751
|
Tamma R, dell'Endice S, Notarnicola A, Moretti L, Patella S, Patella V, Zallone A, Moretti B. Extracorporeal shock waves stimulate osteoblast activities. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:2093-2100. [PMID: 19679388 DOI: 10.1016/j.ultrasmedbio.2009.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/16/2009] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
Abstract
The extracorporeal shock wave therapy (ESWT) is an extensively applied treatment for musculoskeletal disorders because it promotes bone repair. The aim of this study was to evaluate the direct effect of ESWT on murine osteoblasts to clarify the cellular mechanism that leads to the induction of osteogenesis. Osteoblasts in culture flasks were treated with ESWT pulses (500 impulses of 0.05 mJ/mm(2)) generated by an electromagnetic device. Using western blot analysis 3h after ESWT, an increased expression of Bax was found, indicating a fast pro-apoptotic effect of treatment on some of the osteoblasts. Activation of the cyclin E2/CDK2 is the complex that regulates the G1-S transition and is essential for cell proliferation. It was evident 24 to 72h after treatment, indicating a proliferative stimulus. A decreased expression of osteoprotegerin (OPG) and receptor activator NF kappa B ligand (RANKL) 24 and 48h after ESW, followed by a later increase of OPG, paired with a much smaller increase of RANKL, was evident by real-time polymerase chain reaction (PCR). The decreased RANKL/OPG ratio suggests inhibition of osteoclastogenesis. We can conclude that ESWT induces bone repair through the proliferation and differentiation of osteoblasts and the reduction of their secretion of pro-osteoclastogenic factors.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Human Anatomy and Histology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
752
|
Lee Y, Ha J, Kim HJ, Kim YS, Chang EJ, Song WJ, Kim HH. Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis. J Biol Chem 2009; 284:33343-51. [PMID: 19801542 PMCID: PMC2785177 DOI: 10.1074/jbc.m109.042234] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/30/2009] [Indexed: 11/06/2022] Open
Abstract
DYRK1A is a serine/threonine kinase that has been linked to mental retardation associated with Down syndrome. In the present report, we describe a previously unknown role for DYRK1A in bone homeostasis. The protein expression of DYRK1A increased during osteoclast differentiation. In vitro studies in osteoclasts revealed that DYRK1A inhibited osteoclastogenesis. Whereas DYRK1A phosphorylated and inhibited the osteoclastogenic transcription factor NFATc1, forced expression of NFATc1 induced DYRK1A expression, suggesting a negative feedback loop. Transgenic mice overexpressing DYRK1A by the extent of the increased gene dosage in Down syndrome exhibited significantly reduced bone mass despite the decreased osteoclastogenesis, which is reminiscent of osteoporotic bone phenotype in Down syndrome patients. In these mice, attenuated osteoblast differentiation and function in the presence of extra DYRK1A overrode the effect of impaired osteoclastogenesis. However, impeded osteoclastogenesis in DYRK1A transgenic mice was proven to be beneficial in protecting bone loss induced by inflammation or estrogen deficiency. These results provide novel insight into the role for DYRK1A in bone homeostasis as well as in bone destructive diseases, in which modulation of DYRK1A might be used as a strategy to treat unregulated bone resorption.
Collapse
Affiliation(s)
- Youngkyun Lee
- From the Department of Cell and Developmental Biology, BK21 Program and DRI, Seoul National University, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea and
| | - Jeongim Ha
- From the Department of Cell and Developmental Biology, BK21 Program and DRI, Seoul National University, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea and
| | - Hyung Joon Kim
- From the Department of Cell and Developmental Biology, BK21 Program and DRI, Seoul National University, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea and
| | - Yeun-Soo Kim
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Kaegum 2-Dong, Busanjin-Gu, Busan 614-735, Korea
| | - Eun-Ju Chang
- From the Department of Cell and Developmental Biology, BK21 Program and DRI, Seoul National University, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea and
| | - Woo-Joo Song
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Kaegum 2-Dong, Busanjin-Gu, Busan 614-735, Korea
| | - Hong-Hee Kim
- From the Department of Cell and Developmental Biology, BK21 Program and DRI, Seoul National University, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea and
| |
Collapse
|
753
|
Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker JM. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 2009; 4:e7942. [PMID: 19936213 PMCID: PMC2776272 DOI: 10.1371/journal.pone.0007942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023] Open
Abstract
Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis.
Collapse
Affiliation(s)
- Catherine Teyssier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte Rabier
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Laurent Monfoulet
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Julien Dine
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Claire Macari
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Espallergues
- Institut National de la Santé et de la Recherche Médicale U710, Université de Montpellier II, Montpellier, France
| | - Béatrice Horard
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, Villeurbanne, France
| | - Vincent Giguère
- The Rosalind and Morris Goodman Cancer Centre, Montréal, Canada
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Olivier Chassande
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut National de la Santé et de la Recherche Médicale U 577, Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
754
|
Abstract
Staphylococci, in particular Staphylococcus aureus, are the predominant cause of bone infections worldwide. These infections are painful, debilitating and with the rise in antibiotic-resistant forms, increasingly difficult to treat. The growth in the number of prosthetic joint replacement procedures also provides new opportunities for these infections to take hold. Comprehending the mechanisms by which staphylococci interact with and damage bone is critical to the development of new approaches to meet this challenge. This review summarises current understanding of the mechanisms by which staphylococci infect and damage bone. We address the role of the inflammatory response to staphylococcal infection in disrupting the homeostatic balance of bone matrix deposition and resorption and thereby mediating bone destruction. A number of virulence factors that have been shown to contribute to bone infection and pathology are discussed, however no single factor has been defined as being specific to bone infections. Although traditionally considered an extracellular pathogen, there is increasing evidence that staphylococci are able to invade host cells, and that an intracellular lifestyle may facilitate long-term persistence in bone tissue, enabling evasion of antimicrobials and host immune responses. ‘Small colony variant’ strains, with mutations disabling the electron transport pathway appear particularly adept at invading and persisting within host cells, and exhibit enhanced antimicrobial resistance, and may represent a further complication in the treatment and management of staphylococcal bone disease.
