99751
|
Jing X, Zhang Y, Li M, Zuo X, Fan C, Zheng J. Surface engineering of colloidal nanoparticles. MATERIALS HORIZONS 2023; 10:1185-1209. [PMID: 36748345 DOI: 10.1039/d2mh01512a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synthesis of engineered colloidal nanoparticles (NPs) with delicate surface characteristics leads to well-defined physicochemical properties and contributes to multifunctional applications. Surface engineering of colloidal NPs can improve their stability in diverse solvents by inhibiting the interparticle attractive forces, thus providing a prerequisite for further particle manipulation, fabrication of the following materials and biological applications. During the last decades, surface engineering methods for colloidal NPs have been well-developed by numerous researchers. However, accurate control of surface properties is still an important topic. The emerging DNA/protein nanotechnology offers additional possibility of surface modification of NPs and programmable particle self-assembly. Here, we first briefly review the recent progress in surface engineering of colloidal NPs, focusing on the improved stability by grafting suitable small molecules, polymers or biological macromolecules. We then present the practical strategies for nucleic acid surface encoding of NPs and subsequent programmable assembly. Various exciting applications of these unique materials are summarized with a specific focus on the cellular uptake, bio-toxicity, imaging and diagnosis of colloidal NPs in vivo. With the growing interest in colloidal NPs in nano-biological research, we expect that this review can play an instructive role in engineering the surface properties for desired applications.
Collapse
Affiliation(s)
- Xinxin Jing
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yueyue Zhang
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Min Li
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaolei Zuo
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhua Zheng
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
99752
|
Bogdanova AR, Krasnikov DV, Khabushev EM, Ramirez B. JA, Nasibulin AG. Bithiophene as a Sulfur-Based Promotor for the Synthesis of Carbon Nanotubes and Carbon-Carbon Composites. Int J Mol Sci 2023; 24:ijms24076686. [PMID: 37047655 PMCID: PMC10095122 DOI: 10.3390/ijms24076686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis.
Collapse
Affiliation(s)
- Alisa R. Bogdanova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia
| | - Dmitry V. Krasnikov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia
| | - Eldar M. Khabushev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia
| | - Javier A. Ramirez B.
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia
| | - Albert G. Nasibulin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia
| |
Collapse
|
99753
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
99754
|
Jaunet-Lahary T, Shimamura T, Hayashi M, Nomura N, Hirasawa K, Shimizu T, Yamashita M, Tsutsumi N, Suehiro Y, Kojima K, Sudo Y, Tamura T, Iwanari H, Hamakubo T, Iwata S, Okazaki KI, Hirai T, Yamashita A. Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota. Nat Commun 2023; 14:1730. [PMID: 37012268 PMCID: PMC10070484 DOI: 10.1038/s41467-023-36883-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
An oxalate-degrading bacterium in the gut microbiota absorbs food-derived oxalate to use this as a carbon and energy source, thereby reducing the risk of kidney stone formation in host animals. The bacterial oxalate transporter OxlT selectively uptakes oxalate from the gut to bacterial cells with a strict discrimination from other nutrient carboxylates. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two distinct conformations, occluded and outward-facing states. The ligand-binding pocket contains basic residues that form salt bridges with oxalate while preventing the conformational switch to the occluded state without an acidic substrate. The occluded pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the pocket are completely blocked by extensive interdomain interactions, which can be opened solely by a flip of a single side chain neighbouring the substrate. This study shows the structural basis underlying metabolic interactions enabling favourable symbiosis.
Collapse
Affiliation(s)
- Titouan Jaunet-Lahary
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tatsuro Shimamura
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Masahiro Hayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Norimichi Nomura
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kouta Hirasawa
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yuta Suehiro
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Hiroko Iwanari
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Takao Hamakubo
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - So Iwata
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
| | | | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan.
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
99755
|
Wood D, Lin S. Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218858. [PMID: 36738472 PMCID: PMC10050105 DOI: 10.1002/anie.202218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Interest in deuterated active pharmaceutical ingredients (APIs) is increasing as deuteration holds promise for kinetic isotope effect (KIE) regulated fine-tuning of API performance. Moreover, deuterium isotope labeling is frequently carried out to study organic and bioorganic reaction mechanisms and to facilitate complex target synthesis. As such, methods for highly selective deuteration of organic molecules are highly desirable. Herein, we present an electrochemical method for the selective deuterodehalogenation of benzylic halides via a radical-polar crossover mechanism, using inexpensive deuterium oxide (D2 O) as the deuterium source. We demonstrate broad functional group compatibility across a range of aryl and heteroaryl benzylic halides. Furthermore, we uncover a sequential paired electrolysis regime, which permits switching between net reductive and overall redox-neutral reactions of sulfur-containing substrates simply by changing the identity of the sacrificial reductant employed.
