escherichia coli BL21 and gram-positive Bacillus subtilis 168 strains. The protocol works well in both strains, yielding ideal results with a low percentage of false-positive colonies. In summary, the enhanced VFAE mutagenesis protocol is a potential tool for use in bacterial genome editing.
Collapse
|
719
|
Zhao D, Feng X, Zhu X, Wu T, Zhang X, Bi C. CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Sci Rep 2017; 7:16624. [PMID: 29192199 PMCID: PMC5709385 DOI: 10.1038/s41598-017-16998-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023] Open
Abstract
The CRISPR/Cas9 system is a powerful, revolutionary tool for genome editing. However, it is not without limitations. There are PAM-free and CRISPR-tolerant regions that cannot be modified by the standard CRISPR/Cas9 system, and off-target activity impedes its broader applications. To avoid these drawbacks, we developed a very simple CRISPR/Cas9-assisted gRNA-free one-step (CAGO) genome editing technique which does not require the construction of a plasmid to express a specific gRNA. Instead, a universal N20 sequence with a very high targeting efficiency is inserted into the E. coli chromosome by homologous recombination, which in turn undergoes a double-stranded break by CRISPR/Cas9 and induces an intra-chromosomal recombination event to accomplish the editing process. This technique was shown to be able to edit PAM-free and CRISPR-tolerant regions with no off-target effects in Escherichia coli. When applied to multi-locus editing, CAGO was able to modify one locus in two days with a near 100% editing efficiency. Furthermore, modified CAGO was used to edit large regions of up to 100 kbp with at least 75% efficiency. Finally, genome editing by CAGO only requires a transformation procedure and the construction of a linear donor DNA cassette, which was further simplified by applying a modular design strategy. Although the technique was established in E. coli, it should be applicable to other organisms with only minor modifications.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xu Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of life sciences, China West Normal University, Nanchong, 637002, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
720
|
Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact 2017; 16:205. [PMID: 29145843 PMCID: PMC5693361 DOI: 10.1186/s12934-017-0815-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Background Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Results Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. Conclusions In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels. Electronic supplementary material The online version of this article (10.1186/s12934-017-0815-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yujiao Lu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| |
Collapse
|
721
|
Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact 2017; 16:201. [PMID: 29137643 PMCID: PMC5686833 DOI: 10.1186/s12934-017-0814-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. RESULTS In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. CONCLUSIONS In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Collapse
Affiliation(s)
- Feng Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xinyue Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Guibin Dong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
722
|
Abstract
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Collapse
|
723
|
A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab Eng 2017; 44:284-292. [PMID: 29102594 DOI: 10.1016/j.ymben.2017.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
Biotechnological production of butanol in heterologous hosts has recently attracted many interests. Of the heterologous hosts investigated to date, engineered Escherichia coli has shown a superior butanol yield than the natural butanol-producing clostridial strains. However, all reported butanol-producing E. coli strains contain vectors and inducible promoters, which means antibiotics and inducers are required in the fermentation. The aim of this study was to develop a completely chromosomally engineered E. coli strain capable of producing butanol efficiently in the absence of vectors, antibiotics, and inducers. The challenges are the expression strength of chromosomally engineered genes under constitutive promoters is much weaker than the vector engineered genes under inducible promoters. To address these challenges, the butanol pathway was engineered into the chromosome in the first place, then the host and the butanol pathway was iteratively engineered through rational and non-rational strategies to develop an efficient butanol producer where the heterologous butanol pathway fits the host well. Finally, a systematically chromosomally engineered E. coli strain EB243, in which 33 native genes were deleted and 5 heterologous genes were introduced, was developed. Strain EB243 could produce 20g/L butanol with a yield of 34% (w/w, 83% of theoretical yield) in batch fermentation without any antibiotics and inducers, thus showed great potential for industrial application. This work also demonstrated a procedure on how to integrate the existing knowledge to engineer a strain with industrial application potential.