Collapse
Affiliation(s)
- John A Wright
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | |
Collapse
|
755
|
Cho SW, Sun HJ, Yang JY, Jung JY, An JH, Cho HY, Choi HJ, Kim SW, Kim SY, Kim D, Shin CS. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther 2009; 17:1979-87. [PMID: 19603006 PMCID: PMC2835036 DOI: 10.1038/mt.2009.153] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 06/15/2009] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and increased risk of fracture. We studied the effects of transplantation of mesenchymal stem cells (MSCs) overexpressing receptor activator of nuclear factor-kappaB (RANK)-Fc and CXC chemokine receptor-4 (CXCR4) using retrovirus on ovariectomy (OVX)-induced bone loss in mice. Ten-week-old adult female C57BL/6 mice were divided into six groups as follows: Sham-operated mice treated with phosphate-buffered saline (PBS) (Sham-op + PBS); OVX mice intravenously transplanted with syngeneic MSCs overexpressing RANK-Fc-DsRED and CXCR4-GFP (RANK-Fc + CXCR4); RANK-Fc-DsRED and GFP (RANK-Fc + GFP); CXCR4-GFP and DsRED (CXCR4 + RED); DsRED and GFP (RED + GFP); or treated with PBS only (OVX + PBS). Measurement of BMD showed that introduction of RANK-Fc resulted in significant protection against OVX-induced bone loss compared to treatment with PBS (-0.1% versus -6.2%, P < 0.05) at 8 weeks after cell infusion. CXCR4 + RED group also significantly prevented bone loss compared to OVX + PBS group (2.7% versus -6.2%, P < 0.05). Notably, the effect of RANK-Fc + CXCR4 was greater than that of RANK-Fc + GFP (4.4% versus -0.1%, P < 0.05) while it was not significantly different from that in CXCR4 + RFP group (4.4% versus 2.7%, P = 0.055) at 8 weeks. Transplantation of MSCs with control virus (RED + GFP group) also resulted in amelioration of bone loss compared to OVX + PBS group (-1.7% versus -6.2%, P < 0.05). Fluorescence-activated cell sorting (FACS) and real-time quantitative PCR (qPCR) analysis for GFP from bone tissue revealed enhanced cell trafficking to bone by co-overexpression of CXCR4. In conclusion, we have demonstrated that intravenous transplantation of syngeneic MSCs overexpressing CXCR4 could promote increased in vivo cell trafficking to bone in OVX mice, which could in itself protect against bone loss but also enhance the therapeutic effects of RANK-Fc.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
756
|
State of the art management in spine oncology: a worldwide perspective on its evolution, current state, and future. Spine (Phila Pa 1976) 2009; 34:S7-20. [PMID: 19816243 DOI: 10.1097/brs.0b013e3181bac476] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A review of the past and current status of the evolving field of spine oncology. OBJECTIVE To provide a framework of reference for developments in the field, particularly the rapidly evolving field of molecular biology, as well as contemporary practice in the management of spine tumors. METHODS Literature review of the surgical treatment of spine tumors in the past and present, the emerging radiologic and biologic technologies, as well as the field of targeted therapy in cancer and the economic implications of technological advances. RESULTS A vast contemporary literature is currently available that provides a clear rational basis for treatment. Most treatment recommendations are currently based on retrospective data and small Phase II prospective studies. Treatment paradigms continue to evolve without their relative merits being evaluated by randomized controlled trials. The current lack of randomized trials in spine oncology reflect both the rarity of spine tumors and strongly held biases based on retrospective studies and institutional bias. CONCLUSION Spine oncology is a rapidly evolving field with contributions in surgery, radiation therapy, and targeted chemotherapy resulting in overall improvement in quality of life and survival in patients with spine tumors. However, the economic consequences of these improvements are substantial and need to be kept in proper perspective.
Collapse
|
757
|
Abstract
Completion of the human genome is one of the many significant milestones in the new era of systems biology. The current phase of genomic studies is focused upon parsing this new found genetic data with respect to scientific interest, and economic and health impact applications. As the sequences are now available and whole genome single nucleotide polymorphism maps for multiple human diseases will be available with the advent of modern genomics, the big challenge is to determine the function of these genes in the context of the entire organism. The emphasis is therefore on functional genomic analysis that represents the new front-line and limiting factor for realizing potential benefits of genome-based science. Defined gene targeting has been proven to be particularly useful as loss of expression mutants can reveal essential functions of molecules and the pathogenesis of disease. Using gene-targeted mice, my group has over the years identified genes that control heart and lung functions; apoptosis; lymphocyte activation; cancer; pain; diabetes; fertility or wound healing . In this study, I would like to review our work on RANKL in more detail.
Collapse
Affiliation(s)
- A Leibbrandt
- Institute for Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria
| | | |
Collapse
|
758
|
Fili S, Karalaki M, Schaller B. Therapeutic implications of osteoprotegerin. Cancer Cell Int 2009; 9:26. [PMID: 19747396 PMCID: PMC2754428 DOI: 10.1186/1475-2867-9-26] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/12/2009] [Indexed: 12/17/2022] Open
Abstract
Osteoprotegerin (OPG), a member of the tumor necrosis factor (TNF) receptor superfamily, contributes determinatively to the bone remodeling as well as to the pathogenetic mechanism of bone malignancies and disorders of mineral metabolism. There is additional evidence that OPG can promote cell survival by inhibiting TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. A number of recent in vitro, in vivo and clinical studies have defined the role of the RANK/RANKL/OPG pathway in skeletal and vascular diseases. These works were the milestone of the deep understanding of the mechanism of OPG. This review provides an overview of the potential innovative therapeutic strategies of OPG in metastatic breast and prostate carcinoma, multiple myeloma, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis and rheumatoid arthritis. Special reference is given to the increasing evidence that RANKL and OPG may link the skeletal with the vascular system.
Collapse
Affiliation(s)
- Sofia Fili
- Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | | | |
Collapse
|
759
|
Dunn IC, Wilson PW, Lu Z, Bain MM, Crossan CL, Talbot RT, Waddington D. New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens. Gen Comp Endocrinol 2009; 163:225-32. [PMID: 19303879 DOI: 10.1016/j.ygcen.2009.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/15/2022]
Abstract
Activation of the shell gland region of the avian oviduct is mediated by ovarian steroids. To understand more extensively how shell glands are maintained and function, we have compared gene expression in the shell glands from juvenile and laying hens using a chicken cDNA microarray. Average expression profiles of juvenile and sexually mature shell glands were compared resulting in the identification of 266 differentially regulated genes. Reverse transcription quantitative polymerase chain reaction confirmed expression differences. The differentially expressed genes included several with known involvement in shell gland function, including ion transport and shell matrix proteins. There were also many unpredicted differentially expressed genes, and for some we propose hypotheses for their functions. These include those encoding (a) osteoprotegerin, a decoy death receptor for receptor activator of nuclear factor NFkB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), that in the shell gland, may prevent apoptosis and/or may have an endocrine effect by preventing RANKL's action on bone osteoclasts that mobilize stored calcium; (b) prostatic acid phosphatase (ACPP) and prostate stem cell antigen (PSCA) that could play a role in sperm physiology within the shell gland; (c) urea transporter (SLC14A2) that could provide a novel anti-microbial defence; (d) bactericidal/permeability-increasing protein-like 2 (BPIL2), and other potential anti-microbials that have not previously been documented in the chicken. These new hypotheses, if borne out experimentally, will lead to a greater understanding of shell gland function including the processes involved in eggshell formation and anti-microbial activity.
Collapse
Affiliation(s)
- I C Dunn
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, Scotland EH25 9PS, UK.
| | | | | | | | | | | | | |
Collapse
|
760
|
Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 2009; 15:1066-71. [PMID: 19718038 DOI: 10.1038/nm.2007] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/16/2009] [Indexed: 12/24/2022]
Abstract
Bone metabolism results from a balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases such as periodontitis and rheumatoid arthritis are characterized by increased bone destruction due to enhanced osteoclastogenesis. Here we report that interferon regulatory factor-8 (IRF-8), a transcription factor expressed in immune cells, is a key regulatory molecule for osteoclastogenesis. IRF-8 expression in osteoclast precursors was downregulated during the initial phase of osteoclast differentiation induced by receptor activator of nuclear factor-kappaB ligand (RANKL), which is encoded by the Tnfsf11 gene. Mice deficient in Irf8 showed severe osteoporosis, owing to increased numbers of osteoclasts, and also showed enhanced bone destruction after lipopolysaccharide (LPS) administration. Irf8-/- osteoclast precursors underwent increased osteoclastogenesis in response to RANKL and tumor necrosis factor-alpha (TNF-alpha). IRF-8 suppressed osteoclastogenesis by inhibiting the function and expression of nuclear factor of activated T cells c1 (NFATc1). Our results show that IRF-8 inhibits osteoclast formation under physiological and pathological conditions and suggest a model where downregulation of inhibitory factors such as IRF-8 contributes to RANKL-mediated osteoclastogenesis.
Collapse
|
761
|
Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:317-24. [PMID: 19491913 DOI: 10.1038/nrrheum.2009.82] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA.
