901
|
Abstract
As a nanoscale subset of extracellular vehicles, exosomes represent a new pathway of intercellular communication by delivering cargos such as proteins and nucleic acids to recipient cells. Importantly, it has been well documented that exosome-mediated delivery of such cargo is involved in many pathological processes such as tumor progression, cancer metastasis, and development of drug resistance. Innately biocompatible and possessing ideal structural properties, exosomes offer distinct advantages for drug delivery over artificial nanoscale drug carriers. In this review, we summarize recent progress in methods for engineering exosomes including isolation techniques and exogenous cargo encapsulation, with a focus on applications of engineered exosomes to target cancer metastasis.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| |
Collapse
|
902
|
Wang X, Pei X, Guo G, Qian X, Dou D, Zhang Z, Xu X, Duan X. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol 2020; 235:6896-6904. [PMID: 31994191 DOI: 10.1002/jcp.29585] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Development of the acquired resistance is one major obstacle during chemotherapy for cancer patients. Exosomes mediate intercellular communication and cause environmental changes in tumor progression by transmitting active molecules. In this study, the role of long noncoding RNA H19 within exosomes is elucidated in terms of regulating doxorubicin (DOX) resistance of breast cancer. As a result, increased H19 expression was observed in DOX-resistant breast cancer cells in comparison with the corresponding parental cells. Suppression of H19 significantly lowered DOX resistance by decreasing cell viability, lowering colony-forming ability, and inducing apoptosis. Moreover, extracellular H19 could be moved to sensitive cells via being incorporated into exosomes. Treating sensitive cells with exosomes from resistant cells increased the chemoresistance of DOX, while downregulation of H19 in sensitive cells abated this effect. Taken together, H19 could be delivered by exosomes to sensitive cells, leading to the dissemination of DOX resistance. Our finding highlights the potential of exosomal H19 as a molecular target to reduce DOX resistance.
Collapse
Affiliation(s)
- Xinxing Wang
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Xinhong Pei
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Guangcheng Guo
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Xueke Qian
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Dongwei Dou
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Zhe Zhang
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Xiaodong Xu
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| | - Xin Duan
- Department of Breast Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| |
Collapse
|
903
|
Yu X, Abdul M, Fan BQ, Zhang L, Lin X, Wu Y, Fu H, Lin Q, Meng H. The release of exosomes in the medial prefrontal cortex and nucleus accumbens brain regions of chronic constriction injury (CCI) model mice could elevate the pain sensation. Neurosci Lett 2020; 723:134774. [PMID: 31981720 DOI: 10.1016/j.neulet.2020.134774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Brain function relies on the capacity of neurons to locally modulate each other at the level of synapses. Therefore, the exosomal pathway may constitute a well-designed mechanism for local and systemic interneuronal transfer of information within functional brain networks. Exosomes bind to and are endocytosed by neurons of different brain regions to play a definite role. The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) brain regions are known to involve in pain modulation. Our study observes the roles of exosomal activity in these two dominant regions of the pain-related pathway, and there influence on the analgesic effects in CCI mice. METHODS We induced pain exosomes in the mPFC and NAc in the mice of chronic constriction injury of the sciatic nerve model to produce neuropathic pain, and assessed changes that might affect analgesic behaviors. These changes were measured through a combination of behavioral, surgical, and other cellular testings. RESULTS Our study found that pain expression was elevated in mice given exogenous exosomes isolated from CCI mice, especially at the 2 h and 4 h time interval, in mice given exosomes at the mPFC and NAc, respectively. We also found that inhibiting formation of pain exosomes through GW4869 within the mPFC and NAc can elevate the pain threshold. CONCLUSION Results from our study supported the idea that the release of mPFC and NAc exosomes of CCI model has elevated the pain sensations in the subjected mice. This study will further help in designing new clinical trials, and will revolutionize the drug-induced anesthetic responses.
