851
|
Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68:5439-49. [PMID: 18593947 DOI: 10.1158/0008-5472.can-07-6621] [Citation(s) in RCA: 528] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor-induced T-cell tolerance is a major mechanism that facilitates tumor progression and limits the efficacy of immune therapeutic interventions. Regulatory T cells (Treg) play a central role in the induction of tolerance to tumor antigens, yet the precise mechanisms regulating its induction in vivo remain to be elucidated. Using the A20 B-cell lymphoma model, here we identify myeloid-derived suppressor cells (MDSC) as the tolerogenic antigen presenting cells capable of antigen uptake and presentation to tumor-specific Tregs. MDSC-mediated Treg induction requires arginase but is transforming growth factor-beta independent. In vitro and in vivo inhibition of MDSC function, respectively, with NOHA or sildenafil abrogates Treg proliferation and tumor-induced tolerance in antigen-specific T cells. These findings establish a role for MDSCs in antigen-specific tolerance induction through preferential antigen uptake mediating the recruitment and expansion of Tregs. Furthermore, therapeutic interventions, such as in vivo phosphodiesterase 5-inhibition, which effectively abrogate the immunosuppressive role of MDSCs and reduce Treg numbers, may play a critical role in delaying and/or reversing tolerance induction.
Collapse
Affiliation(s)
- Paolo Serafini
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, University of Miami, School of Medicine, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
852
|
Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett 2008; 267:216-25. [DOI: 10.1016/j.canlet.2008.03.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 12/25/2022]
|
853
|
Schäfer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9:628-38. [PMID: 18628784 DOI: 10.1038/nrm2455] [Citation(s) in RCA: 693] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
What is the relationship between the wound-healing process and the development of cancer? Malignant tumours often develop at sites of chronic injury, and tissue injury has an important role in the pathogenesis of malignant disease, with chronic inflammation being the most important risk factor. The development and functional characterization of genetically modified mice that lack or overexpress genes that are involved in repair, combined with gene-expression analysis in wounds and tumours, have highlighted remarkable similarities between wound repair and cancer. However, a few crucial differences were also observed, which could account for the altered metabolism, impaired differentiation capacity and invasive growth of malignant tumours.
Collapse
Affiliation(s)
- Matthias Schäfer
- Institute of Cell Biology, ETH Zürich, Schafmattstrasse 18, 8093 Zürich, Switzerland
| | | |
Collapse
|
854
|
Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135:234-43. [PMID: 18485901 DOI: 10.1053/j.gastro.2008.03.020] [Citation(s) in RCA: 625] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/05/2008] [Accepted: 03/13/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Several studies have shown that development of hepatocellular carcinoma (HCC) generates a number of immune suppressive mechanisms in these patients. Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that have been shown to inhibit T-cell responses in tumor-bearing mice, but little is known about these cells in humans owing to a lack of specific markers. In this study, we have investigated the frequency and function of a new population of MDSC denoted here as CD14(+)HLA-DR(-/low) in HCC patients. We have also identified a novel, MDSC-mediated immune regulatory pathway in these patients. METHODS We have directly isolated and characterized MDSCs for phenotype and function from peripheral blood (n = 111) and tumor (n = 12) of patients with HCC. RESULTS The frequency of CD14(+)HLA-DR(-/low) cells in peripheral blood mononuclear cells (PBMC) from HCC patients was significantly increased in comparison with healthy controls. CD14(+) HLA-DR(-/low) cells were unable to stimulate an allogeneic T-cell response, suppressed autologous T-cell proliferation, and had high arginase activity, a hallmark characteristic of MDSC. Most important, CD14(+)HLA-DR(-/low) cells from HCC patients induced a CD4(+)CD25(+)Foxp3(+) regulatory T-cell population when cocultured with autologous T cells. CONCLUSION CD14(+)HLA-DR(-/low) cells are a new population of MDSC increased in blood and tumor of HCC patients. We propose a new mechanism by which MDSC exert their immunosuppressive function, through the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells in cocultured CD4(+) T cells. Understanding the mechanism of action of MDSC in HCC patients is important in the design of effective immunotherapeutic protocols.
Collapse
Affiliation(s)
- Bastian Hoechst
- Medizinische Hochschule Hannover, Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
855
|
Abstract
T-cell nonresponsiveness is a critical factor in immune escape and myeloid-derived suppressor cells play a major role in organizing this phenomenon. Recent findings indicate that myeloid-derived suppressor cells can induce antigen-specific CD8(+) T-cell tolerance through a posttranslation mechanism which involves modification (nitration) of CD8 and the T-cell receptor itself on the T-cell surface. Elucidation of this mechanism of T-cell tolerance offers new opportunities for therapeutic corrections of immune escape in cancer.