Collapse
|
724
|
CRISPR-Cas9 D10A Nickase-Assisted Genome Editing in Lactobacillus casei. Appl Environ Microbiol 2017; 83:AEM.01259-17. [PMID: 28864652 DOI: 10.1128/aem.01259-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus casei has drawn increasing attention as a health-promoting probiotic, while effective genetic manipulation tools are often not available, e.g., the single-gene knockout in L. casei still depends on the classic homologous recombination-dependent double-crossover strategy, which is quite labor-intensive and time-consuming. In the present study, a rapid and precise genome editing plasmid, pLCNICK, was established for L. casei genome engineering based on CRISPR-Cas9D10A In addition to the P23-Cas9D10A and Pldh-sgRNA (single guide RNA) expression cassettes, pLCNICK includes the homologous arms of the target gene as repair templates. The ability and efficiency of chromosomal engineering using pLCNICK were evaluated by in-frame deletions of four independent genes and chromosomal insertion of an enhanced green fluorescent protein (eGFP) expression cassette at the LC2W_1628 locus. The efficiencies associated with in-frame deletions and chromosomal insertion is 25 to 62%. pLCNICK has been proved to be an effective, rapid, and precise tool for genome editing in L. casei, and its potential application in other lactic acid bacteria (LAB) is also discussed in this study.IMPORTANCE The lack of efficient genetic tools has limited the investigation and biotechnological application of many LAB. The CRISPR-Cas9D10A nickase-based genome editing in Lactobacillus casei, an important food industrial microorganism, was demonstrated in this study. This genetic tool allows efficient single-gene deletion and insertion to be accomplished by one-step transformation, and the cycle time is reduced to 9 days. It facilitates a rapid and precise chromosomal manipulation in L. casei and overcomes some limitations of previous methods. This editing system can serve as a basic technological platform and offers the possibility to start a comprehensive investigation on L. casei As a broad-host-range plasmid, pLCNICK has the potential to be adapted to other Lactobacillus species for genome editing.
Collapse
|
725
|
Wu Y, Hao Y, Wei X, Shen Q, Ding X, Wang L, Zhao H, Lu Y. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:248. [PMID: 29093752 PMCID: PMC5663082 DOI: 10.1186/s13068-017-0938-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/19/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Enterobacter aerogenes is a facultative anaerobe and is one of the most widely studied bacterial strains because of its ability to use a variety of substrates, to produce hydrogen at a high rate, and its high growth rate during dark fermentation. However, the rate of hydrogen production has not been optimized. In this present study, three strategies to improve hydrogen production in E. aerogenes, namely the disruption of nuoCDE, overexpression of the small RNA RyhB and of NadE to regulate global anaerobic metabolism, and the redistribution of metabolic flux. The goal of this study was to clarify the effect of nuoCDE, RyhB, and NadE on hydrogen production and how the perturbation of NADH influences the yield of hydrogen gas from E. aerogenes. RESULTS NADH dehydrogenase activity was impaired by knocking out nuoCD or nuoCDE in E. aerogenes IAM1183 using the CRISPR-Cas9 system to explore the consequent effect on hydrogen production. The hydrogen yields from IAM1183-CD(∆nuoC/∆nuoD) and IAM1183-CDE (∆nuoC/∆nuoD/∆nuoE) increased, respectively, by 24.5 and 45.6% in batch culture (100 mL serum bottles). The hydrogen produced via the NADH pathway increased significantly in IAM1183-CDE, suggesting that nuoE plays an important role in regulating NADH concentration in E. aerogenes. Batch-cultivating experiments showed that by the overexpression of NadE (N), the hydrogen yields of IAM1183/N, IAM1183-CD/N, and IAM1183-CDE/N increased 1.06-, 1.35-, and 1.55-folds, respectively, compared with IAM1183. Particularly worth mentioning is that the strain IAM118-CDE/N reached 2.28 mol in H2 yield, per mole of glucose consumed. IAN1183/R, IAM1183-CD/R, and IAM1183-CDE/R showed increasing H2 yields in batch culture. Metabolic flux analysis indicated that increased expression of RyhB led to a significant shift in metabolic patterns. We further investigated IAM1183-CDE/N, which had the best hydrogen-producing traits, as a potential candidate for industry applications using a 5-L fermenter; hydrogen production reached up to 1.95 times greater than that measured for IAM1183. CONCLUSIONS Knockout of nuoCD or nuoCDE and the overexpression of nadE in E. aerogenes resulted in a redistribution of metabolic flux and improved the hydrogen yield. Overexpression of RyhB had an significant change on the hydrogen production via NADH pathway. A combination of strategies would be a novel approach for developing a more economic and efficient bioprocess for hydrogen production in E. aerogenes. Finally, the latest CRISPR-Cas9 technology was successful for editing genes in E. aerogenes to develop our engineered strain for hydrogen production.
