751
|
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, Uraoka T, Watanabe T, Kanai T, Sato T. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell 2016; 18:827-838. [PMID: 27212702 DOI: 10.1016/j.stem.2016.04.003] [Citation(s) in RCA: 584] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022]
Abstract
Colorectal tumor is a heterogeneous disease, with varying clinical presentation and prognosis in patients. To establish a platform encompassing this diversity, we generated 55 colorectal tumor organoid lines from a range of histological subtypes and clinical stages, including rare subtypes. Each line was defined by gene expression signatures and optimized for organoid culture according to niche factor requirements. In vitro and in xenografts, the organoids reproduced the histopathological grade and differentiation capacity of their parental tumors. Notably, we found that niche-independent growth is predominantly associated with the adenoma-carcinoma transition reflecting accumulation of multiple mutations. For matched pairs of primary and metastatic organoids, which had similar genetic profiles and niche factor requirements, the metastasis-derived organoids exhibited higher metastatic capacity. These observations underscore the importance of genotype-phenotype analyses at a single-patient level and the value of our resource to provide insights into colorectal tumorigenesis and patient-centered therapeutic development.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shoichi Date
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan
| | - Ai Takano
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kosaku Nanki
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshihiro Nakazato
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Kawasaki
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshio Uraoka
- Division for Research and Development of Minor Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
752
|
A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene 2016; 35:6026-6037. [PMID: 27157610 PMCID: PMC5116560 DOI: 10.1038/onc.2016.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease posing a challenge for accurate classification and treatment of this malignancy. There is no common genetic molecular feature that would allow for the identification of patients at risk for developing recurrences and thus selecting patients who would benefit from more stringent therapies still poses a major clinical challenge. Recently, an international multicenter consortium (CRC Subtyping Consortium) was established aiming at the classification of CRC patients in biologically homogeneous CRC subtypes. Four consensus molecular subtypes (CMSs) were identified, of which the mesenchymal CMS4 presented with worse prognosis signifying the importance of identifying these patients. Despite the large number of samples analyzed and their clear association with unifying biological programs and clinical features, single-driver mutations could not be identified and patients are heterogeneous with regard to currently used clinical markers. We therefore set out to define the regulatory mechanisms underlying the distinct gene expression profiles using a network-based approach involving multiple molecular modalities such as gene expression, methylation levels and microRNA (miR) expression. The miR-200 family presented as the most powerful determinant of CMS4-specific gene expression, tuning the majority of genes differentially expressed in the poor prognosis subtype, including genes associated with the epithelial–mesenchymal transition program. Furthermore, our data show that two epigenetic marks, namely the methylation of the two miR-200 promoter regions, can identify tumors belonging to the mesenchymal subtype and is predictive of disease-free survival in CRC patients. Importantly, epigenetic silencing of the miR-200 family is also detected in epithelial CRC cell lines that belong to the mesenchymal CMS. We thus show that determining regulatory networks is a powerful strategy to define drivers of distinct cancer subtypes, which possess the ability to identify subtype affiliation and to shed light on biological behavior.
Collapse
|
753
|
Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 2016; 92:116-131. [PMID: 27165847 DOI: 10.1016/j.diff.2016.05.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
In this Review we summarize our current understanding of the biology of mesenchymal cells of the intestinal lamina propria focusing mainly on fibroblasts and myofibroblasts. The topics covered include 1) the embryonic origin of mesenchymal cells of the intestinal lamina propria and their heterogeneity in adults, 2) the role of the mesenchyme in intestinal development, 3) the physiological function of fibroblasts and myofibroblasts in adults as part of the intestinal stem cell niche and the mucosal immune system and 4) the involvement of fibroblasts and myofibroblasts in epithelial homeostasis upon injury and in the pathogenesis of diseases such as Inflammatory Bowel Diseases, fibrosis and cancer. We emphasize studies addressing the function of intestinal mesenchymal cells in vivo, and also discuss major open questions and current challenges in this field.
Collapse
Affiliation(s)
- Manolis Roulis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
754
|
Bartolini A, Cardaci S, Lamba S, Oddo D, Marchiò C, Cassoni P, Amoreo CA, Corti G, Testori A, Bussolino F, Pasqualini R, Arap W, Corà D, Di Nicolantonio F, Marchiò S. BCAM and LAMA5 Mediate the Recognition between Tumor Cells and the Endothelium in the Metastatic Spreading of KRAS-Mutant Colorectal Cancer. Clin Cancer Res 2016; 22:4923-4933. [PMID: 27143691 DOI: 10.1158/1078-0432.ccr-15-2664] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE KRAS mutations confer adverse prognosis to colorectal cancer, and no targeted therapies have shown efficacy in this patient subset. Paracrine, nongenetic events induced by KRAS-mutant tumor cells are expected to result in specific deregulation and/or relocation of tumor microenvironment (TME) proteins, which in principle can be exploited as alternative therapeutic targets. EXPERIMENTAL DESIGN A multimodal strategy combining ex vivo/in vitro phage display screens with deep-sequencing and bioinformatics was applied to uncover TME-specific targets in KRAS-mutant hepatic metastasis from colorectal cancer. Expression and localization of BCAM and LAMA5 were validated by immunohistochemistry in preclinical models of human hepatic metastasis and in a panel of human specimens (n = 71). The antimetastatic efficacy of two BCAM-mimic peptides was evaluated in mouse models. The role of BCAM in the interaction of KRAS-mutant colorectal cancer cells with TME cells was investigated by adhesion assays. RESULTS BCAM and LAMA5 were identified as molecular targets within both tumor cells and TME of KRAS-mutant hepatic metastasis from colorectal cancer, where they were specifically overexpressed. Two BCAM-mimic peptides inhibited KRAS-mutant hepatic metastasis in preclinical models. Genetic suppression and biochemical inhibition of either BCAM or LAMA5 impaired adhesion of KRAS-mutant colorectal cancer cells specifically to endothelial cells, whereas adhesion to pericytes and hepatocytes was unaffected. CONCLUSIONS These data show that the BCAM/LAMA5 system plays a functional role in the metastatic spreading of KRAS-mutant colorectal cancer by mediating tumor-TME interactions and as such represents a valuable therapeutic candidate for this large, currently untreatable patient group. Clin Cancer Res; 22(19); 4923-33. ©2016 AACR.
Collapse
Affiliation(s)
- Alice Bartolini
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy
| | - Sabrina Cardaci
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy
| | - Simona Lamba
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy
| | - Daniele Oddo
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy. Department of Oncology, University of Turin, Candiolo (Turin), Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giorgio Corti
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy
| | | | - Federico Bussolino
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy. Department of Oncology, University of Turin, Candiolo (Turin), Italy
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center. Albuquerque, New Mexico. Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center. Albuquerque, New Mexico. Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Davide Corà
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy. Department of Oncology, University of Turin, Candiolo (Turin), Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy. Department of Oncology, University of Turin, Candiolo (Turin), Italy.
| | - Serena Marchiò
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (Turin), Italy. Department of Oncology, University of Turin, Candiolo (Turin), Italy. University of New Mexico Comprehensive Cancer Center. Albuquerque, New Mexico. Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
755
|
Pekarčíková L, Knopfová L, Beneš P, Šmarda J. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells. Cell Signal 2016; 28:924-36. [PMID: 27107996 DOI: 10.1016/j.cellsig.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC.
Collapse
Affiliation(s)
- Lucie Pekarčíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
756
|
Mager LF, Wasmer MH, Rau TT, Krebs P. Cytokine-Induced Modulation of Colorectal Cancer. Front Oncol 2016; 6:96. [PMID: 27148488 DOI: 10.3389/fonc.2016.00096] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.