Collapse
Affiliation(s)
- Devin Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| |
Collapse
|
99756
|
Berl AJ, Sklar JH, Yun YJ, Kalow JA. Side-Chain Engineering in Hydrophilic n-Type π-Conjugated Polymers for Enhanced Reactivity. ACS Macro Lett 2023; 12:503-509. [PMID: 37011181 DOI: 10.1021/acsmacrolett.3c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Minor changes to side chains in conjugated polymers (CPs) can have pronounced effects on polymer properties by altering backbone planarity, solubility, and interaction with ions. Here, we report the photocontrolled synthesis of hydrophilic CPs from Grignard monomers and find that switching from alkyl to oligo(ethylene glycol) (OEG) side chains changes their photoreactivity. Specifically, installing hydrophilic side chains on the same monomer core yields higher molecular weight polymers and allows polymerization to proceed with lower-energy red light. Additionally, we discover a side chain decomposition pathway for N-OEG monomers, which are prevalent in CP research. Decomposition can be overcome by adding an extra methylene unit in the side chains without compromising polymer molecular weight or hydrophilicity. Importantly, this polymerization does not require transition metal catalysts and is a promising approach to the preparation of n-type conjugated block copolymers.
Collapse
Affiliation(s)
- Alexandra J Berl
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan H Sklar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Young Ju Yun
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
99757
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
99758
|
Sadchikova EV, Safronov NE, Beliaev NA, Nenajdenko VG, Belskaya NP. Isoxazolyl-Derived 1,4-Dihydroazolo[5,1- c][1,2,4]Triazines: Synthesis and Photochemical Properties. Molecules 2023; 28:molecules28073192. [PMID: 37049955 PMCID: PMC10095850 DOI: 10.3390/molecules28073192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
New fluorescent dyes containing an assembled 1,4-dihydroazolo[5,1-c][1,2,4]triazine (DAT) core and an isoxazole ring were synthesized through a reaction between diazopyrazole or diazoimidazoles and isoxazolyl-derived enamines in mild conditions. The photophysical characteristics (maxima absorption and emission, Stokes shifts, fluorescent quantum yields, and fluorescence lifetimes) of the new fluorophores were obtained. The prepared DATs demonstrated emission maxima ranging within 433-487 nm, quantum yields within 6.1-33.3%, and a large Stokes shift. The photophysical characteristics of representative DAT examples were studied in ten different solvents. Specific (hydrogen bonds) and non-specific (dipole-dipole) intermolecular and intramolecular interactions were analyzed using XRD data and spectral experiments. Solvatochromism was analyzed using Lippert-Mataga and Dimroth-Reichardt plots, revealing the relationship between the DAT structure and the nature of solute-solvent interactions. The significant advantages of DATs are the fluorescence of their powders (QY up to 98.7%). DAT-NMe210 expressed bright aggregation-induced emission (AIE) behavior in DMSO and THF as the water content increased. The numerous possible variations of the structures of the heterocycles included in the DATs, as well as substituents, create excellent prospects for adjusting their photophysical and physicochemical properties.
Collapse
Affiliation(s)
- Elena V Sadchikova
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Nikita E Safronov
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Nikolai A Beliaev
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | - Nataliya P Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
99759
|
Sandberg E, Piguet J, Kostiv U, Baryshnikov G, Liu H, Widengren J. Photoisomerization of Heptamethine Cyanine Dyes Results in Red-Emissive Species: Implications for Near-IR, Single-Molecule, and Super-Resolution Fluorescence Spectroscopy and Imaging. J Phys Chem B 2023; 127:3208-3222. [PMID: 37011608 PMCID: PMC10108366 DOI: 10.1021/acs.jpcb.2c08016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Photoisomerization kinetics of the near-infrared (NIR) fluorophore Sulfo-Cyanine7 (SCy7) was studied by a combination of fluorescence correlation spectroscopy (FCS) and transient state (TRAST) excitation modulation spectroscopy. A photoisomerized state with redshifted emission was identified, with kinetics consistent with a three-state photoisomerization model. Combining TRAST excitation modulation with spectrofluorimetry (spectral-TRAST) further confirmed an excitation-induced redshift in the emission spectrum of SCy7. We show how this red-emissive photoisomerized state contributes to the blinking kinetics in different emission bands of NIR cyanine dyes, and how it can influence single-molecule, super-resolution, as well as Förster resonance energy transfer (FRET) and multicolor readouts. Since this state can also be populated at moderate excitation intensities, it can also more broadly influence fluorescence readouts, also readouts not relying on high excitation conditions. However, this additional red-emissive state and its photodynamics, as identified and characterized in this work, can also be used as a strategy to push the emission of NIR cyanine dyes further into the NIR and to enhance photosensitization of nanoparticles with absorption spectra further into the NIR. Finally, we show that the photoisomerization kinetics of SCy7 and the formation of its redshifted photoisomer depend strongly on local environmental conditions, such as viscosity, polarity, and steric constraints, which suggests the use of SCy7 and other NIR cyanine dyes as environmental sensors. Such environmental information can be monitored by TRAST, in the NIR, with low autofluorescence and scattering conditions and on a broad range of samples and experimental conditions.