Collapse
Affiliation(s)
- Srinivas Nagaraj
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida 33612, USA
| | | |
Collapse
|
856
|
Hardy LL, Wick DA, Webb JR. Conversion of tyrosine to the inflammation-associated analog 3'-nitrotyrosine at either TCR- or MHC-contact positions can profoundly affect recognition of the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein 33 by CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5956-62. [PMID: 18424715 DOI: 10.4049/jimmunol.180.9.5956] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunohistochemical detection of increased levels of protein-associated nitrotyrosine has become widely used as a surrogate marker of in situ inflammation. However, the potential consequences of protein-associated nitrotyrosine formation in terms of cellular immune recognition has received surprisingly little attention. Using a well-defined I-E(K)-restricted epitope of pigeon cytochrome c, we previously demonstrated that conversion of a single tyrosine residue to nitrotyrosine can have a profound effect on recognition by CD4 T cells. In this study, we used the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein (gp33) to demonstrate that conversion of tyrosine to nitrotyrosine can also profoundly affect recognition of MHC class I-restricted epitopes. Conversion of the Y4 residue of the gp33 epitope to nitrotyrosine completely abrogated recognition by gp33-specific T cells from P14 TCR-transgenic mice. In contrast, CD8(+) T cells specific for "nitrated gp33" (NY-gp33) can be readily elicited in C57BL/6 mice after immunization with NY-gp33 peptide. Interestingly, T-T hybridomas specific for NY-gp33 peptide were found to fall into two distinct subsets, being specific for NY-gp33 presented in the context of either H-2D(b) or H-2K(b). This latter result is surprising in light of previous structural studies showing that Y4 comprises a critical TCR-contact residue when presented by H-2D(b) but that the same residue points downward into the peptide-binding groove of the MHC when presented by H-2K(b). Together, these results indicate that nitrotyrosine formation can impact T cell recognition both directly, through alteration of TCR-contact residues, or indirectly, through alterations in MHC-contact positions.
Collapse
Affiliation(s)
- Lani L Hardy
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
857
|
Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF, Hivroz C, Nicaise J, Squifflet JL, Mourad M, Godelaine D, Boon T, van der Bruggen P. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 2008; 28:414-24. [PMID: 18342010 DOI: 10.1016/j.immuni.2008.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 11/27/2022]
Abstract
For several days after antigenic stimulation, human cytolytic T lymphocyte (CTL) clones exhibit a decrease in their effector activity and in their binding to human leukocyte antigen (HLA)-peptide tetramers. We observed that, when in this state, CTLs lose the colocalization of the T cell receptor (TCR) and CD8. Effector function and TCR-CD8 colocalization were restored with galectin disaccharide ligands, suggesting that the binding of TCR to galectin plays a role in the distancing of TCR from CD8. These findings appear to be applicable in vivo, as TCR was observed to be distant from CD8 on human tumor-infiltrating lymphocytes, which were anergic. These lymphocytes recovered effector functions and TCR-CD8 colocalization after ex vivo treatment with galectin disaccharide ligands. The separation of TCR and CD8 molecules could be one major mechanism of anergy in tumors and other chronic stimulation conditions.
Collapse
Affiliation(s)
- Nathalie Demotte
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium; Cellular Genetics Unit, Institute of Cellular Pathology, Université catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
858
|
Abstract
More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.
Collapse
|
859
|
Leon L, Jeannin JF, Bettaieb A. Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 2008; 19:77-83. [PMID: 18474258 DOI: 10.1016/j.niox.2008.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/28/2022]
Abstract
Post-translational modifications of proteins can regulate the balance between survival and cell death signals. It is increasingly recognized that nitric oxide (NO) and reactive oxygen species (ROS)-induced post-translational modifications could play a role in cell death. This review provides an introduction of current knowledge of NO proteins modifications promoting or inhibiting cell death with special attention in cancer cells.