Collapse
|
762
|
Granot-Attas S, Luxenburg C, Finkelshtein E, Elson A. Protein tyrosine phosphatase epsilon regulates integrin-mediated podosome stability in osteoclasts by activating Src. Mol Biol Cell 2009; 20:4324-34. [PMID: 19692574 DOI: 10.1091/mbc.e08-11-1158] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nonreceptor isoform of tyrosine phosphatase epsilon (cyt-PTPe) supports osteoclast adhesion and activity in vivo, leading to increased bone mass in female mice lacking PTPe (EKO mice). The structure and organization of the podosomal adhesion structures of EKO osteoclasts are abnormal; the molecular mechanism behind this is unknown. We show here that EKO podosomes are disorganized, unusually stable, and reorganize poorly in response to physical contact. Phosphorylation and activities of Src, Pyk2, and Rac are decreased and Rho activity is increased in EKO osteoclasts, suggesting that integrin signaling is defective in these cells. Integrin activation regulates cyt-PTPe by inducing Src-dependent phosphorylation of cyt-PTPe at Y638. This phosphorylation event is crucial because wild-type-but not Y638F-cyt-PTPe binds and further activates Src and restores normal stability to podosomes in EKO osteoclasts. Increasing Src activity or inhibiting Rho or its downstream effector Rho kinase in EKO osteoclasts rescues their podosomal stability phenotype, indicating that cyt-PTPe affects podosome stability by functioning upstream of these molecules. We conclude that cyt-PTPe participates in a feedback loop that ensures proper Src activation downstream of integrins, thus linking integrin signaling with Src activation and accurate organization and stability of podosomes in osteoclasts.
Collapse
Affiliation(s)
- Shira Granot-Attas
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
763
|
SYVERSEN SILJEW, LANDEWE ROBERT, van der HEIJDE DÉSIRÉE, BATHON JOANM, BOERS MAARTEN, BYKERK VIVIANP, FITZGERALD OLIVER, GLADMAN DAFNAD, GARNERO PATRICK, GEUSENS PIET, EL-GABALAWY HANI, INMAN ROBERTD, KRAUS VIRGINIA, KVIEN TOREK, MEASE PHILIPJ, ØSTERGAARD MIKKEL, RITCHLIN CHRISTOPHERJ, TAK PAULPETER, TAYLOR WILLIAMJ, MAKSYMOWYCH WALTERP. Testing of the OMERACT 8 Draft Validation Criteria for a Soluble Biomarker Reflecting Structural Damage in Rheumatoid Arthritis: A Systematic Literature Search on 5 Candidate Biomarkers. J Rheumatol 2009; 36:1769-84. [DOI: 10.3899/jrheum.090262] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective.To test the OMERACT 8 draft validation criteria for soluble biomarkers by assessing the strength of literature evidence in support of 5 candidate biomarkers.Methods.A systematic literature search was conducted on the 5 soluble biomarkers RANKL, osteoprotegerin (OPG), matrix metalloprotease (MMP-3), urine C-telopeptide of types I and II collagen (U-CTX-I and U CTX-II), focusing on the 14 OMERACT 8 criteria. Two electronic voting exercises were conducted to address: (1) strength of evidence for each biomarker as reflecting structural damage according to each individual criterion and the importance of each individual criterion; (2) overall strength of evidence in support of each of the 5 candidate biomarkers as reflecting structural damage endpoints in rheumatoid arthritis (RA) and identification of omissions to the criteria set.Results.The search identified 111 articles. The strength of evidence in support of these biomarkers reflecting structural damage was low for all biomarkers and was rated highest for U-CTX-II [score of 6.5 (numerical rating scale 0–10)]. The lowest scores for retention of specific criteria in the draft set went to criteria that refer to the importance of animal studies, correlations with other biomarkers reflecting damage, and an understanding of the metabolism of the biomarker.Conclusion.Evidence in support of any of the 5 tested biomarkers (MMP-3, CTX-I, CTX-II, OPG, RANKL) was inadequate to allow their substitution for radiographic endpoints in RA. Three of the criteria in the draft criteria set might not be required, but few omissions were identified.
Collapse
|
764
|
Costalonga M, Batas L, Reich BJ. Effects of Toll-like receptor 4 onPorphyromonas gingivalis-induced bone loss in mice. J Periodontal Res 2009; 44:537-42. [DOI: 10.1111/j.1600-0765.2008.01152.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
765
|
Sánchez-Sabaté E, Alvarez L, Gil-Garay E, Munuera L, Vilaboa N. Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthritis Cartilage 2009; 17:1106-14. [PMID: 19303468 DOI: 10.1016/j.joca.2009.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is clinically characterized by degeneration of the joints and has been traditionally considered a primary disorder of articular cartilage, with secondary changes in the subchondral bone. The increased bone mass and generalized changes in bone quality observed in osteoarthritic patients suggest that OA may be a primary systemic bone disorder with secondary articular cartilage damage. The iliac crest is a skeletal site distant from the affected joint, with a minimal load-bearing function. To provide evidence that OA is a systemic disorder, we searched for differentially expressed genes in the iliac crest bone of patients suffering from hip OA. MATERIAL AND METHODS Gene expression levels between bone samples collected at surgery from the iliac crest of patients undergoing total hip arthroplasty for primary OA and younger donors, who were undergoing spinal arthrodesis, were investigated by means of oligonucleotide microarrays. To verify data detected by microarrays technology, Real Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays were performed with specimens from osteoarthritic patients and donors, as well as from elderly donors who were undergoing arthroplasty for subcapital femoral neck fracture. RESULTS The microarray analysis surveyed 8327 genes and identified 83 whose expression levels differed at least 1.5-fold in the OA group (P<0.005). Comparisons between Real Time RT-PCR data from OA and the two donor groups indicated differential expression of genes involved in bone cell functions in the group of OA patients. The genes identified, including CCL2, FOS, PRSS11, DVL2, AKT1, CA2, BMP6, OMD, MMP2, TGFBR3, FLT1, BMP1 and TNFRS11B, have known roles in osteoblast or osteoclast activities. CONCLUSIONS The data from this study identify a set of genes, closely related to bone cell functions, in which differential regulation in osteoarthritic bone distant from the diseased subchondral bone might underlie the etiopathogenesis of OA as a generalized bone disease.
Collapse
Affiliation(s)
- E Sánchez-Sabaté
- Unidad de Investigación, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | |
Collapse
|
766
|
Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Associations between osteoprotegerin polymorphisms and bone mineral density: a meta-analysis. Mol Biol Rep 2009; 37:227-34. [DOI: 10.1007/s11033-009-9637-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
767
|
Chino T, Draves KE, Clark EA. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J Leukoc Biol 2009; 86:933-40. [PMID: 19641036 DOI: 10.1189/jlb.0708419] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The TNF family ligand, RANKL, and its two TNFR family receptors, RANK and OPG, enable coordinated regulation between the skeletal and immune systems. Relatively little is known about how OPG influences RANKL-RANK interactions for the regulation of DCs. Here, we show that OPG KO bone marrow-derived DCs survive better and produce more TNF-alpha, IL-12p40, and IL-23 in response to Escherichia coli LPS than WT DCs. RANKL is induced on DCs within 24 h after LPS stimulation. OPG limits RANKL-RANK interactions between DCs, which can promote DC survival and elevated expression of proinflammatory cytokines. Survival of and cytokine production by OPG KO DCs are inhibited by soluble OPG; conversely, anti-OPG enhances survival and cytokine production by WT DCs. Bim KO DCs, like OPG KO, also survive longer and produce more TNF-alpha than WT DCs; however, unlike OPG KO, Bim KO DCs do not produce more IL-23. In addition, after inoculation with LPS, OPG KO mice produce more TNF-alpha and IL-12p40 than WT mice but not more IL-6. Thus, OPG regulates not only DC survival but also the nature of DC-dependent inflammatory responses.
Collapse
Affiliation(s)
- Takahiro Chino
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA 98195-7132, USA.
| | | | | |
Collapse
|
768
|
Aiken A, Khokha R. Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:121-32. [PMID: 19616584 DOI: 10.1016/j.bbamcr.2009.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
Abstract
The metalloproteinase family includes MMP, ADAM and ADAMTS proteases. Mice deficient in individual or pairs of metalloproteinases have been generated, and a number of these genetic models spontaneously develop skeletal abnormalities. Here we review metalloproteinase function in endochondral and intramembranous ossification, as well as in postnatal bone remodeling. We highlight how metalloproteinases enable interactions between distinct bone cell types and how this communication contributes to the skeletal phenotypes observed in knockout mice. In addition to the physiological actions of metalloproteinases in the skeletal system, the experimental manipulation of metalloproteinase-deficient mice has revealed substantial roles for these enzymes in osteoarthritis and rheumatoid arthritis. MMP, ADAM and ADAMTS proteases thus emerge as key players in the development and homeostasis of the skeletal system.