Collapse
Affiliation(s)
- Elin Sandberg
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Uliana Kostiv
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Glib Baryshnikov
- Dept. Science and Technology, Linköping University, Campus Norrköping, 601 74 Norrköping, Sweden
| | - Haichun Liu
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| |
Collapse
|
99760
|
Ye Y, Kim ST, King RP, Baik MH, Buchwald SL. Studying Regioisomer Formation in the Pd-Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification. Angew Chem Int Ed Engl 2023; 62:e202300109. [PMID: 36775802 PMCID: PMC10161128 DOI: 10.1002/anie.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Pd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of regioisomeric products that are often difficult to separate. While investigating the Pd-catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a substoichiometric quantity of TESCF3 significantly improved the regioselectivity of the reaction. Herein, we report a combined experimental and computational study on the mechanism of this transformation focusing on the role of TESCF3 . The poor regioselectivity of the reaction in the absence of additives results from the formation of LPd-cyclohexyne complexes (L=biaryl monophosphine ligand). When TESCF3 is added to the reaction mixture, the generation of the Pd-cyclohexyne complexes is diminished by an unexpected pathway involving the dearomatization of the ligand by nucleophilic attack from a trifluoromethyl anion (CF3 - ).
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Ryan P King
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
99761
|
Eastwood JB, Hammarback LA, Burden TJ, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. Understanding Precatalyst Activation and Speciation in Manganese-Catalyzed C–H Bond Functionalization Reactions. Organometallics 2023. [PMID: 37502314 PMCID: PMC10369674 DOI: 10.1021/acs.organomet.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
An investigation into species formed following precatalyst activation in Mn-catalyzed C-H bond functionalization reactions is reported. Time-resolved infrared spectroscopy demonstrates that light-induced CO dissociation from precatalysts [Mn(C^N)(CO)4] (C^N = cyclometalated 2-phenylpyridine (1a), cyclometalated 1,1-bis(4-methoxyphenyl)methanimine (1b)) in a toluene solution of 2-phenylpyridine (2a) or 1,1-bis(4-methoxyphenyl)methanimine (2b) results in the initial formation of solvent complexes fac-[Mn(C^N)(CO)3(toluene)]. Subsequent solvent substitution on a nanosecond time scale then yields fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)], respectively. When the experiments are performed in the presence of phenylacetylene, the initial formation of fac-[Mn(C^N)(CO)3(toluene)] is followed by a competitive substitution reaction to give fac-[Mn(C^N)(CO)3(2)] and fac-[Mn(C^N)(CO)3(η2-PhC2H)]. The fate of the reaction mixture depends on the nature of the nitrogen-containing substrate used. In the case of 2-phenylpyridine, migratory insertion of the alkyne into the Mn-C bond occurs, and fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] remains unchanged. In contrast, when 2b is used, substitution of the η2-bound phenylacetylene by 2b occurs on a microsecond time scale, and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)] is the sole product from the reaction. Calculations with density functional theory indicate that this difference in behavior may be correlated with the different affinities of 2a and 2b for the manganese. This study therefore demonstrates that speciation immediately following precatalyst activation is a kinetically controlled event. The most dominant species in the reaction mixture (the solvent) initially binds to the metal. The subsequent substitution of the metal-bound solvent is also kinetically controlled (on a ns time scale) prior to the thermodynamic distribution of products being obtained.