Collapse
Affiliation(s)
- Lissbeth Leon
- EPHE, Laboratoire d'immunologie et immunothérapie des cancers, Inserm U866, Dijon, F-21000, France.
| | | | | |
Collapse
|
860
|
Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008; 221:107-29. [PMID: 18275478 DOI: 10.1111/j.1600-065x.2008.00584.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of the immune system are providing us with ever more detailed information on the cellular and molecular mechanisms that underlie our evolutionarily conserved ability to fend off infectious pathogens. Progress has probably been fastest at two levels: the various basic biological functions of isolated cells on one side and the significance of individual molecules or cells to the organism as a whole on the other. In both cases, direct phenomenological observation has been an invaluable methodological approach. Where we know least is the middle ground, i.e. how immune functions are integrated through the dynamic interplay of immune cell subsets within the organism. Most of our knowledge in this area has been obtained through inference from static snapshots of dynamic processes, such as histological sections, or from surrogate cell co-culture models. The latter are employed under the assumption that an in vivo equivalent exists for each type of cellular contact artificially enforced in absence of anatomical compartmentalization. In this review, we summarize recent insights on migration and effector functions of T cells, focusing on observations gained from their dynamic microscopic visualization in physiological tissue environments.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston, MA 02129, USA
| | | |
Collapse
|
861
|
Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 2008; 8:421-39. [PMID: 18352847 DOI: 10.1517/14712598.8.4.421] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cervical cancer is the second largest cause of cancer deaths in women worldwide. It is now evident that persistent infection with high-risk human papillomavirus (HPV) is necessary for the development and maintenance of cervical cancer. Thus, effective vaccination against HPV represents an opportunity to restrain cervical cancer and other important cancers. The FDA recently approved the HPV vaccine Gardasil for the preventive control of HPV, using HPV virus-like particles (VLP) to generate neutralizing antibodies against major capsid protein, L1. However, prophylactic HPV vaccines do not have therapeutic effects against pre-existing HPV infections and HPV-associated lesions. Furthermore, due to the considerable burden of HPV infections worldwide, it would take decades for preventive vaccines to affect the prevalence of cervical cancer. Thus, in order to speed up the control of cervical cancer and treat current infections, the continued development of therapeutic vaccines against HPV is critical. Therapeutic HPV vaccines can potentially eliminate pre-existing lesions and malignant tumors by generating cellular immunity against HPV-infected cells that express early viral proteins such as E6 and E7. OBJECTIVE This review discusses the future directions of therapeutic HPV vaccine approaches for the treatment of established HPV-associated malignancies, with emphasis on current progress of HPV vaccine clinical trials. METHODS Relevant literature is discussed. RESULTS/CONCLUSION Though their development has been challenging, many therapeutic HPV vaccines have been shown to induce HPV-specific antitumor immune responses in preclinical animal models and several promising strategies have been applied in clinical trials. With continued progress in the field of vaccine development, HPV therapeutic vaccines may provide a potentially promising approach for the control of lethal HPV-associated malignancies.
Collapse
Affiliation(s)
- Chien-Fu Hung
- The Johns Hopkins University School of Medicine, Department of Pathology, CRBII 309, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
862
|
Peng S, Trimble C, Alvarez RD, Huh WK, Lin Z, Monie A, Hung CF, Wu TC. Cluster intradermal DNA vaccination rapidly induces E7-specific CD8+ T-cell immune responses leading to therapeutic antitumor effects. Gene Ther 2008; 15:1156-66. [PMID: 18401437 DOI: 10.1038/gt.2008.53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD+ T-cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal time frame. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T-cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T-cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T-regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor-infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation.
Collapse
Affiliation(s)
- S Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
863
|
Zhang B, Zhang Y, Bowerman NA, Schietinger A, Fu YX, Kranz DM, Rowley DA, Schreiber H. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res 2008; 68:1563-71. [PMID: 18316622 DOI: 10.1158/0008-5472.can-07-5324] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth of solid tumors depends on tumor stroma. A single adoptive transfer of CD8(+) CTLs that recognize tumor antigen-loaded stromal cells, but not the cancer cells because of MHC restriction, caused long-term inhibition of tumor growth. T cells persisted and continuously destroyed CD11b(+) myeloid-derived, F4/80(+) or Gr1(+) stromal cells during homeostasis between host and cancer. Using high-affinity T-cell receptor tetramers, we found that both subpopulations of stromal cells captured tumor antigen from surrounding cancer cells. Epitopes on the captured antigen made these cells targets for antigen-specific T cells. These myeloid stromal cells are immunosuppressive, proangiogenic, and phagocytic. Elimination of these myeloid cells allowed T cells to remain active, prevented neovascularization, and prevented tumor resorption so that tumor size remained stationary. These findings show the effectiveness of adoptive CTL therapy directed against tumor stroma and open a new avenue for cancer treatments.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
864
|
Abstract
New technologies for imaging molecules, particularly optical technologies, are increasingly being used to understand the complexity, diversity and in vivo behaviour of cancers. 'Omic' approaches are providing comprehensive 'snapshots' of biological indicators, or biomarkers, of cancer, but imaging can take this information a step further, showing the activity of these markers in vivo and how their location changes over time. Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and, ultimately, should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide 'on the spot' treatment.