Collapse
Affiliation(s)
- Alison Aiken
- Ontario Cancer Institute/University Health Network, Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
769
|
Bar-Shavit Z. Taking a Toll on the bones: Regulation of bone metabolism by innate immune regulators. Autoimmunity 2009; 41:195-203. [DOI: 10.1080/08916930701694469] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
770
|
Abstract
Osteoclasts, the primary cell type mediating bone resorption, are multinucleated, giant cells derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclast activity is, in a large part, regulated by protein-tyrosine phosphorylation. While information about functional roles of several protein-tyrosine kinases (PTK), including c-Src, in osteoclastic resorption has been accumulated, little is known about the roles of protein-tyrosine phosphatases (PTPs) in regulation of osteoclast activity. Recent evidence implicates important regulatory roles for four PTPs (SHP-1, cyt-PTP-epsilon, PTP-PEST, and PTPoc) in osteoclasts. Cyt-PTP-epsilon, PTP-PEST, and PTP-oc are positive regulators of osteoclast activity, while SHP-1 is a negative regulator. Of these PTPs in osteoclasts, only PTP-oc is a positive regulator of c-Src PTK through dephosphorylation of the inhibitory phosphotyrosine-527 residue. Although some information about mechanisms of action of these PTPs to regulate osteoclast activity is reviewed in this article, much additional work is required to provide more comprehensive details about their functions in osteoclasts.
Collapse
Affiliation(s)
- M. H.-C. Sheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - K.-H. W. Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92350 USA
| |
Collapse
|
771
|
Abstract
PTH-stimulated intracellular signaling is regulated by the cytoplasmic adaptor molecule beta-arrestin. We reported that the response of cancellous bone to intermittent PTH is reduced in beta-arrestin2(-/-) mice and suggested that beta-arrestins could influence the bone mineral balance by controlling RANKL and osteoprotegerin (OPG) gene expression. Here, we study the role of beta-arrestin2 on the in vitro development and activity of bone marrow (BM) osteoclasts (OCs) and Ephrins ligand (Efn), and receptor (Eph) mRNA levels in bone in response to PTH and the changes of bone microarchitecture in wildtype (WT) and beta-arrestin2(-/-) mice in models of bone remodeling: a low calcium diet (LoCa) and ovariectomy (OVX). The number of PTH-stimulated OCs was higher in BM cultures from beta-arrestin2(-/-) compared with WT, because of a higher RANKL/OPG mRNA and protein ratio, without directly influencing osteoclast activity. In vivo, high PTH levels induced by LoCa led to greater changes in TRACP5b levels in beta-arrestin2(-/-) compared with WT. LoCa caused a loss of BMD and bone microarchitecture, which was most prominent in beta-arrestin2(-/-). PTH downregulated Efn and Eph genes in beta-arrestin2(-/-), but not WT. After OVX, vertebral trabecular bone volume fraction and trabecular number were lower in beta-arrestin2(-/-) compared with WT. Histomorphometry showed that OC number was higher in OVX-beta-arrestin2(-/-) compared with WT. These results indicate that beta-arrestin2 inhibits osteoclastogenesis in vitro, which resulted in decreased bone resorption in vivo by regulating RANKL/OPG production and ephrins mRNAs. As such, beta-arrestins should be considered an important mechanism for the control of bone remodeling in response to PTH and estrogen deprivation.
Collapse
|
772
|
Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 2009; 15:208-16. [PMID: 19362057 DOI: 10.1016/j.molmed.2009.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 01/20/2023]
Abstract
Osteoblasts are key components of the bone multicellular unit and have a seminal role in bone remodeling, which is an essential function for the maintenance of the structural integrity and metabolic capacity of the skeleton. The coordinated function of skeletal cells is regulated by several hormones, growth factors and mechanical cues that act via interconnected signaling networks, resulting in the activation of specific transcription factors and, in turn, their target genes. Bone cells are responsive to mechanical stimuli and this is of pivotal importance in developing biomechanical strategies for the treatment of osteodegenerative diseases. Here, we review the molecular pathways and players activated by mechanical stimulation during osteoblastic growth, differentiation and activity in health, and consider the role of mechanostimulatory approaches in treating various bone pathophysiologies.
Collapse
Affiliation(s)
- Katerina K Papachroni
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
773
|
The molecular mechanism behind bone remodelling: a review. Clin Oral Investig 2009; 13:355-62. [DOI: 10.1007/s00784-009-0268-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 03/10/2009] [Indexed: 02/02/2023]
|
774
|
Involvement of SOCS3 in regulation of CD11c+ dendritic cell-derived osteoclastogenesis and severe alveolar bone loss. Infect Immun 2009; 77:2000-9. [PMID: 19255186 DOI: 10.1128/iai.01070-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of suppressor of cytokine signaling (SOCS) molecules in periodontal immunity and RANKL-mediated dendritic cell (DC)-associated osteoclastogenesis, we analyzed SOCS expression profiles in CD4(+) T cells and the effect of SOCS3 expression in CD11c(+) DCs during periodontal inflammation-induced osteoclastogenesis and bone loss in nonobese diabetic (NOD) versus humanized NOD/SCID mice. Our results of ex vivo and in vitro analyses showed that (i) there is significantly higher SOCS3 expression associated with RANKL(+) T-cell-mediated bone loss in correlation with increased CD11c(+) DC-mediated osteoclastogenesis; (ii) the transfection of CD11c(+) DC using an adenoviral vector carrying a dominant negative SOCS3 gene significantly abrogates TRAP and bone-resorptive activity; and (iii) inflammation-induced TRAP expression, bone resorption, and SOCS3 activity are not associated with any detectable change in the expression levels of TRAF6 and mitogen-activated protein kinase signaling adaptors (i.e., Erk, Jnk, p38, and Akt) in RANKL(+) T cells. We conclude that SOCS3 plays a critical role in modulating cytokine signaling involved in RANKL-mediated DC-derived osteoclastogenesis during immune interactions with T cells and diabetes-associated severe inflammation-induced alveolar bone loss. Therefore, the development of SOCS3 inhibitors may have therapeutic potential as the target to halt inflammation-induced bone loss under pathological conditions in vivo.
Collapse
|
775
|
Wright HL, McCarthy HS, Middleton J, Marshall MJ. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2009; 2:56-64. [PMID: 19468919 PMCID: PMC2684955 DOI: 10.1007/s12178-009-9046-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/24/2009] [Indexed: 12/25/2022]
Abstract
Upon the discovery of RANK, RANKL and OPG in the late 1990s, their importance in the maintenance of the skeletal structure and their dramatic role in bone disease were largely unexpected. In recent years the understanding of these proteins, in particular their regulation, has greatly increased. This review aims to bring the interested reader up to date with the latest news and views on the mechanisms controlling bone resorption in normal and pathological conditions.