Collapse
Affiliation(s)
- Lukas F Mager
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tilman T Rau
- Institute of Pathology, University of Bern , Bern , Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
757
|
Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 2016; 99:186-196. [PMID: 26278673 DOI: 10.1016/j.addr.2015.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/26/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
Cancer microenvironment is created not only by malignant epithelial cells, but also by several kinds of stromal cells. Since Paget proposed the "seed and soil" hypothesis, the biological importance of the cancer microenvironment has come to be widely accepted. The main compartment of host stromal cells are fibroblasts (Cancer-Associated Fibroblasts; CAFs), which are the main source of the collagen-producing cells. CAFs directly communicate with the cancer cells and other types of stromal cells to acquire a specific biological phenotype. CAFs play important roles in several aspects of the tumor progression process and the chemotherapeutic process. However, CAFs have heterogeneous origins, phenotypes, and functions under these conditions. A crucial challenge is to understand how much of this heterogeneity serves different biological responses to cancer cells. In this review, we highlight the issue of how diverse and heterogeneous functions given by CAFs can exert potent influences on tumor progression and therapeutic response. Furthermore, we also discuss the current advances in the development of novel therapeutic strategies against CAFs.
Collapse
Affiliation(s)
- Genichiro Ishii
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan.
| | - Atsushi Ochiai
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan
| | - Shinya Neri
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan
| |
Collapse
|
758
|
Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, Saksela O, Hölttä E. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget 2016; 7:15065-92. [PMID: 26918341 PMCID: PMC4924771 DOI: 10.18632/oncotarget.7604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/31/2016] [Indexed: 02/04/2023] Open
Abstract
Melanoma is notorious for its high tendency to metastasize and its refractoriness to conventional treatments after metastasis, and the responses to most targeted therapies are short-lived. A better understanding of the molecular mechanisms behind melanoma development and progression is needed to develop more effective therapies and to identify new markers to predict disease behavior. Here, we compared the gene expression profiles of benign nevi, and non-metastatic and metastatic primary melanomas to identify any common changes in disease progression. We identified several genes associated with inflammation, angiogenesis, and extracellular matrix modification to be upregulated in metastatic melanomas. We selected one of these genes, collagen triple helix repeat containing 1 (CTHRC1), for detailed analysis, and found that CTHRC1 was expressed in both melanoma cells and the associated fibroblasts, as well as in the endothelium of tumor blood vessels. Knockdown of CTHRC1 expression by shRNAs in melanoma cells inhibited their migration in Transwell assays and their invasion in three-dimensional collagen and Matrigel matrices. We also elucidated the possible down-stream effectors of CTHRC1 by gene expression profiling of the CTHRC1-knockdown cells. Our analyses showed that CTHRC1 is regulated coordinately with fibronectin and integrin β3 by the pro-invasive and -angiogenic transcription factor NFATC2. We also found CTHRC1 to be a target of TFGβ and BRAF. These data highlight the importance of tumor stroma in melanoma progression. Furthermore, CTHRC1 was recognized as an important mediator of melanoma cell migration and invasion, providing together with its regulators-NFATC2, TGFβ, and BRAF-attractive therapeutic targets against metastatic melanomas.
Collapse
Affiliation(s)
- Johanna Eriksson
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vadim Le Joncour
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Nummela
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Laakkonen
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
759
|
Vellinga TT, den Uil S, Rinkes IHB, Marvin D, Ponsioen B, Alvarez-Varela A, Fatrai S, Scheele C, Zwijnenburg DA, Snippert H, Vermeulen L, Medema JP, Stockmann HB, Koster J, Fijneman RJA, de Rooij J, Kranenburg O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene 2016; 35:5263-5271. [PMID: 26996663 DOI: 10.1038/onc.2016.60] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
Gene expression-based classification systems have identified an aggressive colon cancer subtype with mesenchymal features, possibly reflecting epithelial-to-mesenchymal transition (EMT) of tumor cells. However, stromal fibroblasts contribute extensively to the mesenchymal phenotype of aggressive colon tumors, challenging the notion of tumor EMT. To separately study the neoplastic and stromal compartments of colon tumors, we have generated a stroma gene filter (SGF). Comparative analysis of stromahigh and stromalow tumors shows that the neoplastic cells in stromahigh tumors express specific EMT drivers (ZEB2, TWIST1, TWIST2) and that 98% of differentially expressed genes are strongly correlated with them. Analysis of differential gene expression between mesenchymal and epithelial cancer cell lines revealed that hepatocyte nuclear factor 4α (HNF4α), a transcriptional activator of intestinal (epithelial) differentiation, and its target genes are highly expressed in epithelial cancer cell lines. However, mesenchymal-type cancer cell lines expressed only part of the mesenchymal genes expressed by tumor-derived neoplastic cells, suggesting that external cues were lacking. We found that collagen-I dominates the extracellular matrix in aggressive colon cancer. Mimicking the tumor microenvironment by replacing laminin-rich Matrigel with collagen-I was sufficient to induce tumor-specific mesenchymal gene expression, suppression of HNF4α and its target genes, and collective tumor cell invasion of patient-derived colon tumor organoids. The data connect collagen-rich stroma to mesenchymal gene expression in neoplastic cells and to collective tumor cell invasion. Targeting the tumor-collagen interface may therefore be explored as a novel strategy in the treatment of aggressive colon cancer.
Collapse
Affiliation(s)
- T T Vellinga
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - I H B Rinkes
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Marvin
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Ponsioen
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Alvarez-Varela
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Fatrai
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Scheele
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H Snippert
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Vermeulen
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - J P Medema
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H B Stockmann
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - J Koster
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - R J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J de Rooij
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - O Kranenburg
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
760
|
Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P, Fridman WH. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin Cancer Res 2016; 22:4057-66. [PMID: 26994146 DOI: 10.1158/1078-0432.ccr-15-2879] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The tumor microenvironment is formed by many distinct and interacting cell populations, and its composition may predict patients' prognosis and response to therapies. Colorectal cancer is a heterogeneous disease in which immune classifications and four consensus molecular subgroups (CMS) have been described. Our aim was to integrate the composition of the tumor microenvironment with the consensus molecular classification of colorectal cancer. EXPERIMENTAL DESIGN We retrospectively analyzed the composition and the functional orientation of the immune, fibroblastic, and angiogenic microenvironment of 1,388 colorectal cancer tumors from three independent cohorts using transcriptomics. We validated our findings using immunohistochemistry. RESULTS We report that colorectal cancer molecular subgroups and microenvironmental signatures are highly correlated. Out of the four molecular subgroups, two highly express immune-specific genes. The good-prognosis microsatellite instable-enriched subgroup (CMS1) is characterized by overexpression of genes specific to cytotoxic lymphocytes. In contrast, the poor-prognosis mesenchymal subgroup (CMS4) expresses markers of lymphocytes and of cells of monocytic origin. The mesenchymal subgroup also displays an angiogenic, inflammatory, and immunosuppressive signature, a coordinated pattern that we also found in breast (n = 254), ovarian (n = 97), lung (n = 80), and kidney (n = 143) cancers. Pathologic examination revealed that the mesenchymal subtype is characterized by a high density of fibroblasts that likely produce the chemokines and cytokines that favor tumor-associated inflammation and support angiogenesis, resulting in a poor prognosis. In contrast, the canonical (CMS2) and metabolic (CMS3) subtypes with intermediate prognosis exhibit low immune and inflammatory signatures. CONCLUSIONS The distinct immune orientations of the colorectal cancer molecular subtypes pave the way for tailored immunotherapies. Clin Cancer Res; 22(16); 4057-66. ©2016 AACR.