Collapse
Affiliation(s)
- Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
865
|
Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 2008; 111:5457-66. [PMID: 18375791 DOI: 10.1182/blood-2008-01-136895] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor growth is associated with aberrant myelopoiesis, including the accumulation of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) that have the potential to promote tumor growth. However, the identity, growth, and migration of tumor-associated MDSCs remain undefined. We demonstrate herein that MDSCs at tumor site were composed primarily of bone marrow-derived CD11b(+)Gr-1(hi)Ly-6C(int) neutrophils and CD11b(+)Gr-1(int/dull)Ly-6C(hi) macrophages. Unexpectedly, in vivo bromodeoxyuridine (BrdU) labeling and parabiosis experiments revealed that tumor-infiltrating macrophages were replenished more rapidly than neutrophils. CCR2 deficiency caused striking conversion of infiltrating cellular dominance from macrophages to neutrophils in the tumor with the excessive production of CXCR2 ligands and granulocyte-colony stimulating factor in the tumor without affecting tumor growth. Overall, our data established the identity and dynamics of MDSCs in a tumor-bearing host mediated by chemokines and elucidated unexpected effects of the paucity of macrophages on tumor development.
Collapse
|
866
|
Simpson-Abelson M, Bankert RB. Targeting the TCR signaling checkpoint: a therapeutic strategy to reactivate memory T cells in the tumor microenvironment. Expert Opin Ther Targets 2008; 12:477-90. [DOI: 10.1517/14728222.12.4.477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
867
|
Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 2008; 111:5054-63. [PMID: 18349319 DOI: 10.1182/blood-2007-12-130609] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Decoy receptor 3 (DcR3) is a member of the TNF receptor superfamily and is up-regulated in tumors originating from a diversity of lineages. DcR3 is capable of promoting angiogenesis, inducing dendritic cell apoptosis, and modulating macrophage differentiation. Since tumor-associated macrophages (TAMs) are the major infiltrating leukocytes in most malignant tumors, we used microarray technology to investigate whether DcR3 contributes to the development of TAMs. Among the DcR3-modulated genes expressed by TAMs, those that encode proteins involved in MHC class II (MHC-II)-dependent antigen presentation were down-regulated substantially, together with the master regulator of MHC-II expression (the class II transactivator, CIITA). The ERK- and JNK-induced deacetylation of histones associated with the CIITA promoters was responsible for DcR3-mediated down-regulation of MHC-II expression. Furthermore, the expression level of DcR3 in cancer cells correlated inversely with HLA-DR levels on TAMs and with the overall survival time of pancreatic cancer patients. The role of DcR3 in the development of TAMs was further confirmed using transgenic mice overexpressing DcR3. This elucidates the molecular mechanism of impaired MHC-II-mediated antigen presentation by TAMs, and raises the possibility that subversion of TAM-induced immunosuppression via inhibition of DcR3 expression might represent a target for the design of new therapeutics.