Collapse
Affiliation(s)
- Jonathan B. Eastwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - L. Anders Hammarback
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Thomas J. Burden
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Alan Robinson
- Syngenta Crop Protection AG Schaffhauserstrasse, 4332 Stein, Switzerland
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
99762
|
Prado LR, Figueiredo RT, Silva RS, Meneses CT, Mendonça FMR, Borges GR, Dariva C, Franceschi E, Salazar-Banda GR, Egues SM. Reactive precipitation of titanium dioxide particles in supercritical CO2 by SAS technique with an ionic liquid as adjuvant. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99763
|
Kubis C, König M, Leidecker BN, Selent D, Schröder H, Sawall M, Baumann W, Spannenberg A, Brächer A, Neymeyr K, Franke R, Börner A. Interplay between Catalyst Complexes and Dormant States: In Situ Spectroscopic Investigations on a Catalyst System for Alkene Hydroformylation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Christoph Kubis
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| | - Matthias König
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Evonik Operations GmbH, Paul-Baumann-Street 1, 45772 Marl, Germany
| | - Benedict N. Leidecker
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| | - Detlef Selent
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| | - Henning Schröder
- University of Rostock, Institute of Mathematics, Ulmenstraße 59, 18057 Rostock, Germany
| | - Mathias Sawall
- University of Rostock, Institute of Mathematics, Ulmenstraße 59, 18057 Rostock, Germany
| | - Wolfgang Baumann
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| | | | - Klaus Neymeyr
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
- University of Rostock, Institute of Mathematics, Ulmenstraße 59, 18057 Rostock, Germany
| | - Robert Franke
- Evonik Operations GmbH, Paul-Baumann-Street 1, 45772 Marl, Germany
- Chair for Theoretical Chemistry, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Armin Börner
- Leibniz-Institute for Catalysis e.V., Albert-Einstein-Street 29a, 18059 Rostock, Germany
| |
Collapse
|
99764
|
Mandal UC, Chatterjee A, Chattopadhyay T, Mukherjee A, Ghosh R. Synthesis and structural characterization of unsymmetrical Schiff base 2-(1-(2-aminophenylimino)ethyl)phenol (LH3) and its Pd(II) complex [Pd3(LH)3]: catalysis of Suzuki–Miyaura cross-coupling reaction. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99765
|
Lin X, Wang Y, Chang X, Zhen S, Zhao Z, Gong J. High‐Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiaoyun Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Yongtao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Shiyu Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 300072 Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations 300192 Tianjin China
- National Industry-Education Platform of Energy Storage Tianjin University 135 Yaguan Road 300350 Tianjin China
- Joint School of National University of Singapore Tianjin University International Campus of Tianjin University Binhai New City 350207 Fuzhou China
| |
Collapse
|
99766
|
Peng Q, Shuai Y, Zhou Q, Chen Y, Dai J, Ren C, Huang Z, Li W, Wang J, Yang Y. Reduction of Chain Entanglement of Ethylene Polymerization Endowed by the Dormancy Effect of Fluorosilicone Microdroplets. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Quanwei Peng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun Shuai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qi Zhou
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315100, P. R. China
| | - Yuming Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jincheng Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Congjing Ren
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengliang Huang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Li
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingdai Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yongrong Yang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
99767
|
Islam MN, Çetinkaya IC, Eren T, Tülü M. Synthesis of dendronized PAMAM grafted ROMP polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2195947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Muhammad Nazrul Islam
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Ilay Ceren Çetinkaya
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Tarik Eren
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Metin Tülü
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
99768
|
Ariga K. Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:434-453. [PMID: 37091285 PMCID: PMC10113519 DOI: 10.3762/bjnano.14.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The development of nanotechnology has provided an opportunity to integrate a wide range of phenomena and disciplines from the atomic scale, the molecular scale, and the nanoscale into materials. Nanoarchitectonics as a post-nanotechnology concept is a methodology for developing functional material systems using units such as atoms, molecules, and nanomaterials. Especially, molecular nanoarchitectonics has been strongly promoted recently by incorporating nanotechnological methods into organic synthesis. Examples of research that have attracted attention include the direct observation of organic synthesis processes at the molecular level with high resolution, and the control of organic syntheses with probe microscope tips. These can also be considered as starting points for nanoarchitectonics. In this review, these examples of molecular nanoarchitectonics are introduced, and future prospects of nanoarchitectonics are discussed. The fusion of basic science and the application of practical functional materials will complete materials chemistry for everything.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
99769
|
Yang C, Guo F, Wang S, Chen W, Zhang Y, Wang N, Li Z, Wang J. Admirable stability achieved by ns 2 ions Co-doping for all-inorganic metal halides towards optical anti-counterfeiting. RSC Adv 2023; 13:10884-10892. [PMID: 37033439 PMCID: PMC10074776 DOI: 10.1039/d3ra00351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
Optical materials play a momentous role in anti-counterfeiting field, such as authentication, currency and security. The development of tunable optical properties and optical responses to a range of external stimuli is quite imperative for the growing demand of optical anti-counterfeiting technology. Metal halide perovskites have attracted much attention of researchers due to their excellent optical properties. In addition, co-doping methods have been gradually applied to the research of metal halide perovskites, by which more abundant luminescence phenomena can be introduced into the host perovskite. Herein, the ns2 ions of bismuth (Bi3+) and antimony (Sb3+) ions co-doped zero-dimensional Cs2SnCl6 metal halide with an excitation-wavelength-dependent emission phenomenon is synthesized as an efficient multimodal luminescent material, the luminescence of which is tunable and covers a wide region of color. What's more, a dynamic dual-emission phenomenon is captured when the excitation wavelength changes from 320 nm to 420 nm for Cs2SnCl6:Bi0.08Sb0.12 crystals. Moreover, the Bi3+ and Sb3+ doped metal halide material shows great enhancement in solvent resistance and thermal stability compared to the pristine Cs2SnCl6. The admirable stability and distinguishable photoluminescence (PL) phenomenon of this all-inorganic metal halide has great potential to be applied in optical anti-counterfeiting technology. Furthermore, the co-doping method can accelerate the discovery of new luminescence phenomena in original metal halide perovskites.