Collapse
Affiliation(s)
- Etienne Becht
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Nicolas A Giraldo
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Camilla Pilati
- Université Paris Descartes, Paris, France. INSERM, UMR_S1147, Paris, France
| | - Bénédicte Buttard
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Laetitia Lacroix
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Janick Selves
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM - Université Toulouse III, Toulouse, France. Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Catherine Sautès-Fridman
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | | | - Wolf Herman Fridman
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
761
|
García-Palmero I, Torres S, Bartolomé RA, Peláez-García A, Larriba MJ, Lopez-Lucendo M, Peña C, Escudero-Paniagua B, Muñoz A, Casal JI. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI). Oncogene 2016; 35:5224-5236. [PMID: 26973246 DOI: 10.1038/onc.2016.57] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
Abstract
The transcription factor Twist1 is involved in the epithelial-mesenchymal transition and contributes to cancer metastasis through mostly unknown mechanisms. In colorectal cancer, Twist1 expression is mainly restricted to the tumor stroma. We found that human fibroblast cell lines stably transfected with Twist1 acquired characteristics of activated cancer-associated fibroblasts (CAFs), such as hyperproliferation, an increased ability to migrate and an alignment of the actin cytoskeleton. Further, Twist1-activated fibroblasts promoted increased matrix stiffness. Using quantitative proteomics, we identified palladin and collagen α1(VI) as two major mediators of the Twist1 effects in fibroblast cell lines. Co-immunoprecipitation studies indicated that palladin and Twist1 interact within the nucleus, suggesting that palladin could act as a transcription regulator. Palladin was found to be more relevant for the cellular biomechanical properties, orientation and polarity, and collagen α1(VI) for the migration and invasion capacity, of Twist1-activated fibroblasts. Both palladin and collagen α1(VI) were observed to be overexpressed in colorectal CAFs and to be associated with poor colorectal cancer patient survival and relapse prediction. Our results demonstrate that Twist1-expressing fibroblasts mimic the properties of CAFs present at the tumor invasive front, which likely explains the prometastatic activities of Twist1. Twist1 appears to require both palladin and collagen α1(VI) as downstream effectors for its prometastatic effects, which could be future therapeutic targets in cancer metastasis.
Collapse
Affiliation(s)
- I García-Palmero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - S Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - R A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - A Peláez-García
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - M J Larriba
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - M Lopez-Lucendo
- Proteomics Core Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - C Peña
- Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - B Escudero-Paniagua
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - A Muñoz
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - J I Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
762
|
Dowling CM, Walsh D, Coffey JC, Kiely PA. The importance of selecting the appropriate reference genes for quantitative real time PCR as illustrated using colon cancer cells and tissue. F1000Res 2016. [PMID: 26962435 DOI: 10.12688/f1000research.7656.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) remains the most sensitive technique for nucleic acid quantification. Its popularity is reflected in the remarkable number of publications reporting RT-qPCR data. Careful normalisation within RT-qPCR studies is imperative to ensure accurate quantification of mRNA levels. This is commonly achieved through the use of reference genes as an internal control to normalise the mRNA levels between different samples. The selection of appropriate reference genes can be a challenge as transcript levels vary with physiology, pathology and development, making the information within the transcriptome flexible and variable. In this study, we examined the variation in expression of a panel of nine candidate reference genes in HCT116 and HT29 2-dimensional and 3-dimensional cultures, as well as in normal and cancerous colon tissue. Using normfinder we identified the top three most stable genes for all conditions. Further to this we compared the change in expression of a selection of PKC coding genes when the data was normalised to one reference gene and three reference genes. Here we demonstrated that there is a variation in the fold changes obtained dependent on the number of reference genes used. As well as this, we highlight important considerations namely; assay efficiency tests, inhibition tests and RNA assessment which should also be implemented into all RT-qPCR studies. All this data combined demonstrates the need for careful experimental design in RT-qPCR studies to help eliminate false interpretation and reporting of results.
Collapse
Affiliation(s)
- Catríona M Dowling
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Dara Walsh
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - John C Coffey
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
763
|
Janeckova L, Kolar M, Svec J, Lanikova L, Pospichalova V, Baloghova N, Vojtechova M, Sloncova E, Strnad H, Korinek V. HIC1 Expression Distinguishes Intestinal Carcinomas Sensitive to Chemotherapy. Transl Oncol 2016; 9:99-107. [PMID: 27084425 PMCID: PMC4833890 DOI: 10.1016/j.tranon.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Neoplastic growth is frequently associated with genomic DNA methylation that causes transcriptional silencing of tumor suppressor genes. We used a collection of colorectal polyps and carcinomas in combination with bioinformatics analysis of large datasets to study the expression and methylation of Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene inactivated in many neoplasms. In premalignant stages, HIC1 expression was decreased, and the decrease was linked to methylation of a specific region in the HIC1 locus. However, in carcinomas, the HIC1 expression was variable and, in some specimens, comparable to healthy tissue. Importantly, high HIC1 production distinguished a specific type of chemotherapy-responsive tumors.
Collapse
Affiliation(s)
- Lucie Janeckova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Kolar
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Svec
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Prague, Srobarova 50, 100 34 Prague 4, Czech Republic
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vendula Pospichalova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Nikol Baloghova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martina Vojtechova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sloncova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hynek Strnad
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
764
|
Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J Intern Med 2016; 279:229-40. [PMID: 26891944 DOI: 10.1111/joim.12412] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many patients with common diseases do not respond to treatment. This is a key challenge to modern health care, which causes both suffering and enormous costs. One important reason for the lack of treatment response is that common diseases are associated with altered interactions between thousands of genes, in combinations that differ between subgroups of patients who do or do not respond to a given treatment. Such subgroups, or even distinct disease entities, have been described recently in asthma, diabetes, autoimmune diseases and cancer. High-throughput techniques (omics) allow identification and characterization of such subgroups or entities. This may have important clinical implications, such as identification of diagnostic markers for individualized medicine, as well as new therapeutic targets for patients who do not respond to existing drugs. For example, whole-genome sequencing may be applied to more accurately guide treatment of neurodevelopmental diseases, or to identify drugs specifically targeting mutated genes in cancer. A study published in 2015 showed that 28% of hepatocellular carcinomas contained mutated genes that potentially could be targeted by drugs already approved by the US Food and Drug Administration. A translational study, which is described in detail, showed how combined omics, computational, functional and clinical studies could identify and validate a novel diagnostic and therapeutic candidate gene in allergy. Another important clinical implication is the identification of potential diagnostic markers and therapeutic targets for predictive and preventative medicine. By combining computational and experimental methods, early disease regulators may be identified and potentially used to predict and treat disease before it becomes symptomatic. Systems medicine is an emerging discipline, which may contribute to such developments through combining omics with computational, functional and clinical studies. The aims of this review are to provide a brief introduction to systems medicine and discuss how it may contribute to the clinical implementation of individualized treatment, using clinically relevant examples.
Collapse
Affiliation(s)
- M Benson
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
765
|
Werner K, Weitz J, Stange DE. Organoids as Model Systems for Gastrointestinal Diseases: Tissue Engineering Meets Genetic Engineering. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0100-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
766
|
Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma. Stem Cells Int 2016; 2016:6756983. [PMID: 26981133 PMCID: PMC4766342 DOI: 10.1155/2016/6756983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 01/14/2023] Open
Abstract
The isolation from brain tumors of tumor mesenchymal stem-like cells (tMSLCs) suggests that these cells play a role in creating a microenvironment for tumor initiation and progression. The clinical characteristics of patients with primary glioblastoma (pGBM) positive for tMSLCs have not been determined. This study analyzed samples from 82 patients with pGBM who had undergone tumor removal, pathological diagnosis, and isolation of tMSLC from April 2009 to October 2014. Survival, extent of resection, molecular markers, and tMSLC culture results were statistically evaluated. Median overall survival was 18.6 months, 15.0 months in tMSLC-positive patients and 29.5 months in tMSLC-negative patients (P = 0.014). Multivariate cox regression model showed isolation of tMSLC (OR = 2.5, 95% CI = 1.1~5.6, P = 0.021) showed poor outcome while larger extent of resection (OR = 0.5, 95% CI = 0.2~0.8, P = 0.011) has association with better outcome. The presence of tMSLCs isolated from the specimen of pGBM is associated with the survival of patient.