Collapse
Affiliation(s)
- H. L. Wright
- ISTM, Medical School, Keele University at the Leopold Muller Arthritis Research Centre, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG UK
| | - H. S. McCarthy
- Charles Salt Research Centre at the RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG UK
| | - J. Middleton
- ISTM, Medical School, Keele University at the Leopold Muller Arthritis Research Centre, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG UK
| | - M. J. Marshall
- Charles Salt Research Centre at the RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG UK
| |
Collapse
|
776
|
Chen J, Sorensen KP, Gupta T, Kilts T, Young M, Wadhwa S. Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice. Osteoarthritis Cartilage 2009; 17:354-61. [PMID: 18789726 PMCID: PMC2646810 DOI: 10.1016/j.joca.2008.05.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 05/31/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Altered loading is an important etiological factor for temporomandibular joint (TMJ) disorders. Studies examining altered loading of the TMJ have been done in rats but the response of the TMJ to altered loading in mice is largely unknown. Therefore, due to the potential usefulness of genetically engineered mice, the goal of this study was to develop a mouse TMJ altered functional loading model. METHODS One hundred and thirty four, 21-day-old CD-1 female mice were divided into two groups: (1) normal loading (hard pellet diet) for 2-6 weeks and (2) altered functional loading (incisor trimming every other day and soft dough diet) for 2-6 weeks. The mandibular condylar cartilage was evaluated by histology, the subchondral bone was evaluated by microcomputed tomography (micro-CT) analysis and gene expression was evaluated by real time polymerase chain reaction (PCR) analysis. RESULTS Altered functional loading for 2-6 weeks caused significant reduction in the thickness of the condylar cartilage whereas, only at 4 weeks was there a significant decrease in the bone volume fraction and trabecular thickness of the subchondral bone. Gene expression analysis showed that altered functional loading for 4 weeks caused a significant reduction in the expression of SRY-box containing gene 9 (Sox9), Collagen type X (Col X), Indian hedgehog (Ihh), Collagen type II (Col II) and Vascular endothelial growth factor (Vegf) and altered loading for 6 weeks caused a significant decrease in the expression of Sox9, Col II, Vegf and Receptor activator of NF-kappaB ligand (Rankl) compared to the normal loading group. CONCLUSION Altered functional TMJ loading in mice for 2-6 weeks leads to a loss of the condylar cartilage and a transient loss in the density of the mandibular condylar subchondral bone.
Collapse
Affiliation(s)
- J. Chen
- University of Connecticut Health Center, School of Dental Medicine, Department of Craniofacial Sciences, Division of Orthodontics, Farmington, CT 06030, United States
| | - K. P. Sorensen
- University of Connecticut Health Center, School of Dental Medicine, Department of Craniofacial Sciences, Division of Orthodontics, Farmington, CT 06030, United States
| | - T. Gupta
- University of Connecticut Health Center, School of Dental Medicine, Department of Craniofacial Sciences, Division of Orthodontics, Farmington, CT 06030, United States
| | - T. Kilts
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS Bethesda, MD 20892, United States
| | - M. Young
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS Bethesda, MD 20892, United States
| | - S. Wadhwa
- University of Connecticut Health Center, School of Dental Medicine, Department of Craniofacial Sciences, Division of Orthodontics, Farmington, CT 06030, United States,Address correspondence and reprint requests to: Dr Sunil Wadhwa, Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, UCHC, Farmington CT 06030, United States. Tel: 1-860-679-4899; Fax: 1-860-679-1920; E-mail:
| |
Collapse
|
777
|
Balla B, Kósa JP, Kiss J, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Speer G, Lakatos P. Transcriptional profiling of immune system-related genes in postmenopausal osteoporotic versus non-osteoporotic human bone tissue. Clin Immunol 2009; 131:354-9. [PMID: 19230778 DOI: 10.1016/j.clim.2009.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
The functional interaction between the immune system and bone metabolism has been established at both molecular and cellular levels. We have used non-parametric and multidimensional expression pattern analyses to determine significantly changed mRNA profile of immune system-associated genes in postmenopausal osteoporotic (OP) vs. non-osteoporotic (NOP) bone tissue. Seven bone tissue samples from OP patients and ten bone tissue samples from NOP women were examined in our study. The transcription differences of selected 44 genes were analyzed in Taqman probe-based quantitative real-time RT-PCR system. Mann-Whitney test indicated significantly down-regulated transcription activity of 3 genes (FCGR2A, NFKB1 and SCARA3) in OP bone tissue which have prominent role in (antibody) clearance, phagocytosis, pathogen recognition and inflammatory response. According to the canonical variates analysis results, the groups of postmenopausal OP and NOP women are separable by genes coding for cytokines, co-stimulators and cell surface receptors affected in innate immunity which have high discriminatory power. Based on the complex gene expression patterns in human bone cells, we could distinguish OP and NOP states from an immunological aspect. Our data may provide further insights into the changes of the intersystem crosstalk between the immune and skeletal systems, as well as into the local immune response in the altered microenvironment of OP bone.
Collapse
Affiliation(s)
- Bernadett Balla
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
778
|
SYVERSEN SILJEW, GOLL GUROL, van der HEIJDE DÉSIRÉE, LANDEWÉ ROBERT, GAARDER PERIVAR, ØDEGÅRD SIGRID, HAAVARDSHOLM ESPENA, KVIEN TOREK. Cartilage and Bone Biomarkers in Rheumatoid Arthritis: Prediction of 10-year Radiographic Progression. J Rheumatol 2009; 36:266-72. [DOI: 10.3899/jrheum.080180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.As current predictors of joint destruction have low specificity, serological biomarkers reflecting bone and cartilage destruction have been proposed as tools in assessing prognosis of rheumatoid arthritis (RA). We examined whether serum concentrations of a panel of biomarkers could predict radiographic progression in patients with RA.Methods.A cohort of 238 patients with RA was followed longitudinally for 10 years with collection of clinical data and serum samples. These analyses focus on the 136 patients with radiographs of the hands available at baseline and at 5 and/or 10 years. Radiographs were scored according to the van der Heijde-modified Sharp score (SHS). Baseline sera were analyzed for receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), human cartilage glycoprotein-39 (YKL-40), C2C, collagen cross-linked C-telopeptide (CTX-I), and cartilage oligomeric matrix protein (COMP). Multivariate linear and logistic regression analyses were used to identify predictors of radiographic progression.Results.Baseline CTX-I levels were higher in progressors [0.41 ng/ml (interquartile range 0.31–0.75)] than in nonprogressors [0.32 ng/ml (IQR 0.21–0.49)], and were independently associated with 10-year change in radiographic damage score [ß = 16.4 (IQR 5.7–27.1)]. We found no association between radiographic progression and baseline serum levels of RANKL, OPG, C2C, YKL-40, or COMP.Conclusion.This longterm followup study of patients with RA indicates a relationship between elevated CTX-I levels in serum and subsequent joint destruction. This association was, however, weak, and our study does not support that serum CTX-I or any of the other tested biomarkers will serve as more useful prognostic markers than current predictors such as anti-cyclic citrullinated peptide, radiographic damage early in the disease course, and signs of inflammation.
Collapse
|
779
|
Effects of receptor activator of NF-κB ligand gene silencing on the human osteoblast-like MG63 cells. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
780
|
Fukada SY, Silva TA, Saconato IF, Garlet GP, Avila-Campos MJ, Silva JS, Cunha FQ. iNOS-derived nitric oxide modulates infection-stimulated bone loss. J Dent Res 2009; 87:1155-9. [PMID: 19029085 DOI: 10.1177/154405910808701207] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) plays an important role in host defense, as well as in inflammation-induced tissue lesions. Here we evaluated the role of NO in bone loss in bacterial infection-induced apical periodontitis by using iNOS-deficient mice (iNOS(-/-)). The iNOS(-/-) mice developed greater inflammatory cell recruitment and osteolytic lesions than WT mice. Moreover, tartrate-resistant acid-phosphatase-positive (TRAP(+)) osteoclasts were significantly more numerous in iNOS(-/-) mice. Furthermore, the increased bone resorption in iNOS(-/-) mice also correlated with the increased expression of receptor activator NF-kappaB (RANK), stromal-cell-derived factor-1 alpha (SDF-1 alpha/CXCL12), and reduced expression of osteoprotegerin (OPG). These results show that NO deficiency was associated with an imbalance of bone-resorption-modulating factors, leading to severe infection-stimulated bone loss.