Collapse
Affiliation(s)
- Yan Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Yaqiao Hao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- College of Life Science, Shenyang Normal University, Shenyang, 110034 China
| | - Xuan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- College of Life Science, Shenyang Normal University, Shenyang, 110034 China
| | - Qi Shen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Xuanwei Ding
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084 China
- College of Life Science, Shenyang Normal University, Shenyang, 110034 China
| | - Liyan Wang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
726
|
Yan Q, Fong SS. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing. Front Microbiol 2017; 8:2060. [PMID: 29123506 PMCID: PMC5662904 DOI: 10.3389/fmicb.2017.02060] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephen S. Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
727
|
Li Z, Liu JZ. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum. Front Microbiol 2017; 8:1987. [PMID: 29089930 PMCID: PMC5650995 DOI: 10.3389/fmicb.2017.01987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6), metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production.
Collapse
Affiliation(s)
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
728
|
Kumar R, Grosbart M, Nurse P, Bahng S, Wyman CL, Marians KJ. The bacterial condensin MukB compacts DNA by sequestering supercoils and stabilizing topologically isolated loops. J Biol Chem 2017; 292:16904-16920. [PMID: 28842486 PMCID: PMC5641887 DOI: 10.1074/jbc.m117.803312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
MukB is a structural maintenance of chromosome-like protein required for DNA condensation. The complete condensin is a large tripartite complex of MukB, the kleisin, MukF, and an accessory protein, MukE. As found previously, MukB DNA condensation is a stepwise process. We have defined these steps topologically. They proceed first via the formation of negative supercoils that are sequestered by the protein followed by hinge-hinge interactions between MukB dimers that stabilize topologically isolated loops in the DNA. MukB itself is sufficient to mediate both of these topological alterations; neither ATP nor MukEF is required. We show that the MukB hinge region binds DNA and that this region of the protein is involved in sequestration of supercoils. Cells carrying mutations in the MukB hinge that reduce DNA condensation in vitro exhibit nucleoid decondensation in vivo.
Collapse
Affiliation(s)
- Rupesh Kumar
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | | | - Pearl Nurse
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Soon Bahng
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Claire L Wyman
- the Departments of Molecular Genetics and
- Radiation Oncology, Erasmus University Medical Center, P. O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| |
Collapse
|
729
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
730
|
Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, Campbell CE, Markley AL, Price MN, Ray J, Wetmore KM, Suh Y, Arkin AP, Deutschbauer AM, Amador-Noguez D, Pfleger BF. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2017; 2:1624-1634. [PMID: 28947739 PMCID: PMC5705400 DOI: 10.1038/s41564-017-0028-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.
Collapse
Affiliation(s)
- Jacqueline M Rand
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tippapha Pisithkul
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua M Thiede
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher R Mehrer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel E Agnew
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Candace E Campbell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew L Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yumi Suh
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel Amador-Noguez
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
731
|
Single-Molecule Imaging of Escherichia coli Transmembrane Proteins. Methods Mol Biol 2017. [PMID: 28940067 DOI: 10.1007/978-1-4939-7271-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Single-molecule imaging in living cells can provide unique information about biological processes. Bacteria offer some particular challenges for single-molecule imaging due to their small size, only slightly larger than the diffraction limit of visible light. Here, we describe how reliable and reproducible single-molecule data can be obtained for a transmembrane protein in the Gram-negative bacterium Escherichia coli by using live-cell fluorescence microscopy. Fluorescent labeling of a protein by genetic fusion, cell culturing, sample preparation, imaging, and data analysis are discussed.
Collapse
|
732
|
Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2017; 2:219-225. [PMID: 29318202 PMCID: PMC5655352 DOI: 10.1016/j.synbio.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Derived from the bacterial adaptive immune system, CRISPR technology has revolutionized conventional genetic engineering methods and unprecedentedly facilitated strain engineering. In this review, we outline the fundamental CRISPR tools that have been employed for strain optimization. These tools include CRISPR editing, CRISPR interference, CRISPR activation and protein imaging. To further characterize the CRISPR technology, we present current applications of these tools in microbial systems, including model- and non-model industrial microorganisms. Specially, we point out the major challenges of the CRISPR tools when utilized for multiplex genome editing and sophisticated expression regulation. To address these challenges, we came up with strategies that place emphasis on the amelioration of DNA repair efficiency through CRISPR-Cas9-assisted recombineering. Lastly, multiple promising research directions were proposed, mainly focusing on CRISPR-based construction of microbial ecosystems toward high production of desired chemicals.