Collapse
|
767
|
Lin S, Xu Y, Gan Z, Han K, Hu H, Yao Y, Huang M, Min D. Monitoring cancer stem cells: insights into clinical oncology. Onco Targets Ther 2016; 9:731-40. [PMID: 26929644 PMCID: PMC4755432 DOI: 10.2147/ott.s96645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a small, characteristically distinctive subset of tumor cells responsible for tumor initiation and progression. Several treatment modalities, such as surgery, glycolytic inhibition, driving CSC proliferation, immunotherapy, and hypofractionated radiotherapy, may have the potential to eradicate CSCs. We propose that monitoring CSCs is important in clinical oncology as CSC populations may reflect true treatment response and assist with managing treatment strategies, such as defining optimal chemotherapy cycles, permitting pretreatment cancer surveillance, conducting a comprehensive treatment plan, modifying radiation treatment, and deploying rechallenge chemotherapy. Then, we describe methods for monitoring CSCs.
Collapse
Affiliation(s)
- ShuChen Lin
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - YingChun Xu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - ZhiHua Gan
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - Kun Han
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| | - HaiYan Hu
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - Yang Yao
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, People's Republic of China
| | - MingZhu Huang
- Department of Medical Oncology, Cancer Hospital of Fudan University, Shanghai, People's Republic of China
| | - DaLiu Min
- Department of Oncology, Shanghai Sixth People's Hospital East Campus, Shanghai Jiao Tong University, People's Republic of China
| |
Collapse
|
768
|
Molecular Taxonomy and Tumourigenesis of Colorectal Cancer. Clin Oncol (R Coll Radiol) 2016; 28:73-82. [DOI: 10.1016/j.clon.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
|
769
|
Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, Bakal C, Yuan Y. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis. PLoS Med 2016; 13:e1001961. [PMID: 26881778 PMCID: PMC4755617 DOI: 10.1371/journal.pmed.1001961] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters. METHODS AND FINDINGS We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D) in solid tumors, termed the tumor ecosystem diversity index (EDI), using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2) breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52). Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size. CONCLUSIONS To our knowledge, this is the first study to couple unbiased measures of microenvironmental heterogeneity with genomic alterations to predict breast cancer clinical outcome. We propose a clinically relevant role of microenvironmental heterogeneity for advanced breast tumors, and highlight that ecological statistics can be translated into medical advances for identifying a new type of biomarker and, furthermore, for understanding the synergistic interplay of microenvironmental heterogeneity with genomic alterations in cancer cells.
Collapse
Affiliation(s)
- Rachael Natrajan
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom.,Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Heba Sailem
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Mar Arias Garcia
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Tape
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom.,Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.,Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom.,Academic Department of Biochemistry, Royal Marsden Hospital, London, United Kingdom
| | - Chris Bakal
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.,Centre for Molecular Pathology, Royal Marsden Hospital, London, United Kingdom.,Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
770
|
Dowling CM, Walsh D, Coffey JC, Kiely PA. The importance of selecting the appropriate reference genes for quantitative real time PCR as illustrated using colon cancer cells and tissue. F1000Res 2016; 5:99. [PMID: 26962435 PMCID: PMC4768652 DOI: 10.12688/f1000research.7656.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) remains the most sensitive technique for nucleic acid quantification. Its popularity is reflected in the remarkable number of publications reporting RT-qPCR data. Careful normalisation within RT-qPCR studies is imperative to ensure accurate quantification of mRNA levels. This is commonly achieved through the use of reference genes as an internal control to normalise the mRNA levels between different samples. The selection of appropriate reference genes can be a challenge as transcript levels vary with physiology, pathology and development, making the information within the transcriptome flexible and variable. In this study, we examined the variation in expression of a panel of nine candidate reference genes in HCT116 and HT29 2-dimensional and 3-dimensional cultures, as well as in normal and cancerous colon tissue. Using normfinder we identified the top three most stable genes for all conditions. Further to this we compared the change in expression of a selection of PKC coding genes when the data was normalised to one reference gene and three reference genes. Here we demonstrated that there is a variation in the fold changes obtained dependent on the number of reference genes used. As well as this, we highlight important considerations namely; assay efficiency tests, inhibition tests and RNA assessment which should also be implemented into all RT-qPCR studies. All this data combined demonstrates the need for careful experimental design in RT-qPCR studies to help eliminate false interpretation and reporting of results.
Collapse
Affiliation(s)
- Catríona M Dowling
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Dara Walsh
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - John C Coffey
- 4i Centre for Interventions in Infection, Inflammation and Immunity, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
771
|
Read T, Richmond PA, Dowell RD. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity. PLoS Genet 2016; 12:e1005746. [PMID: 26751950 PMCID: PMC4709078 DOI: 10.1371/journal.pgen.1005746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.
Collapse
Affiliation(s)
- Timothy Read
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
| | - Phillip A. Richmond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, United States of America
| | - Robin D. Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
772
|
Yuen ST, Leung SY. Genomics Study of Gastric Cancer and Its Molecular Subtypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:419-39. [PMID: 27573784 DOI: 10.1007/978-3-319-41388-4_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a heterogeneous disease encompassing diverse morphological (intestinal versus diffuse) and molecular subtypes (MSI, EBV, TP53 mutation). Recent advances in genomic technology have led to an improved understanding of the driver gene mutational profile, gene expression, and epigenetic alterations that underlie each of the subgroups, with therapeutic implications in some of these alterations. There have been attempts to classify gastric cancers based on these genomic features, with an aim to improve prognostication and predict responsiveness to specific drug therapy. The eventual aims of these genomic studies are to develop deep biological insights into the carcinogenic pathway in each of these subtypes. Future large-scale drug screening strategies may then be able to link these genomic features to drug responsiveness, eventually leading to genome-guided personalized medicine with improved cure rates.
Collapse
Affiliation(s)
- Siu Tsan Yuen
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Suet Yi Leung
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
773
|
Abstract
The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.
Collapse
Affiliation(s)
- Peter D Caie
- Quantitative and systems pathology, University of St Andrews, North Haugh, Fife, St Andrews, KY16 9TF, UK
| | - David J Harrison
- Quantitative and systems pathology, University of St Andrews, North Haugh, Fife, St Andrews, KY16 9TF, UK.
| |
Collapse
|
774
|
Rossanese O, Eccles S, Springer C, Swain A, Raynaud FI, Workman P, Kirkin V. The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ddmod.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
775
|
Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Adv Immunol 2016; 130:95-190. [DOI: 10.1016/bs.ai.2015.12.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
776
|
Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression. Stem Cells Int 2015; 2016:4824573. [PMID: 26798356 PMCID: PMC4699086 DOI: 10.1155/2016/4824573] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023] Open
Abstract
The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease.
Collapse
|
777
|
Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol 2015; 35:107-24. [DOI: 10.1016/j.semcancer.2015.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 02/08/2023]
|
778
|
Pallangyo CK, Ziegler PK, Greten FR. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J Exp Med 2015; 212:2253-66. [PMID: 26621452 PMCID: PMC4689166 DOI: 10.1084/jem.20150576] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Pallangyo et al. report that fibroblast-specific IKKβ deletion in Col1a2Cre-ERT2 mice promotes AOM/DSS-induced intestinal tumorigenesis, suggesting a tumor suppressor role for this kinase. In contrast, a companion study by Koliaraki et al. based on IKKβ deletion in ColVI-expressing intestinal mesenchymal cells suggests a role for IKKβ in promoting intestinal tumorigenesis. The two studies raise the awareness that in the context of tumorigenesis, IKKβ/NF-κB may have distinct functions in different fibroblast subpopulations. Cancer-associated fibroblasts (CAFs) comprise one of the most important cell types in the tumor microenvironment. A proinflammatory NF-κB gene signature in CAFs has been suggested to promote tumorigenesis in models of pancreatic and mammary skin cancer. Using an autochthonous model of colitis-associated cancer (CAC) and sporadic cancer, we now provide evidence for a tumor-suppressive function of IKKβ/NF-κB in CAFs. Fibroblast-restricted deletion of Ikkβ stimulates intestinal epithelial cell proliferation, suppresses tumor cell death, enhances accumulation of CD4+Foxp3+ regulatory T cells, and induces angiogenesis, ultimately promoting colonic tumor growth. In Ikkβ-deficient fibroblasts, transcription of negative regulators of TGFβ signaling, including Smad7 and Smurf1, is impaired, causing up-regulation of a TGFβ gene signature and elevated hepatocyte growth factor (HGF) secretion. Overexpression of Smad7 in Ikkβ-deficient fibroblasts prevents HGF secretion, and pharmacological inhibition of Met during the CAC model confirms that enhanced tumor promotion is dependent on HGF–Met signaling in mucosa of Ikkβ-mutant animals. Collectively, these results highlight an unexpected tumor suppressive function of IKKβ/NF-κB in CAFs linked to HGF release and raise potential concerns about the use of IKK inhibitors in colorectal cancer patients.