Collapse
Affiliation(s)
- Chuang Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Fengwan Guo
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University Wuhan 430062 P. R. China
| | - Shanping Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Wenwen Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Yu Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Nan Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Zhuozhen Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Juan Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei University Wuhan 43006 P. R. China
| |
Collapse
|
99770
|
Hassanzadeh S, Farhadi S, Moradifard F. Synthesis of magnetic graphene-like carbon nitride-cobalt ferrite (g-C 3N 4/CoFe 2O 4) nanocomposite for sonocatalytic remediation of toxic organic dyes. RSC Adv 2023; 13:10940-10955. [PMID: 37033431 PMCID: PMC10077340 DOI: 10.1039/d3ra00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
A novel magnetic g-C3N4/CoFe2O4 nanocomposite was successfully synthesized by a simple hydrothermal method and applied as a new graphene-like carbon nitride-based sonocatalyst for sonodegradation of pollutant dyes. The as-prepared samples were characterized by using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), BET surface area measurements and photoluminescence (PL) spectroscopy. The results indicate that the nanocomposite sample is composed of spherical CoFe2O4 nanoparticles adhered to g-C3N4 naosheets. The g-C3N4/CoFe2O4 nanocomposites were used as a new magnetically separable sonocatalyst in H2O2-assisted sonodegradation of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes in aqueous media. The results showed complete degradation (ca. 100%) of dyes within short times (30-35 min). The sonocatalytic activity of graphitic carbon nitride (g-C3N4) was greatly enhanced with CoFe2O4 modification. Trapping experiments indicated that the g-C3N4/CoFe2O4 nanocomposites serves as a generator of hydroxyl radical (˙OH) via activation of H2O2 for degradation of dyes under ultrasound irradiation. Furthermore, the magnetic sonocatalyst can be separated from solution by an external magnet and reused several times without observable loss of activity. The possible mechanism of sonocatalytic activity was also proposed according to experimental results.
Collapse
Affiliation(s)
- Saeedeh Hassanzadeh
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Farzaneh Moradifard
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| |
Collapse
|
99771
|
Kharazmi A, Ghorbani-Vaghei R, Kharazmi A, Azadbakht R, Koolivand M, Karakaya I, Karimi-Nami R. Reduced graphene oxide/palladium nanoparticle bonded to N,N'-bis(2-aminophenyl)-1,2-ethanediamine: a new, highly efficient and recyclable heterogeneous catalyst for direct synthesis of 2-substituted benzimidazoles via acceptorless dehydrogenative coupling of alcohols and aromatic diamine. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-05003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99772
|
Bosomtwi D, Babicheva VE. Beyond Conventional Sensing: Hybrid Plasmonic Metasurfaces and Bound States in the Continuum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1261. [PMID: 37049354 PMCID: PMC10097206 DOI: 10.3390/nano13071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to the destructive interference of strongly coupled modes, resulting in the formation of bound states in the continuum (BIC). In such cases, the modes are simultaneously localized in the nanostructure and coexist with radiating waves, leading to an increase in the quality factor, which is virtually unlimited. In this work, we report on the design of a layered hybrid plasmonic-dielectric metasurface that facilitates strong mode coupling and the formation of BIC, resulting in resonances with a high quality factor. We demonstrate the possibility of controlling Fano resonances and tuning Rabi splitting using the nanoantenna dimensions. We also experimentally demonstrate the generalized Kerker effect in a binary arrangement of silicon nanodisks, which allows for the tuning of the collective modes and creates new photonic functionalities and improved sensing capabilities. Our findings have promising implications for developing plasmonic sensors that leverage strong light-matter interactions in hybrid metasurfaces.