Collapse
Affiliation(s)
- Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Justin Forrest Rey
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qipeng Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
733
|
Tang Q, Lou C, Liu SJ. Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit. J Biol Eng 2017; 11:32. [PMID: 28878819 PMCID: PMC5582390 DOI: 10.1186/s13036-017-0072-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/01/2017] [Indexed: 11/12/2022] Open
Abstract
Background Plasmid-borne genetic editing tools, including the widely used CRISPR-Cas9 system, have greatly facilitated bacterial programming to obtain novel functionalities. However, the lack of effective post-editing plasmid elimination methods impedes follow-up genetic manipulation or application. Conventional strategies including exposure to physical and chemical treatments, or exploiting temperature-sensitive replication origins have several drawbacks (e.g., they are limited for efficiency and are time-consuming). Therefore, the demand is apparent for easy and rapid elimination of the tool plasmids from their bacterial hosts after genetic manipulation. Results To bridge this gap, we designed a novel EXIT circuit with the homing endonuclease, which can be exploited for rapid and efficient elimination of various plasmids with diverse replication origins. As a proof of concept, we validated the EXIT circuit in Escherichia coli by harnessing homing endonuclease I-SceI and its cleavage site. When integrated into multiple plasmids with different origins, the EXIT circuit allowed them to be eliminated from the host cells, simultaneously. By combining the widely used plasmid-borne CRISPR-Cas9 system and the EXIT circuit, we constructed an easy-to-use CRISPR-Cas9 system that eliminated the Cas9- and the single-guide RNA (sgRNA)-encoding plasmids in one-step. Within 3 days, we successfully constructed an atrazine-degrading E. coli strain, thus further demonstrating the advantage of this new CRISPR-Cas9 system for bacterial genome editing. Conclusions Our novel EXIT circuit, which exploits the homing endonuclease I-SceI, enables plasmid(s) with different replication origins to be eliminated from their host cells rapidly and efficiently. We also developed an easy-to-use CRISPR-Cas9 system with the EXIT circuit, and this new system can be widely applied to bacterial genome editing. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0072-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chunbo Lou
- CAS Key Laboratory for Microbial Physiology and Metabolic Engineering, Chinese Academy of Sciences, Beijing, 100101 China.,Institute of Microbiology, Chinese Academy of Sciences, Beichen Xilu 1, Chaoyang District, Beijing, 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing, 100101 China.,Institute of Microbiology, Chinese Academy of Sciences, Beichen Xilu 1, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
734
|
Liu Q, Jiang Y, Shao L, Yang P, Sun B, Yang S, Chen D. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:764-770. [PMID: 28910979 DOI: 10.1093/abbs/gmx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important pathogenic bacterium prevalent in nosocomial infections and associated with high morbidity and mortality rates, which arise from the significant pathogenicity and multi-drug resistance. However, the typical genetic manipulation tools used to explore the relevant molecular mechanisms of S. aureus have multiple limitations: leaving a scar in the genome, comparatively low gene-editing efficiency, and prolonged experimental period. Here, we present a single-plasmid based on the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system which allows rapid and efficient chromosomal manipulation in S. aureus. The plasmid carries the cas9 gene under the control of the constitutive promoter Pxyl/tet, a single guide RNA-encoding sequence transcribed via a strong promoter Pspac, and donor DNA used to repair the double strand breaks. The function of the CRISPR/Cas9 vector was demonstrated by deleting the tgt gene and the rocA gene, and by inserting the erm R cassette in S. aureus. This research establishes a CRISPR/Cas9 genome editing tool in S. aureus, which enables marker-free, scarless and rapid genetic manipulation, thus accelerating the study of gene function in S. aureus.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201206, China
| | - Lei Shao
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Bingbing Sun
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201206, China
| | - Daijie Chen
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
735
|
Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Appl Environ Microbiol 2017; 83:AEM.01313-17. [PMID: 28733280 DOI: 10.1128/aem.01313-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.
Collapse
|
736
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.IMPORTANCE The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.