Collapse
Affiliation(s)
- Charles K Pallangyo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Paul K Ziegler
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany German Cancer Consortium (DKTK), 69120 Heidelberg, Germany German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
779
|
Three-Dimensional Gastrointestinal Organoid Culture in Combination with Nerves or Fibroblasts: A Method to Characterize the Gastrointestinal Stem Cell Niche. Stem Cells Int 2015; 2016:3710836. [PMID: 26697073 PMCID: PMC4677245 DOI: 10.1155/2016/3710836] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal epithelium is characterized by a high turnover of cells and intestinal stem cells predominantly reside at the bottom of crypts and their progeny serve to maintain normal intestinal homeostasis. Accumulating evidence demonstrates the pivotal role of a niche surrounding intestinal stem cells in crypts, which consists of cellular and soluble components and creates an environment constantly influencing the fate of stem cells. Here we describe different 3D culture systems to culture gastrointestinal epithelium that should enable us to study the stem cell niche in vitro in the future: organoid culture and multilayered systems such as organotypic cell culture and culture of intestinal tissue fragments ex vivo. These methods mimic the in vivo situation in vitro by creating 3D culture conditions that reflect the physiological situation of intestinal crypts. Modifications of the composition of the culture media as well as coculturing epithelial organoids with previously described cellular components such as myofibroblasts, collagen, and neurons show the impact of the methods applied to investigate niche interactions in vitro. We further present a novel method to isolate labeled nerves from the enteric nervous system using Dclk1-CreGFP mice.
Collapse
|
780
|
Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β. Sci Rep 2015; 5:16941. [PMID: 26585689 PMCID: PMC4653660 DOI: 10.1038/srep16941] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment and influence tumor progression; however, how MSCs induce the invasion of cancer cells is not completely understood. Here, we used a 3D coculture model to determine how MSCs affect the migration of invasive breast cancer cells. Coculture with MSCs increases the elongation, directional migration, and traction generation of breast cancer cells. MSC-induced directional migration directly correlates with traction generation and is mediated by transforming growth factor β (TGF-β) and the migratory proteins rho-associated kinase, focal adhesion kinase, and matrix metalloproteinases. Treatment with MSC conditioned media or recombinant TGF-β1 elicits a similar migration response to coculture. Taken together, this work suggests TGF-β is secreted by MSCs, leading to force-dependent directional migration of invasive breast cancer cells. These pathways may be potential targets for blocking cancer cell invasion and subsequent metastasis.
Collapse
|
781
|
Sinha D, Chong L, George J, Schlüter H, Mönchgesang S, Mills S, Li J, Parish C, Bowtell D, Kaur P. Pericytes Promote Malignant Ovarian Cancer Progression in Mice and Predict Poor Prognosis in Serous Ovarian Cancer Patients. Clin Cancer Res 2015; 22:1813-24. [PMID: 26589433 DOI: 10.1158/1078-0432.ccr-15-1931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of pericytes in regulating malignant ovarian cancer progression. EXPERIMENTAL DESIGN The pericyte mRNA signature was used to interrogate ovarian cancer patient datasets to determine its prognostic value for recurrence and mortality. Xenograft models of ovarian cancer were used to determine if co-injection with pericytes affected tumor growth rate and metastasis, whereas co-culture models were utilized to investigate the direct effect of pericytes on ovarian cancer cells. Pericyte markers were used to stain patient tissue samples to ascertain their use in prognosis. RESULTS Interrogation of two serous ovarian cancer patient datasets [the Australian Ovarian Cancer Study, n= 215; and the NCI TCGA (The Cancer Genome Atlas), n= 408] showed that a high pericyte score is highly predictive for poor patient prognosis. Co-injection of ovarian cancer (OVCAR-5 & -8) cells with pericytes in a xenograft model resulted in accelerated ovarian tumor growth, and aggressive metastases, without altering tumor vasculature. Pericyte co-culture in vitro promoted ovarian cancer cell proliferation and invasion. High αSMA protein levels in patient tissue microarrays were correlated with more aggressive disease and earlier recurrence. CONCLUSIONS High pericyte score provides the best means to date of identifying patients with ovarian cancer at high risk of rapid relapse and mortality (mean progression-free survival time < 9 months). The stroma contains rare yet extremely potent locally resident mesenchymal stem cells-a subset of "cancer-associated fibroblasts" that promote aggressive tumor growth and metastatic dissemination, underlying the prognostic capacity of a high pericyte score to strongly predict earlier relapse and mortality.
Collapse
Affiliation(s)
- Devbarna Sinha
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lynn Chong
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joshy George
- Cancer Genetics & Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Holger Schlüter
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Susann Mönchgesang
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stuart Mills
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher Parish
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - David Bowtell
- Cancer Genetics & Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia. Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Pritinder Kaur
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
782
|
Yu X, Zeng T, Li G. Integrative enrichment analysis: a new computational method to detect dysregulated pathways in heterogeneous samples. BMC Genomics 2015; 16:918. [PMID: 26556243 PMCID: PMC4641376 DOI: 10.1186/s12864-015-2188-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/02/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis is a useful tool to study biology and biomedicine, due to its functional screening on well-defined biological procedures rather than separate molecules. The measurement of malfunctions of pathways with a phenotype change, e.g., from normal to diseased, is the key issue when applying enrichment analysis on a pathway. The differentially expressed genes (DEGs) are widely focused in conventional analysis, which is based on the great purity of samples. However, the disease samples are usually heterogeneous, so that, the genes with great differential expression variance (DEVGs) are becoming attractive and important to indicate the specific state of a biological system. In the context of differential expression variance, it is still a challenge to measure the enrichment or status of a pathway. To address this issue, we proposed Integrative Enrichment Analysis (IEA) based on a novel enrichment measurement. RESULTS The main competitive ability of IEA is to identify dysregulated pathways containing DEGs and DEVGs simultaneously, which are usually under-scored by other methods. Next, IEA provides two additional assistant approaches to investigate such dysregulated pathways. One is to infer the association among identified dysregulated pathways and expected target pathways by estimating pathway crosstalks. The other one is to recognize subtype-factors as dysregulated pathways associated to particular clinical indices according to the DEVGs' relative expressions rather than conventional raw expressions. Based on a previously established evaluation scheme, we found that, in particular cohorts (i.e., a group of real gene expression datasets from human patients), a few target disease pathways can be significantly high-ranked by IEA, which is more effective than other state-of-the-art methods. Furthermore, we present a proof-of-concept study on Diabetes to indicate: IEA rather than conventional ORA or GSEA can capture the under-estimated dysregulated pathways full of DEVGs and DEGs; these newly identified pathways could be significantly linked to prior-known disease pathways by estimated crosstalks; and many candidate subtype-factors recognized by IEA also have significant relation with the risk of subtypes of genotype-phenotype associations. CONCLUSIONS Totally, IEA supplies a new tool to carry on enrichment analysis in the complicate context of clinical application (i.e., heterogeneity of disease), as a necessary complementary and cooperative approach to conventional ones.
Collapse
Affiliation(s)
- Xiangtian Yu
- School of Mathematics, Shandong University, Jinan, 250100, China.