Collapse
Affiliation(s)
- Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Mannan Abdul
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Bing-Qian Fan
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Lilu Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xing Lin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Yan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hui Fu
- Department of Neurology, Zibo Municipal First Hospital, Zibo, Shandong 255200, China.
| | - Qisi Lin
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Hao Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
904
|
Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 2020; 52:1-6. [PMID: 31915368 PMCID: PMC7000698 DOI: 10.1038/s12276-019-0362-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Apoptosis, a type of programmed cell death that plays a key role in both healthy and pathological conditions, releases extracellular vesicles such as apoptotic bodies and microvesicles, but exosome release due to apoptosis is not yet commonly accepted. Here, the reports demonstrating the presence of apoptotic exosomes and their roles in inflammation and immune responses are summarized, together with a general summary of apoptosis and extracellular vesicles. In conclusion, apoptosis is not just a 'silent' type of cell death but an active form of communication from dying cells to live cells through exosomes.
Collapse
|
905
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
906
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
907
|
Abdulmawjood B, Roma-Rodrigues C, Fernandes AR, Baptista PV. Liquid biopsies in myeloid malignancies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1044-1061. [PMID: 35582281 PMCID: PMC9019201 DOI: 10.20517/cdr.2019.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Hematologic malignancies are the most common type of cancer affecting children and young adults, and encompass diseases, such as leukemia, lymphoma, and myeloma, all of which impact blood associated tissues such as the bone marrow, lymphatic system, and blood cells. Clinical diagnostics of these malignancies relies heavily on the use of bone marrow samples, which is painful, debilitating, and not free from risks for leukemia patients. Liquid biopsies are based on minimally invasive assessment of markers in the blood (and other fluids) and have the potential to improve the efficacy of diagnostic/therapeutic strategies in leukemia patients, providing a useful tool for the real time molecular profiling of patients. The most promising noninvasive biomarkers are circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes. Herein, we discuss the role of assessing these circulating biomarkers for the understanding of tumor progression and metastasis, tumor progression dynamics through treatment and for follow-up.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
908
|
Adhikari P, Nagesh PKB, Alharthi F, Chauhan SC, Jaggi M, Yallapu MM, Pradhan P. Optical detection of the structural properties of tumor tissue generated by xenografting of drug-sensitive and drug-resistant cancer cells using partial wave spectroscopy (PWS). BIOMEDICAL OPTICS EXPRESS 2019; 10:6422-6431. [PMID: 31853408 PMCID: PMC6913405 DOI: 10.1364/boe.10.006422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
A mesoscopic physics-based optical imaging technique, partial wave spectroscopy (PWS), has been used for the detection of cancer by probing nanoscale structural alterations in cells/tissue. The development of drug-resistant cancer cells/tissues during chemotherapy is a major challenge in cancer treatment. In this paper, using a mouse model and PWS, the structural properties of tumor tissue grown in 3D structures by xenografting drug-resistant and drug-sensitive human prostate cancer cells having 2D structures, are studied. The results show that the 3D xenografted tissues maintain a similar hierarchy of the degree of structural disorder properties as that of the 2D original drug-sensitive and drug-resistant cells.