Collapse
|
868
|
Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 2008; 18:11-8. [PMID: 18308558 DOI: 10.1016/j.gde.2007.12.007] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/11/2023]
Abstract
Precancerous and malignant cells can induce an immune response which results in the destruction of transformed and/or malignant cells, a process known as immune surveillance. However, immune surveillance is not always successful, resulting in 'edited' tumors that have escaped immune surveillance. Immunoediting is not simply because of the absence of antitumor immunity, but is because of protumor immunity that blocks antitumor adaptive and innate responses, and promotes conditions that favor tumor progression. Several immune protumor effector mechanisms are upregulated by chronic inflammation, leading to the hypothesis that inflammation promotes carcinogenesis and tumor growth by altering the balance between protumor and antitumor immunity, thereby preventing the immune system from rejecting malignant cells, and providing a tumor-friendly environment for progressive disease.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- University of Maryland, Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
869
|
Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 2008; 83:1136-44. [PMID: 18285406 DOI: 10.1189/jlb.0907611] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Here, tumor-infiltrating CD11b(+) myelomonocytoid cells in murine colon adenocarcinoma-38 and GL261 murine glioma were phenotypically characterized. Over 90% were of the CD11b(+)F4/80(+) monocyte/macrophage lineage. They also had a myeloid-derived suppressor cell (MDSC) phenotype, as they suppressed the proliferation of activated splenic CD8(+) T cells and had a CD11b(+)CD11c(+)Gr-1(low)IL-4Ralpha(+) phenotype. In addition, the cells expressed CX(3)CR1 and CCR2 simultaneously, which are the markers of an inflammatory monocyte. The MDSCs expressed CD206, CXCL10, IL-1beta, and TNF-alpha mRNAs. They also simultaneously expressed CXCL10 and CD206 proteins, which are typical, classical (M1) and alternative (M2) macrophage activation markers, respectively. Peritoneal exudate cells (PECs) strongly expressed CD36, CD206, and TGF-beta mRNA, which is characteristic of deactivated monocytes. The MDSCs also secreted TGF-beta, and in vitro culture of MDSCs and PECs with anti-TGF-beta antibody recovered their ability to secrete NO. However, as a result of secretion of proinflammatory cytokines, MDSCs could not be categorized into deactivated monocyte/macrophages. Thus, tumor-infiltrating MDSCs bear pleiotropic characteristics of M1 and M2 monocytes/macrophages. Furthermore, CD206 expression by tumor-infiltrating MDSCs appears to be regulated by an autocrine mechanism that involves TGF-beta.
Collapse
Affiliation(s)
- Naoki Umemura
- Department of Oral and Maxillofacial Sciences, Gifu University Graduate School of Medicine, Gifu-city, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
870
|
Romero P. Current State of Vaccine Therapies in Non–Small-Cell Lung Cancer. Clin Lung Cancer 2008; 9 Suppl 1:S28-36. [DOI: 10.3816/clc.2008.s.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
871
|
Mellor AL, Munn DH. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 2008; 8:74-80. [PMID: 18064049 DOI: 10.1038/nri2233] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural regulatory mechanisms prevent inappropriate immune activation to self and innocuous foreign antigens. Here, we adapt the notion of immune privilege, which was originally applied to transplanted tissues, to consider how antigenic tumour cells and chronic pathogens might exploit natural regulatory mechanisms to become non-immunogenic. This conceptual approach reveals new mechanistic perspectives that may help to explain the paradoxical persistence of tumours and chronic pathogens, and suggests new opportunities to improve immunotherapy to treat these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Andrew L Mellor
- Immunotherapy and Cancer Centers, Medical College of Georgia, Augusta, Georgia USA.
| | | |
Collapse
|
872
|
Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 2008; 67:11438-46. [PMID: 18056472 DOI: 10.1158/0008-5472.can-07-1882] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BALB-neuT mice expressing an activated rat c-erbB-2/neu transgene under the mouse mammary tumor virus long terminal repeat show enhanced hematopoiesis with hyperproduction of myeloid-derived suppressor cells (MDSC) because of vascular endothelial growth factor (VEGF) secreted by the tumor. Here, we show that both tumor and stromal cells express matrix metalloproteinase-9 (MMP-9), thereby increasing the levels of pro-MMP-9 in the sera of tumor-bearing mice. Treatment with amino-biphosphonates impaired tumor growth, significantly decreased MMP-9 expression and the number of macrophages in tumor stroma, and reduced MDSC expansion both in bone marrow and peripheral blood by dropping serum pro-MMP-9 and VEGF. We dissected the role of tumor-derived MMP-9 from that secreted by stromal leukocytes by transplanting bone marrow from MMP-9 knockout mice into BALB-neuT mice. Although bone marrow progenitor-derived MMP-9 had a major role in driving MDSC expansion, amino-biphosphonate treatment of bone marrow chimeras further reduced both myelopoiesis and the supportive tumor stroma, thus enhancing tumor necrosis. Moreover, by reducing MDSC, amino-biphosphonates overcome the tumor-induced immune suppression and improved the generation and maintenance of antitumor immune response induced by immunization against the p185/HER-2. Our data reveal that suppression of MMP-9 activity breaks the vicious loop linking tumor growth and myeloid cell expansion, thus reducing immunosuppression. Amino-biphosphonates disclose a specific MMP-9 inhibitory activity that may broaden their application above their current usage.