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Cell Building Level 3, YueYang Road 320, Shanghai, 200031, China.
| | - Guojun Li
- School of Mathematics, Shandong University, Jinan, 250100, China.
| |
Collapse
|
783
|
Koelzer VH, Canonica K, Dawson H, Sokol L, Karamitopoulou-Diamantis E, Lugli A, Zlobec I. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology 2015; 5:e1106677. [PMID: 27141391 DOI: 10.1080/2162402x.2015.1106677] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022] Open
Abstract
Tumor-associated macrophages (TAM) play a controversial role in epithelial-mesenchymal transition (EMT) and prognosis of colorectal cancer (CRC). In particular, the microlocalization, polarization and prognostic impact of TAM in the immediate environment of invading CRC cells has not yet been established. To address this clinically relevant question, intraepithelial (iCD68) and stromal macrophages (sCD68), M1-macrophages (iNOS), M2-macrophages (CD163), cytokeratin-positive cancer cells (tumor buds) and expression of the anti-phagocytic marker CD47 were investigated in primary tumors of 205 well-characterized CRC patients. Cell-to-cell contacts between tumor buds and TAM were detected using high-resolution digital scans. The composition of the tumor microenvironment was analyzed with clinicopathological and molecular features. High CD68 counts predicted long term overall survival independent of microlocalization (iCD68 p=0.0016; sCD68 p=0.03), pT, pN, pM and post-operative therapy. CD68 infiltration correlated with significantly less tumor budding (iCD68 p=0.0066; sCD68 p=0.0091) and absence of lymph node metastasis (sCD68 p=0.0286). Cell-to-cell contact of sCD68 and invading cancer cells was frequent and ameliorated the detrimental prognostic effect of the tumor budding phenotype. Subgroup analysis identified long-term survival with CD47 loss and predominance of CD163+ M2 macrophages (p = 0.0366). CD163+ macrophages represented 40% of the total population, and positively correlated with total CD68 macrophage numbers (r[CD68/CD163] = 0.32; p = 0.0001). Strong CD163 infiltration predicted lower tumor grade (p = 0.0026) and less lymph node metastasis (p = 0.0056). This study provides direct morphological evidence of an interaction between TAM and infiltrating cancer cells. The prognostic impact of TAM is modulated by phenotype, microlocalization and the expression of anti-phagocytic markers in CRC.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Katharina Canonica
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lena Sokol
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern, Switzerland
| | - Eva Karamitopoulou-Diamantis
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern , Bern, Switzerland
| |
Collapse
|
784
|
Zhang S, Jing Y, Zhang M, Zhang Z, Ma P, Peng H, Shi K, Gao WQ, Zhuang G. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci Rep 2015; 5:16066. [PMID: 26530441 PMCID: PMC4632004 DOI: 10.1038/srep16066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation of subtype regulatory networks, we identified the transcriptional modules containing master regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal master regulators were associated with poor prognosis, while Immunoreactive master regulators positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor microenvironment.
Collapse
Affiliation(s)
- Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meiying Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixin Peng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaixuan Shi
- School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering &Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
785
|
Owusu BY, Vaid M, Kaler P, Klampfer L. Prognostic and Predictive Significance of Stromal Fibroblasts and Macrophages in Colon Cancer. BIOMARKERS IN CANCER 2015; 7:29-37. [PMID: 26568685 PMCID: PMC4631158 DOI: 10.4137/bic.s25247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment. Recent advances in the understanding of the involvement of the tumor microenvironment in tumor progression and therapeutic response are optimizing the application of prognostic and predictive factors in colon cancer. Moreover, new targets in the tumor microenvironment that are amenable to therapeutic intervention have been identified. Because stromal cells are with rare exceptions genetically stable, the tumor microenvironment has emerged as a preferred target for therapeutic drugs. In this review, we discuss the role of stromal fibroblasts and macrophages in colon cancer progression and in the response of colon cancer patients to therapy.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Mudit Vaid
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Pawan Kaler
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| |
Collapse
|
786
|
Bauer J, Ozden O, Akagi N, Carroll T, Principe DR, Staudacher JJ, Spehlmann ME, Eckmann L, Grippo PJ, Jung B. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer 2015; 14:182. [PMID: 26497569 PMCID: PMC4619565 DOI: 10.1186/s12943-015-0456-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer. Method Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/− or wild type mice. Colon cancer cell lines (+/− SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays. Results In primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling. Conclusion Although activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Ozkan Ozden
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Naomi Akagi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Martina E Spehlmann
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA.
| |
Collapse
|
787
|
Schell MJ, Yang M, Missiaglia E, Delorenzi M, Soneson C, Yue B, Nebozhyn MV, Loboda A, Bloom G, Yeatman TJ. A Composite Gene Expression Signature Optimizes Prediction of Colorectal Cancer Metastasis and Outcome. Clin Cancer Res 2015; 22:734-45. [PMID: 26446941 DOI: 10.1158/1078-0432.ccr-15-0143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE We previously found that an epithelial-to-mesenchymal transition (EMT)-based gene expression signature was highly correlated with the first principal component (PC1) of 326 colorectal cancer tumors and was prognostic. This study was designed to improve these signatures for better prediction of metastasis and outcome. EXPERIMENTAL DESIGN A total of 468 colorectal cancer tumors including all stages (I-IV) and metastatic lesions were used to develop a new prognostic score (ΔPC1.EMT) by subtracting the EMT signature score from its correlated PC1 signature score. The score was validated on six other independent datasets with a total of 3,697 tumors. RESULTS ΔPC1.EMT was found to be far more predictive of metastasis and outcome than its parent scores. It performed well in stages I to III, among microsatellite instability subtypes, and across multiple mutation-based subclasses, demonstrating a refined capacity to predict distant metastatic potential even in tumors with a "good" prognosis. For example, in the PETACC-3 clinical trial dataset, it predicted worse overall survival in an adjusted multivariable model for stage III patients (HR standardized by interquartile range [IQR] = 1.50; 95% confidence interval, 1.25-1.81; P = 0.000016, N = 644). The improved performance of ΔPC1.EMT was related to its propensity to identify epithelial-like subpopulations as well as mesenchymal-like subpopulations. Biologically, the signature was correlated positively with RAS signaling but negatively with mitochondrial metabolism. ΔPC1.EMT was a "best of assessed" prognostic score when compared with 10 other known prognostic signatures. CONCLUSIONS The study developed a prognostic signature score with a propensity to detect non-EMT features, including epithelial cancer stem cell-related properties, thereby improving its potential to predict metastasis and poorer outcome in stage I-III patients.