Collapse
Affiliation(s)
- Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| | - Prashanth K B Nagesh
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Fatemah Alharthi
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas-Rio Grande Valley, McAllen, TX 78504, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
909
|
Xu Y, Zhu M. Novel exosomal miR-46146 transfer oxaliplatin chemoresistance in colorectal cancer. Clin Transl Oncol 2019; 22:1105-1116. [DOI: 10.1007/s12094-019-02237-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
|
910
|
Sun JF, Zhang D, Gao CJ, Zhang YW, Dai QS. Exosome-Mediated MiR-155 Transfer Contributes to Hepatocellular Carcinoma Cell Proliferation by Targeting PTEN. Med Sci Monit Basic Res 2019; 25:218-228. [PMID: 31645540 PMCID: PMC6827328 DOI: 10.12659/msmbr.918134] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Most eukaryocytes release nano vesicles (30-120 nm), named exosomes, to various biological fluids such as blood, lymph, and milk. Hepatocellular carcinoma (HCC) is one of the tumors with the highest incidence rate in primary malignant carcinoma of the liver. However, the mechanism of HCC proliferation remains elusive. In this study, we aim to explore whether HCC cell-derived exosomes affect the proliferation of cancer cells. MATERIAL AND METHODS Exosomes were isolated from HCC cells by ultracentrifugation and were visualized the phenotype by transmission electron microscopy. Cell proliferation was detected by Cell Counting Kit-8 assays and EdU (5-ethynyl-2-deoxyuridine) incorporation assays. Dual-luciferase assays were performed to validate the paired correlation of miR-155 and 3'-UTR of PTEN (gene of phosphate and tension homology deleted on chromosome 10). A xenograft mice model was constructed to verify the effect of exosome-mediated miR-155 on cell proliferation in vivo. RESULTS Our finding showed that miR-155 was enriched in exosomes released from HCC cells. The exosome-containing miR-155 transferred into new HCC targeted cells and lead to the elevation of HCC cells' proliferation. Besides, the exosomal miR-155 directly bound to 3'-UTR of PTEN leading to the reduction of relevant targets in recipient liver cells. The knockdown of PTEN attenuated the proliferation of HCC cells treated with the exosomal miR-155. Moreover, nude-mouse experiment results revealed a promotional effect of the exosomal miR-155 on HCC cell-acquired xenografts. CONCLUSIONS Our study indicated that exosomal-specific miR-155 transfers to adjacent and/or more distant cells and stimulates the proliferation of HCC cells.
Collapse
Affiliation(s)
- Jing-Feng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Dong Zhang
- Department of General Surgery, GuanYun People's Hospital, Guanyun, Jiangsu, China (mainland)
| | - Cai-Jie Gao
- Pediatric Department, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ye-Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Qing-Song Dai
- Department of General Surgery, The Affiliated Sir RunRun Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
911
|
Shang S, Wang J, Chen S, Tian R, Zeng H, Wang L, Xia M, Zhu H, Zuo C. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med 2019; 8:7728-7740. [PMID: 31642612 PMCID: PMC6912060 DOI: 10.1002/cam4.2633] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor with increased morbidity and mortality, which is difficult to diagnose and cure in the clinic. Through secreting exosomes containing biological molecules, including diverse RNAs and proteins, bone marrow mesenchymal stem cells (BM-MSCs) influence the immunity, inflammation, tumor environment, and cancer metastasis. In this study, low expression of miRNA-1231 (miR-1231) in exosomes derived from the peripheral blood was significantly correlated with the TNM stage of PC, suggesting the potential inhibitory effect of exosomal miR-1231 on PC occurrence and development. The proliferation, migration, invasion, and adhesion to the matrix of PC cells BxPC-3 and PANC-1 were negatively regulated by exosomes derived from the supernatants of BM-MSCs that transfected with miR-1231 oligonucleotides. Simultaneously, tumor growth in vivo was seriously restrained in BALB/C nude mice by tail vein injection with exosomes originated from BM-MSCs that transfected with miR-1231 mimics. The exosomes extracted from BM-MSCs with high level of miR-1231 inhibit the activity of PC, providing the potential application for developing new and efficient medicine for cancer therapy, especially for PC treatment. The exosomal miR-1231 of peripheral blood may also be a potential indicator for PC diagnosis in the future.