Collapse
Affiliation(s)
- Cecilia Melani
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Fondazione Istituto Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy.
| | | | | | | | | |
Collapse
|
873
|
Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev 2008; 220:129-50. [PMID: 17979844 DOI: 10.1111/j.1600-065x.2007.00575.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapy seeks to mobilize a patient's immune system for therapeutic benefit. It can be passive, i.e. transfer of immune effector cells (T cells) or proteins (antibodies), or active, i.e. vaccination. In cancer, passive immunotherapy can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield long-lived memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DC)-based vaccines has the potential to induce both tumor-specific effector and memory T cells. Early clinical trials testing vaccination with ex vivo-generated DCs pulsed with tumor antigens provide a proof-of-principle that therapeutic immunity can be elicited. Yet, there is a need to improve their efficacy. The next generation of DC vaccines is expected to generate large numbers of high-avidity effector CD8(+) T cells and to overcome regulatory T cells. Therapeutic vaccination protocols will combine improved ex vivo DC vaccines with therapies that offset the suppressive environment established by tumors.
Collapse
Affiliation(s)
- A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX, USA.
| | | | | | | |
Collapse
|
874
|
Pan PY, Ozao J, Zhou Z, Chen SH. Advancements in immune tolerance. Adv Drug Deliv Rev 2008; 60:91-105. [PMID: 17976856 DOI: 10.1016/j.addr.2007.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/14/2007] [Indexed: 01/01/2023]
Abstract
In recent years, considerable attention has been given to immune tolerance and its potential clinical applications for the treatment of cancers and autoimmune diseases, and the prevention of allo-graft rejection and graft-versus-host diseases. Advances in our understanding of the underlying mechanisms of establishment and maintenance of immune tolerance in various experimental settings and animal models, and in our ability to manipulate the development of various immune tolerogenic cells in vitro and in vivo, have generated significant momentum for the field of cell-based tolerogenic therapy. This review briefly summarizes the major tolerogenic cell populations and their mechanisms of action, while focusing mainly on potential exploitation of their tolerogenic mechanisms for clinical applications.
Collapse
Affiliation(s)
- Ping-Ying Pan
- Department of Gene and Cell Medicine, Mount Sinai School od Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
875
|
Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 2007; 111:219-28. [PMID: 17885078 PMCID: PMC2200807 DOI: 10.1182/blood-2007-04-086835] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor growth induced a significant increase of myeloid-derived suppressor cells (MDSCs) in the tumor-bearing host. In our previous study, we showed that MDSCs induced tumor-specific T-cell tolerance and the development of T regulatory cells (Tregs). Tumor-derived factors have been implicated in the accumulation of MDSCs. We hypothesize that reduction of MDSC accumulation in tumor-bearing hosts, through the blockade of tumor factors, can prevent T-cell anergy and Treg development and thereby improve immune therapy for the treatment of advanced tumors. Several tumor-derived factors were identified by gene array analysis. Among the candidate factors, stem- cell factor (SCF) is expressed by various human and murine carcinomas and was selected for further study. Mice bearing tumor cells with SCF siRNA knockdown exhibited significantly reduced MDSC expansion and restored proliferative responses of tumor-infiltrating T cells. More importantly, blockade of SCF receptor (ckit)-SCF interaction by anti-ckit prevented tumor-specific T-cell anergy, Treg development, and tumor angiogenesis. Furthermore, the prevention of MDSC accumulation in conjunction with immune activation therapy showed synergistic therapeutic effect when treating mice bearing large tumors. This information supports the notion that modulation of MDSC development may be required to achieve effective immune-enhancing therapy for the treatment of advanced tumors.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Immune Tolerance/immunology
- Immunotherapy
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/secondary
- Liver Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Myeloid Cells/cytology
- Myeloid Cells/immunology
- Neovascularization, Pathologic/immunology
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Small Interfering
- Signal Transduction/immunology
- Stem Cell Factor/genetics
- Stem Cell Factor/immunology
- Stem Cell Factor/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Ping-Ying Pan
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
876
|
Leavy O. New mechanism of tolerance induction in cancer. Nat Rev Immunol 2007. [DOI: 10.1038/nri2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
877
|
Dubrot J, Azpilikueta A, Alfaro C, Murillo O, Arina A, Berraondo P, Hervás-Stubbs S, Melero I. Absence of surface expression of CD137 (4-1BB) on Myeloid-derived suppressor cells. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0213-9626(07)70081-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|