Collapse
Affiliation(s)
- Dominic Bosomtwi
- Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, NM 87106-4343, USA
| | - Viktoriia E. Babicheva
- Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM 87106-4343, USA
| |
Collapse
|
99773
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
99774
|
Liang Q, Zhu C, Yang J. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H 2O - Radical Anion at the Aqueous Interface. J Am Chem Soc 2023; 145:10159-10166. [PMID: 37011411 DOI: 10.1021/jacs.3c00734] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Criegee intermediates (CIs) are important carbonyl oxides that may react with atmospheric trace chemicals and impact the global climate. The CI reaction with water has been widely studied and is a main channel for trapping CIs in the troposphere. Previous experimental and computational reports have largely focused on reaction kinetic processes in various CI-water reactions. The molecular-level origin of CI's interfacial reactivity at the water microdroplet surface (e.g., as found in aerosols and clouds) is unclear. In this study, by employing the quantum mechanical/molecular mechanical (QM/MM) Born-Oppenheimer molecular dynamics with the local second-order Møller-Plesset perturbation theory, our computational results reveal a substantial water charge transfer up to ∼20% per water, which creates the surface H2O+/H2O- radical pairs to enhance the CH2OO and anti-CH3CHOO reactivity with water: the resulting strong CI-H2O- electrostatic attraction at the microdroplet surface facilitates the nucleophilic attack to the CI carbonyl by water, which may counteract the apolar hindrance of the substituent to accelerate the CI-water reaction. Our statistical analysis of the molecular dynamics trajectories further resolves a relatively long-lived bound CI(H2O-) intermediate state at the air/water interface, which has not been observed in gaseous CI reactions. This work provides insights into what may alter the oxidizing power of the troposphere by the next larger CIs than simple CH2OO and implicates a new perspective on the role of interfacial water charge transfer in accelerating molecular reactions at aqueous interfaces.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
99775
|
Yang C, Zhou X, Shen L, Ke Z, Jiang H, Zeng W. Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols. Nat Commun 2023; 14:1862. [PMID: 37012237 PMCID: PMC10070501 DOI: 10.1038/s41467-023-37299-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Sigmatropic rearrangement provides a versatile strategy to site-selectively reorganize carbon-skeleton with high atom- and step-economy. Herein, we disclose a Mn(I)-catalyzed sigmatropic rearrangement of β, γ-unsaturated alcohols via C-C σ bond activation. A variety of α-aryl-allylic alcohols and α-aryl-propargyl alcohols could undergo in-situ 1,2- or 1,3- sigmatropic rearrangements to allow for converting to complex structural arylethyl- and arylvinyl- carbonyl compounds under a simple catalytic system. More importantly, this catalysis model can be further applied to assemble macrocyclic ketones through bimolecular [2n + 4] coupling-cyclization and monomolecular [n + 1] ring-extension. The presented skeleton rearrangement would be a useful tool complementary to the traditional molecular rearrangement.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Xiaoyu Zhou
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
99776
|
Gilles N. Natural Peptide Toxins as an Option for Renewed Treatment of Type 2 Vasopressin Receptor-Related Diseases. BIOLOGY 2023; 12:544. [PMID: 37106745 PMCID: PMC10136000 DOI: 10.3390/biology12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
The type 2 vasopressin receptor (V2R) is expressed in the kidneys, and it is the keystone of water homeostasis. Under the control of the antidiuretic hormone vasopressin, the V2R ensures vital functions, and any disturbance has dramatic consequences. Despite decades of research to develop drugs capable of activating or blocking V2R function to meet real medical needs, only one agonist and one antagonist are virtually used today. These two drugs cover only a small portion of patients' needs, leaving millions of patients without treatment. Natural peptide toxins known to act selectively and at low doses on their receptor target could offer new therapeutic options.