Collapse
Affiliation(s)
| | - Mingli Yang
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina
| | | | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. Ludwig Center for Cancer Research, University of Lausanne (CH), Lausanne, Switzerland. Department of Oncology, University of Lausanne (CH), Lausanne, Switzerland
| | | | - Binglin Yue
- Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | - Gregory Bloom
- Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Timothy J Yeatman
- Gibbs Cancer Center & Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
788
|
Abstract
Sporadic colorectal cancer (CRC) is a somatic genetic disease in which pathogenesis is influenced by the local colonic environment and the patient's genetic background. Consolidating the knowledge of genetic and epigenetic events that occur with initiation, progression, and metastasis of sporadic CRC has identified some biomarkers that might be utilized to predict behavior and prognosis beyond staging, and inform treatment approaches. Modern next-generation sequencing of sporadic CRCs has confirmed prior identified genetic alterations and has classified new alterations. Each patient's CRC is genetically unique, propelled by 2-8 driver gene alterations that have accumulated within the CRC since initiation. Commonly observed alterations across sporadic CRCs have allowed classification into a (1) hypermutated group that includes defective DNA mismatch repair with microsatellite instability and POLE mutations in ∼15%, containing multiple frameshifted genes and BRAF(V600E); (2) nonhypermutated group with multiple somatic copy number alterations and aneuploidy in ∼85%, containing oncogenic activation of KRAS and PIK3CA and mutation and loss of heterozygosity of tumor suppressor genes, such as APC and TP53; (3) CpG island methylator phenotype CRCs in ∼20% that overlap greatly with microsatellite instability CRCs and some nonhypermutated CRCs; and (4) elevated microsatellite alterations at selected tetranucleotide repeats in ∼60% that associates with metastatic behavior in both hypermutated and nonhypermutated groups. Components from these classifications are now used as diagnostic, prognostic, and treatment biomarkers. Additional common biomarkers may come from genome-wide association studies and microRNAs among other sources, as well as from the unique alteration profile of an individual CRC to apply a precision medicine approach to care.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Barbara H Jung
- Division of Gastroenterology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
789
|
Biswas S, Davis H, Irshad S, Sandberg T, Worthley D, Leedham S. Microenvironmental control of stem cell fate in intestinal homeostasis and disease. J Pathol 2015; 237:135-45. [PMID: 25974319 PMCID: PMC4744721 DOI: 10.1002/path.4563] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/27/2022]
Abstract
The conventional model of intestinal epithelial architecture describes a unidirectional tissue organizational hierarchy with stem cells situated at the crypt base and daughter cells proliferating and terminally differentiating as they progress along the vertical (crypt-luminal) axis. In this model, the fate of a cell that has left the niche is determined and its lifespan limited. Evidence is accumulating to suggest that stem cell control and daughter cell fate determination is not solely an intrinsic, cell autonomous property but is heavily influenced by the microenvironment including paracrine, mesenchymal, and endogenous epithelial morphogen gradients. Recent research suggests that in intestinal homeostasis, stem cells transit reversibly between states of variable competence in the niche. Furthermore, selective pressures that disrupt the homeostatic balance, such as intestinal inflammation or morphogen dysregulation, can cause committed progenitor cells and even some differentiated cells to regain stem cell properties. Importantly, it has been recently shown that this disruption of cell fate determination can lead to somatic mutation and neoplastic transformation of cells situated outside the crypt base stem cell niche. This paper reviews the exciting developments in the study of stem cell dynamics in homeostasis, intestinal regeneration, and carcinogenesis, and explores the implications for human disease and cancer therapies.
Collapse
Affiliation(s)
- Sujata Biswas
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Hayley Davis
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shazia Irshad
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Tessa Sandberg
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Daniel Worthley
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Leedham
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
790
|
Liu X, Ji Q, Fan Z, Li Q. Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 2015; 11:2911-22. [PMID: 26414153 DOI: 10.2217/fon.15.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cancer worldwide and CRC-related death is mainly attributed to metastasis. Many cellular signaling pathways have been demonstrated to be aberrant in colorectal tumors, and some of them lead to the acquisition of malignant phenotypes. Therefore, the evaluation of signaling pathways implicated in CRC metastasis is urgent for further understanding of CRC progression and pharmacotherapy. This review focuses on several novel cellular signaling pathways associated with CRC metastasis, including Wnt/β-catenin, p53, COX, TGF-β/Smad, NF-κB, Notch, VEGF and JAKs/STAT3 signaling pathways. Targeted agents developed based on these pathways are also briefly discussed.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhongze Fan
- Interventional Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
791
|
West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15:615-29. [PMID: 26358393 DOI: 10.1038/nri3896] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine networks are crucial aspects of tumour immunology, particularly for colorectal cancer (CRC), in which inflammation and antitumour immunity are key determinants of disease progression. In this Review, we highlight new insights into the functions of well-known cytokines in CRC, describe recently discovered roles for a growing number of novel players, and emphasize the complexity and therapeutic implications of the cytokine milieu. We also discuss how cancer mutations and epigenetic adaptations influence the oncogenic potential of cytokines, a relatively unexplored area that could yield crucial insights into tumour immunology and facilitate the effective application of cytokine-modulatory therapies for CRC.
Collapse
Affiliation(s)
- Nathan R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah McCuaig
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
792
|
Liu Z, Beach JA, Agadjanian H, Jia D, Aspuria PJ, Karlan BY, Orsulic S. Suboptimal cytoreduction in ovarian carcinoma is associated with molecular pathways characteristic of increased stromal activation. Gynecol Oncol 2015; 139:394-400. [PMID: 26348314 DOI: 10.1016/j.ygyno.2015.08.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Suboptimal cytoreductive surgery in advanced epithelial ovarian cancer (EOC) is associated with poor survival but it is unknown if poor outcome is due to the intrinsic biology of unresectable tumors or insufficient surgical effort resulting in residual tumor-sustaining clones. Our objective was to identify the potential molecular pathway(s) and cell type(s) that may be responsible for suboptimal surgical resection. METHODS By comparing gene expression in optimally and suboptimally cytoreduced patients, we identified a gene network associated with suboptimal cytoreduction and explored the biological processes and cell types associated with this gene network. RESULTS We show that primary tumors from suboptimally cytoreduced patients express molecular signatures that are typically present in a distinct molecular subtype of EOC characterized by increased stromal activation and lymphovascular invasion. Similar molecular pathways are present in EOC metastases, suggesting that primary tumors in suboptimally cytoreduced patients are biologically similar to metastatic tumors. We demonstrate that the suboptimal cytoreduction network genes are enriched in reactive tumor stroma cells rather than malignant tumor cells. CONCLUSION Our data suggest that the success of cytoreductive surgery is dictated by tumor biology, such as extensive stromal reaction and increased invasiveness, which may hinder surgical resection and ultimately lead to poor survival.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica A Beach
- Graduate Program in Biomedical Science and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hasmik Agadjanian
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dongyu Jia
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul-Joseph Aspuria
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
793
|
Maris P, Blomme A, Palacios AP, Costanza B, Bellahcène A, Bianchi E, Gofflot S, Drion P, Trombino GE, Di Valentin E, Cusumano PG, Maweja S, Jerusalem G, Delvenne P, Lifrange E, Castronovo V, Turtoi A. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med 2015; 12:e1001871. [PMID: 26327350 PMCID: PMC4556693 DOI: 10.1371/journal.pmed.1001871] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-β1 has been identified as a key driving force behind metastatic breast cancer, with promising therapeutic implications. METHODS AND FINDINGS Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first time, that asporin is overexpressed in the stroma of most human breast cancers and is not expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon exposure to conditioned medium from some but not all human breast cancer cells. While hormone receptor (HR) positive cells cause strong asporin expression, triple-negative breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1β, secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we demonstrate the ability of asporin to inhibit TGF-β1-mediated SMAD2 phosphorylation, epithelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC study performed on human breast carcinoma (n = 180) demonstrates that asporin expression is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient outcome (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion significantly delineate patients with bad outcome regardless of the tumor HR status (area under the curve = 0.87; 95% CI 0.78-0.96; p = 0.0001). Survival analysis, based on gene expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37-0.91; p = 0.017). Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort. CONCLUSIONS Our data show that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy.