Collapse
Affiliation(s)
- S Y Fukada
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto SP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
781
|
RANK(L) as a Key Target for Controlling Bone Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:130-45. [DOI: 10.1007/978-0-387-89520-8_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
782
|
Aliprantis AO, Glimcher LH. NFATc1 in inflammatory and musculoskeletal conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 658:69-75. [PMID: 19950017 DOI: 10.1007/978-1-4419-1050-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The nuclear factor of activated T-cells (NFAT) family of transcription factors specify developmental pathways and cell fate in vertebrates. NFATc1, in particular, is crucial to multiple seemingly unrelated biologic processes, including heart valve formation, T-cell activation, osteoclast development, and the mitigation of hair follicle stem cell proliferation. Here, we review how our recently generated NFATc1 conditional knockout mouse has contributed to our understanding of this transcription factor in inflammatory and musculoskeletal conditions and their treatment.
Collapse
|
783
|
RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:100-13. [PMID: 19731623 DOI: 10.1007/978-1-4419-0298-6_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteoporosis or rheumatoid arthritis are bone diseases affecting hundreds of millions of people worldwide and thus pose a tremendous burden to health care. Ground-breaking discoveries made in basic science over the last decade shed light on the molecular mechanisms of bone metabolism and bone turnover. Thereby, it became possible over the past years to devise new and promising strategies for treating such diseases. In particular, three molecules, the receptor activator of NF-kappaB (RANK), its ligand RANKL and the decoy receptor of RANKL, osteoprotegerin (OPG), have been a major focus of scientists and pharmaceutical companies alike, since experiments using mice in which these genes have been inactivated unanimously established their pivotal role as central regulators ofosteoclast function. RANK(L) signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. Consequently, novel drugs specifically targeting RANK-RANKL and their signaling pathways in osteoclasts are expected to revolutionize the treatment ofvarious bone diseases, such as cancer metastases, osteoporosis, or arthropathies.
Collapse
|
784
|
Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res 2008; 23:1983-94. [PMID: 18684089 PMCID: PMC2686922 DOI: 10.1359/jbmr.080804] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Brtl mouse, a knock-in model for moderately severe osteogenesis imperfecta (OI), has a G349C substitution in half of type I collagen alpha1(I) chains. We studied the cellular contribution to Brtl bone properties. Brtl cortical and trabecular bone are reduced before and after puberty, with BV/TV decreased 40-45%. Brtl ObS/BS is comparable to wildtype, and Brtl and wildtype marrow generate equivalent number of colony-forming units (CFUs) at both ages. However, OcS/BS is increased in Brtl at both ages (36-45%), as are TRACP(+) cell numbers (57-47%). After puberty, Brtl ObS/BS decreases comparably to wildtype mice, but osteoblast matrix production (MAR) decreases to one half of wildtype values. In contrast, Brtl OcS falls only moderately (approximately 16%), and Brtl TRACP staining remains significantly elevated compared with wildtype. Consequently, Brtl BFR decreases from normal at 2 mo to one half of wildtype values at 6 mo. Immunohistochemistry and real-time RT-PCR show increased RANK, RANKL, and osteoprotegerin (OPG) levels in Brtl, although a normal RANKL/OPG ratio is maintained. TRACP(+) precursors are markedly elevated in Brtl marrow cultures and form more osteoclasts, suggesting that osteoclast increases arise from more RANK-expressing precursors. We conclude that osteoblasts and osteoclasts are unsynchronized in Brtl bone. This cellular imbalance results in declining BFR as Brtl ages, consistent with reduced femoral geometry. The disparity in cellular number and function results from poorly functioning osteoblasts in addition to increased RANK-expressing precursors that respond to normal RANKL/OPG ratios to generate more bone-resorbing osteoclasts. Interruption of the stimulus that increases osteoclast precursors may lead to novel OI therapies.
Collapse
|
785
|
Walker CG, Ito Y, Dangaria S, Luan X, Diekwisch TGH. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur J Oral Sci 2008; 116:312-8. [PMID: 18705798 DOI: 10.1111/j.1600-0722.2008.00545.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.
Collapse
Affiliation(s)
- Cameron G Walker
- Department of Oral Biology, University of Illinois at Chicago, College of Dentistry, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
786
|
Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice. J Bone Miner Res 2008; 23:1775-88. [PMID: 18597627 PMCID: PMC2685486 DOI: 10.1359/jbmr.080605] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
Collapse
|
787
|
Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, Ostrowski MC, Olsen BR, Glimcher LH. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 2008; 118:3775-89. [PMID: 18846253 DOI: 10.1172/jci35711] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 09/03/2008] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis results from an imbalance in skeletal remodeling that favors bone resorption over bone formation. Bone matrix is degraded by osteoclasts, which differentiate from myeloid precursors in response to the cytokine RANKL. To gain insight into the transcriptional regulation of bone resorption during growth and disease, we generated a conditional knockout of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). Deletion of Nfatc1 in young mice resulted in osteopetrosis and inhibition of osteoclastogenesis in vivo and in vitro. Transcriptional profiling revealed NFATc1 as a master regulator of the osteoclast transcriptome, promoting the expression of numerous genes needed for bone resorption. In addition, NFATc1 directly repressed osteoclast progenitor expression of osteoprotegerin, a decoy receptor for RANKL previously thought to be an osteoblast-derived inhibitor of bone resorption. "Cherubism mice", which carry a gain-of-function mutation in SH3-domain binding protein 2 (Sh3bp2), develop osteoporosis and widespread inflammation dependent on the proinflammatory cytokine, TNF-alpha. Interestingly, deletion of Nfatc1 protected cherubism mice from systemic bone loss but did not inhibit inflammation. Taken together, our study demonstrates that NFATc1 is required for remodeling of the growing and adult skeleton and suggests that NFATc1 may be an effective therapeutic target for osteoporosis associated with inflammatory states.
Collapse
Affiliation(s)
- Antonios O Aliprantis
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
788
|
Sathi GSA, Nagatsuka H, Tamamura R, Fujii M, Gunduz M, Inoue M, Rivera RS, Nagai N. Stromal cells promote bone invasion by suppressing bone formation in ameloblastoma. Histopathology 2008; 53:458-67. [DOI: 10.1111/j.1365-2559.2008.03127.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
789
|
Andrade FR, Sousa DP, Mendonça EF, Silva TA, Lara VS, Batista AC. Expression of bone resorption regulators (RANK, RANKL, and OPG) in odontogenic tumors. ACTA ACUST UNITED AC 2008; 106:548-55. [DOI: 10.1016/j.tripleo.2008.05.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/09/2008] [Accepted: 05/16/2008] [Indexed: 11/27/2022]
|
790
|
Tunyogi-Csapo M, Kis-Toth K, Radacs M, Farkas B, Jacobs JJ, Finnegan A, Mikecz K, Glant TT. Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: fibroblast-mediated pathologic bone resorption. ACTA ACUST UNITED AC 2008; 58:2397-408. [PMID: 18668542 DOI: 10.1002/art.23653] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether proinflammatory cytokine treatment or the complete absence of select cytokines modulates the expression of RANKL and osteoprotegerin (OPG) in synovial fibroblasts. METHODS Fibroblasts were isolated from normal and rheumatoid human synovium and from normal or arthritic joints of wild-type and cytokine gene-deficient (interleukin-4-knockout [IL-4 (-/-)] and interferon-gamma-knockout [IFNgamma (-/-)]) mice. Fibroblasts were stimulated with proinflammatory cytokines (tumor necrosis factor alpha [TNFalpha], IL-1beta, and IL-17) or antiosteoclastogenic cytokines (IL-4 and IFNgamma), alone or in combination, and the expression of RANKL and OPG was measured. RESULTS Proinflammatory cytokine-stimulated fibroblasts from rheumatoid and arthritic mouse joints expressed higher levels of RANKL and OPG than those from normal joints. IL-4 suppressed RANKL expression and increased OPG expression, IFNgamma reduced the production of both RANKL and OPG, and IL-17 had only a modest effect on the expression of RANKL or OPG. Additive effects of combination treatment (TNFalpha/IL-17 or IL-1beta/IL-17) were observed only in the human system. Extensive destruction was observed in the arthritic joints of IL-4 (-/-) mice, with a corresponding upward shift of the RANKL:OPG ratios. However, an IL-17 deficiency did not attenuate arthritis or reduce bone resorption. CONCLUSION Proinflammatory cytokines induce the expression of RANKL and OPG in both human and murine synovial fibroblasts. The RANKL:OPG ratios are shifted in favor of bone protection by IL-4 treatment, and, to a lesser extent, by IFNgamma treatment. Unexpectedly, an IL-17 deficiency alone does not induce reduced inflammatory bone destruction. Our results suggest that synovial fibroblasts may significantly contribute to bone resorption through modulation of RANKL and OPG production in a cytokine-rich milieu of inflamed joints.