Collapse
Affiliation(s)
- Nicolas Gilles
- CEA, SIMoS, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
99777
|
Yadav P, Bhaduri A, Thakur A. Manganese Oxide Nanoparticles: An Insight into Structure, Synthesis and Applications. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Pinky Yadav
- Amity University Haryana Department of Physics Amity School of Applied Sciences 122413 Gurugram India
| | - Ayana Bhaduri
- Amity University Haryana Department of Physics Amity School of Applied Sciences 122413 Gurugram India
| | - Atul Thakur
- Amity University Haryana Amity Institute of Nanotechnology 122413 Gurugram India
- Nanjing University of Information Science & Technology School of Electronics and Information Engineering 210044 Nanjing China
| |
Collapse
|
99778
|
Qin F, Zhang L, Luo Y, He L, Lu S, Xu L, Zhu X, Feng W. Effect of Ag Modification on the Structure and Photocatalytic Performance of TiO2/Muscovite Composites. Molecules 2023; 28:molecules28073187. [PMID: 37049946 PMCID: PMC10095781 DOI: 10.3390/molecules28073187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ag/TiO2/muscovite (ATM) composites were prepared by the sol–gel method and the effects of Ag modification on the structure and photocatalytic performance were investigated. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), photoluminescence spectra (PL) and ultraviolet–visible diffuse reflectance spectra (DRS). The photocatalytic activity of the obtained composites was evaluated by taking 100 mL (10 mg/L) of Rhodamine B (RhB) aqueous solution as the target pollutant. The muscovite (Mus) loading releases the agglomeration of TiO2 particles and the specific surface area increases from 17.6 m2/g (pure TiO2) to 39.5 m2/g (TiO2/Mus). The first-order reaction rate constant increases from 0.0009 min−1 (pure TiO2) to 0.0074 min−1 (150%TiO2/Mus). Ag element exists in elemental silver. The specific surface area of 1-ATM further increases to 66.5 m2/g. Ag modification promotes the separation of photogenerated electrons and holes and increases the visible light absorption. 1%Ag-TiO2/Mus (1-ATM) exhibits the highest photocatalytic activity. After 100 min, the rhodamine B (RhB) degradation degrees of PT, 150%TiO2/Mus and 1-ATM are 10.4%, 48.6% and 90.6%, respectively. The first-order reaction rate constant of 1-ATM reaches 0.0225 min−1, which is 25 times higher than that of pure TiO2.
Collapse
Affiliation(s)
- Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ling Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhao Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Lili He
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Shiji Lu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Li Xu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
99779
|
Li X, Luo D, Jiang F, Zhang K, Wang S, Li S, Zha Q, Huang Y, Ni Y. Electronic Modulation of Metal-Organic Frameworks Caused by Atomically Dispersed Ru for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301850. [PMID: 37010015 DOI: 10.1002/smll.202301850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Designing excellent electrocatalysts for the hydrogen evolution reaction (HER) is extremely significant in producing clean and sustainable hydrogen fuel. Herein, a rational strategy is developed to fabricate a promising electrocatalyst by introducing atomically dispersed Ru into a cobalt-based metal-organic framework (MOF), Co-BPDC (Co(bpdc)(H2 O)2 , BPDC: 4,4'-Biphenyldicarboxylic acid). The obtained CoRu-BPDC nanosheet arrays exhibit remarkable HER performance with an overpotential of 37 mV at a current density of 10 mA cm-2 in alkaline media, which is superior to most of the MOF-based electrocatalysts and comparable to the commercial Pt/C. Synchrotron radiation-based X-ray absorption fine structure (XAFS) spectroscopy studies verify that the isolated Ru atoms are dispersed in Co-BPDC nanosheets with the formation of five-coordinated Ru-O5 species. XAFS spectroscopy combined with density functional theory (DFT) calculations unravels that atomically dispersed Ru can modulate the electronic structure of the as-obtained Co-BPDC, contributing to the optimization of binding strength for H* and the enhancement of HER performance. This work opens a new avenue to rationally design highly-active single-atom modified MOF-based HER electrocatalysts via modulating electronic structures of MOF.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Dian Luo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Fan Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Kuanjian Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Shaoxia Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Shifeng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Qingqing Zha
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Yucheng Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Yonghong Ni
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| |
Collapse
|
99780
|
Babicheva VE. Optical Processes behind Plasmonic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1270. [PMID: 37049363 PMCID: PMC10097005 DOI: 10.3390/nano13071270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy harvesting designs. Surface plasmons facilitate both resonant characteristics of nanostructures and guiding and controlling light at the nanoscale. Plasmonics and metamaterials enable the advancement of many photonic designs with unparalleled capabilities, including subwavelength waveguides, optical nanoresonators, super- and hyper-lenses, and light concentrators. Alternative plasmonic materials have been developed to be incorporated in the nanostructures for low losses and controlled optical characteristics along with semiconductor-process compatibility. This review describes optical processes behind a range of plasmonic applications. It pays special attention to the topics of field enhancement and collective effects in nanostructures. The advances in these research topics are expected to transform the domain of nanoscale photonics, optical metamaterials, and their various applications.