Collapse
Affiliation(s)
- Pamela Maris
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
| | - Ana Perez Palacios
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital Liège, University of Liège, Liège, Belgium
| | | | - Pierre Drion
- Animal Facility, GIGA–Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Giovanna Elvi Trombino
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | - Pino G. Cusumano
- Department of Senology, University Hospital Liège, University of Liège, Liège, Belgium
| | - Sylvie Maweja
- Department of Abdominal Surgery, University of Liège, Liège, Belgium
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital Liège, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital Liège, University of Liège, Liège, Belgium
| | - Eric Lifrange
- Department of Senology, University Hospital Liège, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
- * E-mail: (VC); (AT)
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA–Cancer, University of Liège, Liège, Belgium
- * E-mail: (VC); (AT)
| |
Collapse
|
794
|
Gandellini P, Andriani F, Merlino G, D'Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: Cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol 2015; 35:96-106. [PMID: 26320408 DOI: 10.1016/j.semcancer.2015.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Cancer is a complex disease, driven by the accumulation of several somatic aberrations but fostered by a two-way interaction between tumour cells and the surrounding microenvironment. Cancer associated fibroblasts (CAFs) represent one of the major players in tumour-stroma crosstalk. Recent in vitro and in vivo studies, often conducted by employing high throughput approaches, have started unravelling the key pathways involved in their functional effects. This review focus on open challenges in the study of CAF properties and function, highlighting at the same time the existence of common mechanisms as well as peculiarities in different cancer types (breast, prostate and lung cancer). Although still limited by current experimental models, which are unable to deal with the full level of complexity of the tumour microenvironment, a better understanding of these mechanisms may enable the identification of new biomarkers and therapeutic targets, to improve current strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Paolo Gandellini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Andriani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca D'Aiuto
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
795
|
Abstract
Colorectal cancer has been characterized as a genetically heterogeneous disease, with a large diversity in molecular pathogenesis resulting in differential responses to therapy. However, the currently available validated biomarkers KRAS, BRAF, and microsatellite instability do not sufficiently cover this extensive heterogeneity and are therefore not suitable to successfully guide personalized treatment. Recent studies have focused on novel targets and rationally designed combination strategies. Furthermore, a more comprehensive analysis of the underlying biology of the disease revealed distinct phenotypic differences within subgroups of patients harboring the same genetic driver mutation with both prognostic and predictive relevance. Accordingly, patient stratification based on molecular intrinsic subtypes rather than on single gene aberrations holds promise to improve the clinical outcome of patients with colorectal cancer.
Collapse
|
796
|
Cheng F, Zhao J, Zhao Z. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief Bioinform 2015; 17:642-56. [PMID: 26307061 DOI: 10.1093/bib/bbv068] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 12/27/2022] Open
Abstract
Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and catalog somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of >10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of available cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and computational tools have been developed during the past several years and, thus, a review of its advances is urgently needed. Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample saturation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally, we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver or actionable mutations in rapidly emerging precision cancer medicine.
Collapse
|
797
|
McAndrews KM, Yi J, McGrail DJ, Dawson MR. Enhanced Adhesion of Stromal Cells to Invasive Cancer Cells Regulated by Cadherin 11. ACS Chem Biol 2015; 10:1932-8. [PMID: 26046821 DOI: 10.1021/acschembio.5b00353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are known to promote tumor growth and metastasis; however their differential accumulation in invasive and noninvasive tumors is not fully understood. We hypothesized that differences in cell adhesion may contribute to this phenomenon. To test this, we analyzed the adhesion of CAF-precursor fibroblasts and mesenchymal stem cells to invasive and noninvasive cancers originating from the the breast, ovaries, and prostate. In all cases, stromal cells preferentially adhered to more invasive cancer cells. Modulating integrin and cadherin binding affinities with calcium chelation revealed that adhesion was independent of integrin activity but required cadherin function. Invasive cancer cells had increased expression of mesenchymal markers cadherin 2 and 11 that localized with stromal cell cadherin 11, suggesting that these molecules are involved in stromal cell engraftment. Blockade of cadherin 11 on stromal cells inhibited adhesion and may serve as a target for metastatic disease.
Collapse
Affiliation(s)
- Kathleen M. McAndrews
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jaeyoon Yi
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel J. McGrail
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michelle R. Dawson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
798
|
De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch 2015; 467:367-82. [PMID: 26259962 DOI: 10.1007/s00428-015-1818-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laurine Verset
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
799
|
Santolla MF, Avino S, Pellegrino M, De Francesco EM, De Marco P, Lappano R, Vivacqua A, Cirillo F, Rigiracciolo DC, Scarpelli A, Abonante S, Maggiolini M. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis 2015. [PMID: 26225773 PMCID: PMC4650744 DOI: 10.1038/cddis.2015.201] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of tumors exhibit an altered expression of sirtuins, including NAD+-dependent histone deacetylase silent information regulator 1 (SIRT1) that may act as a tumor suppressor or tumor promoter mainly depending on the tumor types. For instance, in breast cancer cells SIRT1 was shown to exert an essential role toward the oncogenic signaling mediated by the estrogen receptor-α (ERα). In accordance with these findings, the suppression of SIRT1 led to the inhibition of the transduction pathway triggered by ERα. As the regulation of SIRT1 has not been investigated in cancer cells lacking ER, in the present study we ascertained the expression and function of SIRT1 by estrogens in ER-negative breast cancer cells and cancer-associated fibroblasts obtained from breast cancer patients. Our results show that 17β-estradiol (E2) and the selective ligand of GPER, namely G-1, induce the expression of SIRT1 through GPER and the subsequent activation of the EGFR/ERK/c-fos/AP-1 transduction pathway. Moreover, we demonstrate that SIRT1 is involved in the pro-survival effects elicited by E2 through GPER, like the prevention of cell cycle arrest and cell death induced by the DNA damaging agent etoposide. Interestingly, the aforementioned actions of estrogens were abolished silencing GPER or SIRT1, as well as using the SIRT1 inhibitor Sirtinol. In addition, we provide evidence regarding the involvement of SIRT1 in tumor growth stimulated by GPER ligands in breast cancer cells and xenograft models. Altogether, our data suggest that SIRT1 may be included in the transduction network activated by estrogens through GPER toward the breast cancer progression.
Collapse
Affiliation(s)
- M F Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - S Avino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - M Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - E M De Francesco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - P De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - R Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - A Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - F Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - D C Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - A Scarpelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - S Abonante
- Breast Cancer Unit, Regional Hospital, Cosenza, Italy
| | - M Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
800
|
Hamilton KE, Chatterji P, Lundsmith ET, Andres SF, Giroux V, Hicks PD, Noubissi FK, Spiegelman VS, Rustgi AK. Loss of Stromal IMP1 Promotes a Tumorigenic Microenvironment in the Colon. Mol Cancer Res 2015; 13:1478-86. [PMID: 26194191 DOI: 10.1158/1541-7786.mcr-15-0224] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED The colon tumor microenvironment is becoming increasingly recognized as a complex but central player in the development of many cancers. Previously, we identified an oncogenic role for the mRNA-binding protein IMP1 (IGF2BP1) in the epithelium during colon tumorigenesis. In the current study, we reveal the contribution of stromal IMP1 in the context of colitis-associated colon tumorigenesis. Interestingly, stromal deletion of Imp1 (Dermo1Cre;Imp1(LoxP/LoxP), or Imp1(ΔMes)) in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer resulted in increased tumor numbers of larger size and more advanced histologic grade than controls. In addition, Imp1(ΔMes) mice exhibited a global increase in protumorigenic microenvironment factors, including enhanced inflammation and stromal components. Evaluation of purified mesenchyme from AOM/DSS-treated Imp1(ΔMes) mice demonstrated an increase in hepatocyte growth factor (HGF), which has not been associated with regulation via IMP1. Genetic knockdown of Imp1 in human primary fibroblasts confirmed an increase in HGF with Imp1 loss, demonstrating a specific, cell-autonomous role for Imp1 loss to increase HGF expression. Taken together, these data demonstrate a novel tumor-suppressive role for IMP1 in colon stromal cells and underscore an exquisite, context-specific function for mRNA-binding proteins, such as IMP1, in disease states. IMPLICATIONS The tumor-suppressive role of stromal IMP1 and its ability to modulate protumorigenic factors suggest that IMP1 status is important for the initiation and growth of epithelial tumors.
Collapse
Affiliation(s)
- Kathryn E Hamilton
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Priya Chatterji
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Emma T Lundsmith
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah F Andres
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Veronique Giroux
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Philip D Hicks
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Felicite K Noubissi
- Department of Pediatrics, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Division of Pediatric Hematology/Oncology, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota
| | - Vladimir S Spiegelman
- Department of Pediatrics, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania. Division of Pediatric Hematology/Oncology, Pennsylvaia State University, College of Medicine, Hershey, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|