Collapse
Affiliation(s)
- Miklos Tunyogi-Csapo
- Department of Orthopedic Surgery, Rush University Medical Center, Cohn Research Building, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
791
|
Staphylococcus aureus induces expression of receptor activator of NF-kappaB ligand and prostaglandin E2 in infected murine osteoblasts. Infect Immun 2008; 76:5120-6. [PMID: 18765718 DOI: 10.1128/iai.00228-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteomyelitis is an inflammatory disease of the bone that is characterized by the presence of necrotic bone tissue and increased osteoclast activity. Staphylococcus aureus is responsible for approximately 80% of all cases of human osteomyelitis. While the disease is especially difficult to treat, the pathogenesis of S. aureus-induced osteomyelitis is poorly understood. Elucidating the molecular mechanisms by which S. aureus induces osteomyelitis could lead to a better understanding of the disease and its progression and development of new treatments. Osteoblasts can produce several soluble factors that serve to modulate the activity or formation of osteoclasts. Receptor activator of NF-kappaB ligand (RANK-L) and prostaglandin E(2) (PGE(2)) are two such molecules which can promote osteoclastogenesis and stimulate bone resorption. In addition, previous studies in our laboratory have shown that osteoblasts produce inflammatory cytokines, such as interleukin 6, following infection with S. aureus, which could induce COX-2 and in turn PGE(2), further modulating osteoclast recruitment and differentiation. Therefore, we hypothesized that following infection with S. aureus, osteoblasts will express increased levels of RANK-L and PGE(2). The results presented in this study provide evidence for the first time that RANK-L mRNA and protein and PGE(2) expression are upregulated in S. aureus-infected primary osteoblasts. In addition, through the use of the specific COX-2 inhibitor NS 398, we show that when PGE(2) production is inhibited, RANK-L production is decreased. These data suggest a mechanism whereby osteoblasts regulate the production of RANK-L during infection.
Collapse
|
792
|
Halapas A, Zacharoulis A, Theocharis S, Karavidas A, Korres D, Papadopoulos K, Katopodis H, Stavropoulou A, Lembessis P, Xiromeritis C, Zacharoulis A, Koutsilieris M. Serum levels of the osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, metalloproteinase-1 (MMP-1) and tissue inhibitors of MMP-1 levels are increased in men 6 months after acute myocardial infarction. Clin Chem Lab Med 2008; 46:510-6. [PMID: 18298349 DOI: 10.1515/cclm.2008.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) are critical regulators of bone remodeling and RANKL/RANK signaling could also play an important role in the remodeling process of several tissues, such as myocardium. Therefore, we investigated whether the serum concentrations of OPG and RANKL correlate with the serum levels of metalloproteinase-1 (MMP-1), MMP-9 and tissue inhibitors of MMP-1 (TIMP-1), which are known regulators of myocardial healing in acute myocardial infarction (AMI) patients. METHODS We analyzed blood samples from 51 consecutively hospitalized men with AMI, 12 men with established ischemic heart failure (New York Heart Association category II, NYHA-II) and 12 healthy men age-matched to the NYHA-II patients. Serum levels of MMP-1, MMP-9, TIMP-1, OPG and RANKL were quantified using commercially available ELISA kits. AMI patients were sampled 4 days and 6 months after MI. RESULTS Our data revealed increased serum levels of OPG, RANKL, MMP-1 and TIMP-1 levels and significant correlations between increased RANKL levels and MMP-1 and TIMP-1 serum levels 6 months after MI. In addition, the ratio OPG/RANKL was very low 6 months after MI, suggesting that the nuclear factor kappa-B signaling is possibly more active 6 months post-MI than it is on day 4 post-MI. CONCLUSIONS Our data suggest that OPG, RANKL, MMP-1 and TIMP-1 serum levels can be potential mediators of myocardial healing after MI. However, further large studies are needed to confirm the utility of OPG and RANKL as markers of healing after ST elevation in MI.
Collapse
Affiliation(s)
- Antonios Halapas
- Department of Experimental Physiology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
793
|
Bu G, Lu W, Liu CC, Selander K, Yoneda T, Hall C, Keller ET, Li Y. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int J Cancer 2008; 123:1034-42. [PMID: 18546262 DOI: 10.1002/ijc.23625] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most breast cancer metastases in bone form osteolytic lesions, but the mechanisms of tumor-induced bone resorption and destruction are not fully understood. Although it is well recognized that Wnt/beta-catenin signaling is important for breast cancer tumorigenesis, the role of this pathway in breast cancer bone metastasis is unclear. Dickkopf1 (Dkk1) is a secreted Wnt/beta-catenin antagonist. In the present study, we demonstrated that activation of Wnt/beta-catenin signaling enhanced Dkk1 expression in breast cancer cells and that Dkk1 overexpression is a frequent event in breast cancer. We also found that human breast cancer cell lines that preferentially form osteolytic bone metastases exhibited increased levels of Wnt/beta-catenin signaling and Dkk1 expression. Moreover, we showed that breast cancer cell-produced Dkk1 blocked Wnt3A-induced osteoblastic differentiation and osteoprotegerin (OPG) expression of osteoblast precursor C2C12 cells and that these effects could be neutralized by a specific anti-Dkk1 antibody. In addition, we found that breast cancer cell conditioned media were able to block Wnt3A-induced NF-kappaB ligand reduction in C2C12 cells. Finally, we demonstrated that conditioned media from breast cancer cells in which Dkk1 expression had been silenced via RNAi were unable to block Wnt3A-induced C2C12 osteoblastic differentiation and OPG expression. Taken together, these results suggest that breast cancer-produced Dkk1 may be an important mechanistic link between primary breast tumors and secondary osteolytic bone metastases.
Collapse
Affiliation(s)
- Guojun Bu
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
794
|
The protein kinase C-responsive inhibitory domain of CARD11 functions in NF-kappaB activation to regulate the association of multiple signaling cofactors that differentially depend on Bcl10 and MALT1 for association. Mol Cell Biol 2008; 28:5668-86. [PMID: 18625728 DOI: 10.1128/mcb.00418-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The activation of NF-kappaB by T-cell receptor (TCR) signaling is critical for T-cell activation during the adaptive immune response. CARD11 is a multidomain adapter that is required for TCR signaling to the IkappaB kinase (IKK) complex. During TCR signaling, the region in CARD11 between the coiled-coil and PDZ domains is phosphorylated by protein kinase Ctheta (PKCtheta) in a required step in NF-kappaB activation. In this report, we demonstrate that this region functions as an inhibitory domain (ID) that controls the association of CARD11 with multiple signaling cofactors, including Bcl10, TRAF6, TAK1, IKKgamma, and caspase-8, through an interaction that requires both the caspase recruitment domain (CARD) and the coiled-coil domain. Consistent with the ID-mediated control of their association, we demonstrate that TRAF6 and caspase-8 associate with CARD11 in T cells in a signal-inducible manner. Using an RNA interference rescue assay, we demonstrate that the CARD, linker 1, coiled-coil, linker 3, SH3, linker 4, and GUK domains are each required for TCR signaling to NF-kappaB downstream of ID neutralization. Requirements for the CARD, linker 1, and coiled-coil domains in signaling are consistent with their roles in the association of CARD11 with Bcl10, TRAF6, TAK1, caspase-8, and IKKgamma. Using Bcl10- and MALT1-deficient cells, we show that CARD11 can recruit signaling cofactors independently of one another in a signal-inducible manner.