Collapse
|
737
|
Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C, Zhang X. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng 2017; 43:37-45. [PMID: 28800965 DOI: 10.1016/j.ymben.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
One of the most important research subjects of metabolic engineering is the pursuit of balanced metabolic pathways, which requires the modulation of expression of many genes. However, simultaneously modulating multiple genes on the chromosome remains challenging in prokaryotic organisms, including the industrial workhorse - Escherichia coli. In this work, the CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique was developed to simultaneously modulate the expression of multiple genes on the chromosome. To implement it, two plasmids were employed to target Cas9 to regulatory sequences of pathway genes, and a donor DNA plasmid library was constructed containing a regulator pool to modulate the expression of these genes. A modularized plasmid construction strategy was used to enable the assembly of a complex donor DNA plasmid library. After genome editing using this technique, a combinatorial library was obtained with variably expressed pathway genes. As a demonstration, the CFPO technique was applied to the xylose metabolic pathway genes in E. coli to improve xylose utilization. Three transcriptional units containing a total of four genes were modulated simultaneously with 70% efficiency, and improved strains were selected from the resulting combinatorial library by growth enrichment. The best strain, HQ304, displayed a 3-fold increase of the xylose-utilization rate. Finally, the xylose-utilization pathway of HQ304 was analyzed enzymologically to determine the optimal combination of enzyme activities.
Collapse
Affiliation(s)
- Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Huanna Qiu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| |
Collapse
|
738
|
Liu X, Tian J, Liu L, Zhu T, Yu X, Chu X, Yao B, Wu N, Fan Y. Identification of an operon involved in fluoride resistance in Enterobacter cloacae FRM. Sci Rep 2017; 7:6786. [PMID: 28754999 PMCID: PMC5533749 DOI: 10.1038/s41598-017-06988-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Fluorine is ubiquitous and the most active non-metal element in nature. While many microorganisms have developed fluoride resistance as a result of the widespread and prolonged application of oral hygiene products, the mechanisms used by these organisms to overcome fluoride toxicity are incompletely understood. In this study, a fluoride-resistant strain, Enterobacter cloacae FRM, was identified which could grow well at a fluoride concentration of 4,000 mg/L. According to comparative genomics, transcriptome under fluoride stress, and sequence analyses of two fluoride-resistant fosmid clones, the genomic island GI3 was found to be important for fluoride resistance. The result of quantitative RT-PCR indicated that six genes on GI3, ppaC, uspA, eno, gpmA, crcB, and orf5249, which encode a fluoride transporter, fluoride-inhibited enzymes, and a universal stress protein, reside in an operon and are transcribed into two mRNAs activated by fluoride with a fluoride riboswitch. The results of knockout and complementation experiments indicated that these genes work together to provide high fluoride resistance to E. cloacae FRM. This study clarified the resistance mechanism of this high fluoride-resistant organism and has expanded our understanding of the biological effects of fluoride.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
739
|
Engineering Escherichia coli BL21 genome to improve the heptanoic acid tolerance by using CRISPR-Cas9 system. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0158-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
740
|
Abstract
Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum.
Collapse
|
741
|
So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK. A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in Bacillus subtilis. Front Microbiol 2017; 8:1167. [PMID: 28690606 PMCID: PMC5481315 DOI: 10.3389/fmicb.2017.01167] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022] Open
Abstract
In Bacillus subtilis, large genomic deletions have been carried out for genome reduction, antibiotic overproduction, and heterologous protein overexpression. In view of the eco-friendliness of B. subtilis, it is critical that engineering preserves its food-grade status and avoids leaving foreign DNA in the genome. Existing methods of generating large genomic deletions leave antibiotic resistance markers or display low mutation efficiency. In this study, we introduced a clustered regularly interspaced short palindromic repeat-derived genome engineering technique to develop a highly efficient method of generating large genomic deletions in B. subtilis without any trace of foreign DNA. Using our system, we produced 38 kb plipastatin-synthesizing pps operon deletion with 80% efficiency. The significant increase in mutation efficiency was due to plasmids-delivered Streptococcus pyogenes-originated SpCas9, target-specific sgRNA and a donor DNA template, which produces SpCas9/sgRNA endonuclease complex continuously for attacking target chromosome until the mutagenic repair occurs. Our system produced single-gene deletion in spo0A (∼100%), point mutation (∼68%) and GFP gene insertion (∼97%) in sigE and demonstrated its broad applicability for various types of site-directed mutagenesis in B. subtilis.