Collapse
Affiliation(s)
- Song Shang
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Research Center of Liver Cancer, Laboratory of Digestive Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Jinfeng Wang
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Research Center of Liver Cancer, Laboratory of Digestive Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Shilin Chen
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Research Center of Liver Cancer, Laboratory of Digestive Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Renyun Tian
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Hui Zeng
- Graduates School, University of South China, Hengyang, China
| | - Liang Wang
- Graduates School, University of South China, Hengyang, China
| | - Man Xia
- Department of Gynecological Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Research Center of Liver Cancer, Laboratory of Digestive Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
912
|
Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, Alahari SK. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 2019; 39:953-974. [PMID: 31601996 DOI: 10.1038/s41388-019-1040-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer, and the second cause of cancer-related deaths (after lung cancer) among women. Developing tumor metastasis and invasion is the most important cause of death in breast cancer patients. Several key factors participate in breast cancer metastasis including long noncoding RNAs (lncRNAs). lncRNAs are a category of cellular RNAs that are longer than 200 nucleotides in length. Accumulating evidence suggests that lncRNAs have the potential to be promising diagnostic, prognostic biomarkers and therapeutic targets in breast cancer. Understanding the role of lncRNAs and their mechanisms of functions might help to further discovery of breast cancer biological characteristics. In this review, we discuss physiological functions, epigenetic regulation, transcriptional regulation of lncRNAs, and their important role in tumor progression and metastasis. Some lncRNAs function as oncogenes and some function as tumor suppressors. Interestingly, recent reports depict that hypomethylation of promoters of lncRNAs play a pivotal role in cancer progression, suggesting the importance of epigenetic regulation. Furthermore, we discuss the role of lncRNAs in exosomes and their function in drug resistance, and therapeutic importance of exosomal lncRNAs in cancer biology. In summary, lncRNAs have a great potential to consider them as novel prognostic biomarkers as well as new therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA
| | - Maryam Maheronnaghsh
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
913
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
914
|
D'Anca M, Fenoglio C, Serpente M, Arosio B, Cesari M, Scarpini EA, Galimberti D. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:232. [PMID: 31555123 PMCID: PMC6722391 DOI: 10.3389/fnagi.2019.00232] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023] Open
Abstract
Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30-100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including Aβ, tau, and α-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marianna D'Anca
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Geriatrics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Angelo Scarpini
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
915
|
Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer 2019; 18:124. [PMID: 31409361 PMCID: PMC6691526 DOI: 10.1186/s12943-019-1049-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies. Upon initial diagnosis, the majority of patients present with widespread metastatic growth within the peritoneal cavity. This metastatic growth occurs in stages, with the formation of a pre-metastatic niche occurring prior to macroscopic tumor cell invasion. Exosomes released by the primary ovarian tumor are small extracellular vesicles which prepare the distant tumor microenvironment for accelerated metastatic invasion. They regulate intercellular communication between tumor cells and normal stroma, cancer-associated fibroblasts, and local immune cells within the tumor microenvironment. In this review, we highlight the emerging roles of ovarian cancer exosomes as coordinators of pre-metastatic niche formation, biomarkers amenable to liquid biopsy, and targets of chemotherapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Dylan C. Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Francis J. Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
| | - Zhenfeng Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052 Henan China
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095 USA
| |
Collapse
|
916
|
Schwich E, Rebmann V, Horn PA, Celik AA, Bade-Döding C, Kimmig R, Kasimir-Bauer S, Buderath P. Vesicular-Bound HLA-G as a Predictive Marker for Disease Progression in Epithelial Ovarian Cancer. Cancers (Basel) 2019; 11:E1106. [PMID: 31382533 PMCID: PMC6721594 DOI: 10.3390/cancers11081106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) and their tumor-supporting cargos provide a promising translational potential in liquid biopsies for risk assessment of epithelial ovarian cancer (EOC) patients frequently relapsing, despite initial complete therapy responses. As the immune checkpoint molecule HLA-G, which is operative in immune-escape, can be released by EV, we evaluate the abundance of EV and its vesicular-bound amount of HLA-G (HLA-GEV) as a biomarker in EOC. After enrichment of EV from plasma samples, we determined the EV particle number and amount of HLA-GEV by nanoparticle tracking analysis or ELISA. The association of results with the clinical status/outcome revealed that both, EV particle number and HLA-GEV were significantly elevated in EOC patients, compared to healthy females. However, elevated levels of HLA-GEV, but not EV numbers, were exclusively associated with a disadvantageous clinical status/outcome, including residual tumor, presence of circulating tumor cells, and disease progression. High HLA-GEV status was an independent predictor of progression, besides residual tumor burden and platinum-sensitivity. Especially among patients without residual tumor burden or with platinum-sensitivity, HLA-GEV identified patients with high risk of progression. Thus, this study highlights HLA-GEV as a potential novel biomarker for risk assessment of EOC patients with a rather beneficial prognosis defined by platinum-sensitivity or lack of residual tumor burden.