Collapse
|
795
|
Winrow VR, Mesher J, Meghji S, Morris CJ, Maguire M, Fox S, Coates ARM, Tormay P, Blake DR, Henderson B. The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts. Cell Microbiol 2008; 10:2091-104. [PMID: 18616692 DOI: 10.1111/j.1462-5822.2008.01193.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis produces two homologous chaperonin (Cpn)60 proteins, Cpn60.1 and Cpn60.2 (Hsp65). Both proteins stimulate human and murine monocyte cytokine synthesis but, unlike Cpn60 proteins from other microbial species, fail to stimulate the breakdown of cultured murine bone. Here, we have examined the mechanism of action of these proteins on bone remodelling and osteoclastogenesis, induced in vitro in murine calvarial explants and the murine monocyte cell line RAW264.7. Additionally, we have determined their effect on bone remodelling in vivo in an animal model of arthritis. Recombinant Cpn60.1 but not Cpn60.2 inhibited bone breakdown both in vitro, in murine calvaria and in vivo, in experimental arthritis. Analysis of the mechanism of action of Cpn60.1 suggests that this protein works by directly blocking the synthesis of the key osteoclast transcription factor, nuclear factor of activated T cells c1. The detection of circulating immunoreactive intact Cpn60.1 in a small number of patients with tuberculosis but not in healthy controls further suggests that the skeleton may be affected in patients with tuberculosis. Taken together, these findings reveal that M. tuberculosis Cpn60.1 is a potent and novel inhibitor of osteoclastogenesis both in vitro and in vivo and a potential cure for bone-resorptive diseases like osteoporosis.
Collapse
Affiliation(s)
- Vivienne R Winrow
- School for Health and Royal National Hospital for Rheumatic Diseases, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
796
|
Abstract
Today, primary hyperparathyroidism (PHPT) in the developed countries is typically a disease with few or no obvious clinical symptoms. However, even in the asymptomatic cases the endogenous excess of PTH increases bone turnover leading to an insidious reversible loss of cortical and trabecular bone because of an expansion of the remodelling space and an irreversible loss of cortical bone due to increased endocortical resorption. In contrast trabecular bone structure and integrity to a large extent is maintained and there may be a slight periosteal expansion. Most studies have reported decreased bone mineral density (BMD) in PHPT mainly located at cortical sites, whereas sites rich in trabecular bone only show a modest reduction or even a slight increase in BMD. The frequent occurrence of vitamin D insufficiency and deficiency in PHPT and increased plasma FGF23 levels may also contribute to the decrease in BMD. The effect of smoking is unsolved. Epidemiological studies have shown that the relative risk of spine and nonspine fractures is increased in untreated PHPT starting up to 10 years before the diagnosis is made. Successful surgery for PHPT normalizes bone turnover, increases BMD and decreases fracture risk based on larger epidemiological studies. However, 10 years after surgery fracture risk appears to increase again due to an increase in forearm fractures. There are no randomized controlled studies (RCTs) demonstrating a protective effect of medical treatment on fracture risk in PHPT. Less conclusive studies suggest that vitamin D supplementation may have a beneficial effect on plasma PTH and BMD in vitamin D deficient PHPT patients. Hormone replacement therapy (HRT) and maybe SERM appear to reduce bone turnover and increase BMD. However, their nonskeletal side-effects preclude their use for this purpose. Bisphosphonates reduce bone turnover and increase BMD in PHPT as in osteoporosis and may be a therapeutical option in selected patients with low BMD. Obviously, there is a need for larger RCTs with fractures as end-points that appraise this possibility. Calcimimetics reduce plasma calcium and PTH in PHPT but has no beneficial effect on bone turnover or BMD. In symptomatic hypercalcaemic PHPT with low BMD where curative surgery is impossible or contraindicated a combination of a calcimimetic and a bisphosphonate may be an undocumented therapeutical option that needs further evaluation.
Collapse
Affiliation(s)
- Leif Mosekilde
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, DK 8000, Aarhus C, Denmark.
| |
Collapse
|
797
|
Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, Sakai Y, Kurosaka M, Kumagai S. (−)‐Epigallocatechin‐3‐gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. ACTA ACUST UNITED AC 2008; 58:2012-8. [DOI: 10.1002/art.23594] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
798
|
Jelinsky SA, Choe SE, Crabtree JS, Cotreau MM, Wilson E, Saraf K, Dorner AJ, Brown EL, Peano BJ, Zhang X, Winneker RC, Harris HA. Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman. BMC Med Genomics 2008; 1:27. [PMID: 18578861 PMCID: PMC2453134 DOI: 10.1186/1755-8794-1-27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/25/2008] [Indexed: 11/21/2022] Open
Abstract
Background Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for post-menopausal hormone therapy (HT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology. Methods We analyzed 19 vaginal biopsies from human subjects pre and post 3-month 17β-estradiol treated by expression profiling. Data were compared to transcriptional profiling generated from vaginal samples obtained from ovariectomized rats treated with 17β-estradiol for 6 hrs, 3 days or 5 days. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene. Results A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation. Conclusion At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.
Collapse
|
799
|
Complex dynamics of osteoclast formation and death in long-term cultures. PLoS One 2008; 3:e2104. [PMID: 18461134 PMCID: PMC2330067 DOI: 10.1371/journal.pone.0002104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/27/2008] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoclasts, cells responsible for bone resorption, contribute to the development of degenerative, metabolic and neoplastic bone diseases, which are often characterized by persistent changes in bone microenvironment. We aimed to investigate the dynamics of osteoclast formation and death in cultures that considerably exceeded the length of standard protocol and to design a mathematical model describing osteoclastogenesis. METHODOLOGY/PRINCIPAL FINDINGS RAW 264.7 monocytic cells fuse to form multinucleated osteoclasts upon treatment with pro-resorptive cytokine RANKL. We have found that in long-term experiments (15-26 days), the dynamics of changes in osteoclast numbers was remarkably complex and qualitatively variable in different experiments. Whereas 19 of 46 experiments exhibited single peak of osteoclast formation, in 27 experiments we observed development of successive waves of osteoclast formation and death. Periodic changes in osteoclast numbers were confirmed in long-term cultures of mouse bone marrow cells treated with M-CSF and RANKL. Because the dynamics of changes in osteoclast numbers was found to be largely independent of monocytes, a two-species model of ordinary differential equations describing the changes in osteoclasts and monocytes was ineffective in recapitulating the oscillations in osteoclast numbers. Following experimental observation that medium collected from mature osteoclasts inhibited osteoclastogenesis in fresh cultures, we introduced a third variable, factor f, to describe osteoclast-derived inhibitor. This model allowed us to simulate the oscillatory changes in osteoclasts, which were coupled to oscillatory changes in the factor f, whereas monocytes changed exponentially. Importantly, to achieve the experimentally observed oscillations with increasing amplitude, we also had to assume that osteoclast presence stimulates osteoclast formation. CONCLUSIONS/SIGNIFICANCE This study identifies the critical role for osteoclast autocrine regulation in controlling long-term dynamic of osteoclast formation and death and describes the complementary roles for negative and positive feedback mediators in determining the sharp dynamics of activation and inactivation of osteoclasts.
Collapse
|
800
|
Voronov I, Li K, Tenenbaum H, Manolson M. Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-κB. Biochem Pharmacol 2008; 75:2034-44. [DOI: 10.1016/j.bcp.2008.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 11/16/2022]
|