Collapse
Affiliation(s)
- Younju So
- Infectious Disease Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST)Daejeon, South Korea
| | | | | | - Seung-Hwan Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST)Daejeon, South Korea
| | | | - Jae-Gu Pan
- Infectious Disease Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST)Daejeon, South Korea
| |
Collapse
|
742
|
Waller MC, Bober JR, Nair NU, Beisel CL. Toward a genetic tool development pipeline for host-associated bacteria. Curr Opin Microbiol 2017. [PMID: 28624690 DOI: 10.1016/j.mib.2017.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacteria reside in externally accessible niches on and in multicellular organisms, often forming mutualistic relationships with their host. Recent studies have linked the composition of these microbial communities with alterations in the host's health, behavior, and development, yet the causative mediators of host-microbiota interactions remain poorly understood. Advances in understanding and engineering these interactions require the development of genetic tools to probe the molecular interactions driving the structure and function of microbial communities as well as their interactions with their host. This review discusses the current challenges to rendering culturable, non-model members of microbial communities genetically tractable - including overcoming barriers to DNA delivery, achieving predictable gene expression, and applying CRISPR-based tools - and details recent efforts to create generalized pipelines that simplify and expedite the tool-development process. We use the bacteria present in the human gastrointestinal tract as representative microbiota to illustrate some of the recent achievements and future opportunities for genetic tool development.
Collapse
Affiliation(s)
- Matthew C Waller
- North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695, United States
| | - Josef R Bober
- Tufts University, Department of Chemical and Biological Engineering, Medford, MA 02155, United States
| | - Nikhil U Nair
- Tufts University, Department of Chemical and Biological Engineering, Medford, MA 02155, United States
| | - Chase L Beisel
- North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695, United States.
| |
Collapse
|
743
|
Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R. CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 2017. [DOI: 10.1016/j.mib.2017.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
744
|
Mougiakos I, Bosma EF, Weenink K, Vossen E, Goijvaerts K, van der Oost J, van Kranenburg R. Efficient Genome Editing of a Facultative Thermophile Using Mesophilic spCas9. ACS Synth Biol 2017; 6:849-861. [PMID: 28146359 PMCID: PMC5440800 DOI: 10.1021/acssynbio.6b00339] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Well-developed genetic tools for thermophilic microorganisms are scarce, despite their industrial and scientific relevance. Whereas highly efficient CRISPR/Cas9-based genome editing is on the rise in prokaryotes, it has never been employed in a thermophile. Here, we apply Streptococcus pyogenes Cas9 (spCas9)-based genome editing to a moderate thermophile, i.e., Bacillus smithii, including a gene deletion, gene knockout via insertion of premature stop codons, and gene insertion. We show that spCas9 is inactive in vivo above 42 °C, and we employ the wide temperature growth range of B. smithii as an induction system for spCas9 expression. Homologous recombination with plasmid-borne editing templates is performed at 45-55 °C, when spCas9 is inactive. Subsequent transfer to 37 °C allows for counterselection through production of active spCas9, which introduces lethal double-stranded DNA breaks to the nonedited cells. The developed method takes 4 days with 90, 100, and 20% efficiencies for gene deletion, knockout, and insertion, respectively. The major advantage of our system is the limited requirement for genetic parts: only one plasmid, one selectable marker, and a promoter are needed, and the promoter does not need to be inducible or well-characterized. Hence, it can be easily applied for genome editing purposes in both mesophilic and thermophilic nonmodel organisms with a limited genetic toolbox and ability to grow at, or tolerate, temperatures of 37 and at or above 42 °C.