Collapse
Affiliation(s)
- Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Alexander A Celik
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Rainer Kimmig
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Paul Buderath
- Department for Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
917
|
González-Borja I, Viúdez A, Goñi S, Santamaria E, Carrasco-García E, Pérez-Sanz J, Hernández-García I, Sala-Elarre P, Arrazubi V, Oyaga-Iriarte E, Zárate R, Arévalo S, Sayar O, Vera R, Fernández-Irigoyen J. Omics Approaches in Pancreatic Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11081052. [PMID: 31349663 PMCID: PMC6721316 DOI: 10.3390/cancers11081052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma, which represents 80% of pancreatic cancers, is mainly diagnosed when treatment with curative intent is not possible. Consequently, the overall five-year survival rate is extremely dismal—around 5% to 7%. In addition, pancreatic cancer is expected to become the second leading cause of cancer-related death by 2030. Therefore, advances in screening, prevention and treatment are urgently needed. Fortunately, a wide range of approaches could help shed light in this area. Beyond the use of cytological or histological samples focusing in diagnosis, a plethora of new approaches are currently being used for a deeper characterization of pancreatic ductal adenocarcinoma, including genetic, epigenetic, and/or proteo-transcriptomic techniques. Accordingly, the development of new analytical technologies using body fluids (blood, bile, urine, etc.) to analyze tumor derived molecules has become a priority in pancreatic ductal adenocarcinoma due to the hard accessibility to tumor samples. These types of technologies will lead us to improve the outcome of pancreatic ductal adenocarcinoma patients.
Collapse
Affiliation(s)
- Iranzu González-Borja
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain.
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Saioa Goñi
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Estefania Carrasco-García
- Grupo de Oncología Celular, Instituto de Investigación Sanitaria Biodonostia, 20014 San Sebastián, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | - Jairo Pérez-Sanz
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernández-García
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Pablo Sala-Elarre
- Medical Oncology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | | | - Ruth Zárate
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Sara Arévalo
- Grupo de Oncología Celular, Instituto de Investigación Sanitaria Biodonostia, 20014 San Sebastián, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | | | - Ruth Vera
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Joaquin Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
918
|
Groza M, Zimta AA, Irimie A, Achimas-Cadariu P, Cenariu D, Stanta G, Berindan-Neagoe I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J Cell Physiol 2019; 235:691-705. [PMID: 31328284 DOI: 10.1002/jcp.29096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is a heterogeneous disease, with a morbidity rate of 27.8% and a mortality rate of 15% among women population worldwide. Understanding how this cancer develops and the mechanisms behind tumor progression and chemoresistance is of utmost importance. Exosomes mediate communication in a population of heterogeneous tumoral cells. They have a cargo composed of oncogenes and oncomiRs which change the transcriptomic scenario of their targeted cells and activate numerous tumor-promoting signaling pathways. Exosomes secreted by breast cancer cells lead to enhanced cell proliferation, replicative immortality, angiogenesis, invasion, migration, and chemoresistance. Studying exosomes from this perspective offers more in depth understanding of breast malignancy and may aid in the future development of early diagnostic, prognostic and therapeutic options. We present the latest findings in this area and offer practical solutions which may further stimulate the much-needed research of exosome in breast cancer.
Collapse
Affiliation(s)
- Monica Groza
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, uliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
919
|
Lafitte M, Lecointre C, Roche S. Roles of exosomes in metastatic colorectal cancer. Am J Physiol Cell Physiol 2019; 317:C869-C880. [PMID: 31291143 DOI: 10.1152/ajpcell.00218.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metastases remain a major cause of cancer morbidity and mortality. This is a multistep process that involves aberrant cell communication, leading to tumor cell dissemination from the primary tumor and colonization of distinct organs for secondary tumor formation. The mechanisms promoting this pathological process are not fully understood, although they may be of obvious therapeutic interest. Exosomes are small cell-secreted vesicles that contain a large variety of proteins, lipids, and nucleic acids with important signaling activities, and that represent an evolutionarily conserved mechanism for cell-to-cell communication. Not surprisingly, exosome activities have gained strong interest in cancer biology and might play essential roles in metastasis development. Here, we will describe recent findings on the role of exosomes in cancer metastasis formation, particularly in colorectal cancer (CRC). We will also discuss the potential therapeutic value of these vesicles in metastatic cancer.