Collapse
Affiliation(s)
- Ioannis Mougiakos
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Elleke F. Bosma
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Koen Weenink
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Eric Vossen
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Kirsten Goijvaerts
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - John van der Oost
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk
46, 4206 AC Gorinchem, The Netherlands
| |
Collapse
|
745
|
Zhang H, Cheng QX, Liu AM, Zhao GP, Wang J. A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette. Front Microbiol 2017; 8:812. [PMID: 28529507 PMCID: PMC5418352 DOI: 10.3389/fmicb.2017.00812] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
As Cas9-mediated cleavage requires both protospacer and protospacer adjacent motif (PAM) sequences, it is impossible to employ the CRISPR/Cas9 system to directly edit genomic sites without available PAM sequences nearby. Here, we optimized the CRISPR/Cas9 system and developed an innovative two-step strategy for efficient genome editing of any sites, which did not rely on the availability of PAM sequences. An antibiotic resistance cassette was employed as both a positive and a negative selection marker. By integrating the optimized two-plasmid CRISPR/Cas system and donor DNA, we achieved gene insertion and point mutation with high efficiency in Escherichia coli, and importantly, obtained clean mutants with no other unwanted mutations. Moreover, genome editing of essential genes was successfully achieved using this approach with a few modifications. Therefore, our newly developed method is PAM-independent and can be used to edit any genomic loci, and we hope this method can also be used for efficient genome editing in other organisms.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China.,University of Chinese Academy of SciencesBeijing, China
| | | | - Ai-Min Liu
- Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource and Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal UniversityWuhu, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Jin Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
746
|
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 2017; 8:15179. [PMID: 28469274 PMCID: PMC5418603 DOI: 10.1038/ncomms15179] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86-100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enable N iterative rounds of genome editing in 3N+4 or 3N+2 days. A proof-of-concept, codon saturation mutagenesis at G149 of γ-glutamyl kinase relieves L-proline inhibition using Cpf1-assisted ssDNA recombineering. Thus, CRISPR-Cpf1-based genome editing provides a highly efficient tool for genetic engineering of Corynebacterium and other bacteria that cannot utilize the Sp CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Fenghui Qian
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Yingmiao Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 200237, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Feng Dong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Chongmao Xu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Bingbing Sun
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China.,School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Biao Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China
| | - Xiaoshu Xu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 200237, China
| |
Collapse
|
747
|
Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Appl Environ Microbiol 2017; 83:AEM.00233-17. [PMID: 28258147 DOI: 10.1128/aem.00233-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/26/2017] [Indexed: 12/12/2022] Open
Abstract
Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol-producing strain. However, the lack of genetic engineering tools hinders further elucidation of its solvent production mechanism and development of more robust strains. In this study, we set out to develop an efficient genome engineering system for this microorganism based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (CRISPR-Cas9) system. First, the functionality of the CRISPR-Cas9 system previously customized for Clostridium beijerinckii was evaluated in C. saccharoperbutylacetonicum by targeting pta and buk, two essential genes for acetate and butyrate production, respectively. pta and buk single and double deletion mutants were successfully obtained based on this system. However, the genome engineering efficiency was rather low (the mutation rate is <20%). Therefore, the efficiency was further optimized by evaluating various promoters for guide RNA (gRNA) expression. With promoter P J23119 , we achieved a mutation rate of 75% for pta deletion without serial subculturing as suggested previously for C. beijerinckii Thus, this developed CRISPR-Cas9 system is highly desirable for efficient genome editing in C. saccharoperbutylacetonicum Batch fermentation results revealed that both the acid and solvent production profiles were altered due to the disruption of acid production pathways; however, neither acetate nor butyrate production was eliminated with the deletion of the corresponding gene. The butanol production, yield, and selectivity were improved in mutants, depending on the fermentation medium. In the pta buk double deletion mutant, the butanol production in P2 medium reached 19.0 g/liter, which is one of the highest levels ever reported from batch fermentations.IMPORTANCE An efficient CRISPR-Cas9 genome engineering system was developed for C. saccharoperbutylacetonicum N1-4. This paves the way for elucidating the solvent production mechanism in this hyper-butanol-producing microorganism and developing strains with desirable butanol-producing features. This tool can be easily adapted for use in closely related microorganisms. As also reported by others, here we demonstrated with solid data that the highly efficient expression of gRNA is the key factor determining the efficiency of CRISPR-Cas9 for genome editing. The protocol developed in this study can provide essential references for other researchers who work in the areas of metabolic engineering and synthetic biology. The developed mutants can be used as excellent starting strains for development of more robust ones for desirable solvent production.
Collapse
|
748
|
Konczal J, Gray CH. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr Purif 2017; 133:160-169. [PMID: 28330825 DOI: 10.1016/j.pep.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Christopher H Gray
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
749
|
CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab Eng 2017; 41:1-10. [DOI: 10.1016/j.ymben.2017.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023]
|
750
|
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody–Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35:466-478. [DOI: 10.1016/j.tibtech.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022]
|