Collapse
Affiliation(s)
- Marie Lafitte
- Centre de Recherche en Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Céline Lecointre
- Centre de Recherche en Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Serge Roche
- Centre de Recherche en Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| |
Collapse
|
920
|
Kelemen E, Danis J, Göblös A, Bata-Csörgő Z, Széll M. Exosomal long non-coding RNAs as biomarkers in human diseases. EJIFCC 2019; 30:224-236. [PMID: 31263395 PMCID: PMC6599197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The intensive study of extracellular vesicles was started about a decade ago revealing alterations of their amount and content to several cellular stimuli, highly depending on the releasing cell type. Exosomes, a type of extracellular vesicles, are released by every cell type and are present in most body fluids, what makes them attractive targets of biomarker research. Several studies have indicated that their content - including proteins and coding, as well as non-coding nucleic acids - could represent the disease state and serves as specific disease biomarkers. Out of these molecules, a special interest was gained by long non-coding RNAs (lncRNAs). Just as exosomes, lncRNAs are specific to their cell of origin and often specific to diseases, also found extracellularly, mainly contained in extracellular vesicles. Thus, recent efforts in biomarker research has turned to circulating exosomal lncRNAs, which might lead to the development of highly specific disease markers. Here we summarize the current knowledge on disease-associated exosomal long non-coding RNAs. The intensive studies in this area have revealed numerous potential targets for biomarkers, and highlighted the potential of their combination with other exosomal markers to represent a highly sensitive and specific diagnostic tool. However, we believe that additional functional data on both exosomes and lncRNAs are necessary for understanding their deregulation in diseases and developing their use as diagnostic approaches.
Collapse
Affiliation(s)
- Evelyn Kelemen
- Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Hungary
| | - Judit Danis
- Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Anikó Göblös
- Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Hungary
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
- Department of Medical Genetics, University of Szeged, Hungary
| |
Collapse
|
921
|
Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11060746. [PMID: 31146452 PMCID: PMC6628238 DOI: 10.3390/cancers11060746] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Eiman I Ahmed
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Jericha M Mateo
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Fouad Azizi
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Martin Steinhoff
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
- Weill Cornell-Medicine, Doha P.O. Box 24811, Qatar.
- Weill Cornell University, New York, NY 10065, USA.
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| |
Collapse
|
922
|
Myosin Va and spermine synthase: partners in exosome transport. Biosci Rep 2019; 39:BSR20190326. [PMID: 30967493 PMCID: PMC6488853 DOI: 10.1042/bsr20190326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
A recent paper in Bioscience Reports (BSR20182189) describes the discovery of an
interaction between the motor protein myosin Va and the metabolic enzyme
spermine synthase. Myosin Va is a molecular motor which plays a key role in
vesicle transport. Mutations in the gene which encodes this protein are
associated with Griscelli syndrome type 1 and the ‘dilute’
phenotype in animals. Spermine synthase catalyzes the conversion of spermidine
to spermine. This largely cytoplasmic enzyme can also be localized to the
soluble fraction in exosomes. Mutations in the spermine synthase gene are
associated with Snyder Robinson mental retardation syndrome. The interaction
between the two proteins was detected using the yeast two hybrid method and
verified by microscale thermophoresis of recombinant proteins. Knockdown of the
MYO5A gene reduced the expression of mRNA coding for
spermine synthase. The amount of this transcript was also reduced in cells
derived from a patient with Griscelli syndrome type 1. This suggests that, in
addition to a direct physical interaction between the two proteins, myosin Va
also modulates the transcription of the spermine synthase gene. The mechanism
for this modulation is currently unknown. These findings have implications for
Griscelli syndrome type 1 and Snyder Robinson mental retardation syndrome. They
also suggest that interactions between myosin Va and soluble exosome proteins
such as spermine synthase may be important in the mechanism of exosome
transport.
Collapse
|