Collapse
Affiliation(s)
- Viktoriia E Babicheva
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
99781
|
Brown MO, Olagunju BO, Giner JL, Welander PV. Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations. Nat Commun 2023; 14:1859. [PMID: 37012227 PMCID: PMC10070321 DOI: 10.1038/s41467-023-37552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Sterane molecular fossils are broadly interpreted as eukaryotic biomarkers, although diverse bacteria also produce sterols. Steranes with side-chain methylations can act as more specific biomarkers if their sterol precursors are limited to particular eukaryotes and are absent in bacteria. One such sterane, 24-isopropylcholestane, has been attributed to demosponges and potentially represents the earliest evidence for animals on Earth, but enzymes that methylate sterols to give the 24-isopropyl side-chain remain undiscovered. Here, we show that sterol methyltransferases from both sponges and yet-uncultured bacteria function in vitro and identify three methyltransferases from symbiotic bacteria each capable of sequential methylations resulting in the 24-isopropyl sterol side-chain. We demonstrate that bacteria have the genomic capacity to synthesize side-chain alkylated sterols, and that bacterial symbionts may contribute to 24-isopropyl sterol biosynthesis in demosponges. Together, our results suggest bacteria should not be dismissed as potential contributing sources of side-chain alkylated sterane biomarkers in the rock record.
Collapse
Affiliation(s)
- Malory O Brown
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Babatunde O Olagunju
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - José-Luis Giner
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
99782
|
Chen J, Sun T, You Y, Lin B, Wu B, Wu J. Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genomics 2023; 24:163. [PMID: 37013486 PMCID: PMC10069120 DOI: 10.1186/s12864-023-09140-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yan You
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
- Southern Medical University- Shenzhen Stomatology Hospital (Pingshan), ShenZhen, 518118, China.
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
99783
|
López‐Domínguez P, Ríos‐López M, Rivera‐Peláez JE, Barragán‐Aroche JF, Vivaldo‐Lima E. Modelling of polymerization kinetics and molar mass development in the nitroxide‐mediated polymerization (
NMP
) of styrene in supercritical carbon dioxide using the
PC‐SAFT
equation of state. CAN J CHEM ENG 2023. [DOI: 10.1002/cjce.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Porfirio López‐Domínguez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
- Centro de Investigación en Química Aplicada Blvd. Enrique Reyna 140 Saltillo 25294 Mexico
| | - Marlene Ríos‐López
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Jesús Eduardo Rivera‐Peláez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - José Fernando Barragán‐Aroche
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Eduardo Vivaldo‐Lima
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| |
Collapse
|
99784
|
Melethil K, Kumar MS, Wu CM, Shen HH, Vedhanarayanan B, Lin TW. Recent Progress of 2D Layered Materials in Water-in-Salt/Deep Eutectic Solvent-Based Liquid Electrolytes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1257. [PMID: 37049350 PMCID: PMC10097202 DOI: 10.3390/nano13071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Supercapacitors are candidates with the greatest potential for use in sustainable energy resources. Extensive research is being carried out to improve the performances of state-of-art supercapacitors to meet our increased energy demands because of huge technological innovations in various fields. The development of high-performing materials for supercapacitor components such as electrodes, electrolytes, current collectors, and separators is inevitable. To boost research in materials design and production toward supercapacitors, the up-to-date collection of recent advancements is necessary for the benefit of active researchers. This review summarizes the most recent developments of water-in-salt (WIS) and deep eutectic solvents (DES), which are considered significant electrolyte systems to advance the energy density of supercapacitors, with a focus on two-dimensional layered nanomaterials. It provides a comprehensive survey of 2D materials (graphene, MXenes, and transition-metal oxides/dichalcogenides/sulfides) employed in supercapacitors using WIS/DES electrolytes. The synthesis and characterization of various 2D materials along with their electrochemical performances in WIS and DES electrolyte systems are described. In addition, the challenges and opportunities for the next-generation supercapacitor devices are summarily discussed.
Collapse
Affiliation(s)
- Krishnakumar Melethil
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| | - Munusamy Sathish Kumar
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung City 40704, Taiwan
| |
Collapse
|
99785
|
Tang J, Zhong J, Yang Z, Su Q, Mo W. Glyoxalase 1 inhibitor BBGC suppresses the progression of chronic lymphocytic leukemia and promotes the efficacy of Palbociclib. Biochem Biophys Res Commun 2023; 650:96-102. [PMID: 36774689 DOI: 10.1016/j.bbrc.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a highly heterogeneous disease. Despite recent tremen-dous progress in managing CLL, the disease remains incurable with clinical therapies, and relapse is inevitable. To overcome this, new diagnostic and prognostic markers need to be investigated. We thus screened through the public database for genes with diagnostic, prognostic, and therapeutic implications in CLL. We further performed RT-qPCR and Western blot analysis to measure the candidate gene and protein expression levels, respectively, in peripheral blood mononuclear cells. Our results indicated that Glyoxalase 1 (GLO1) expression was significantly higher in patients with CLL than in healthy controls. Furthermore, cell proliferation, apoptosis, and cell cycle assay results together indicated that S-p-bromobenzylglutathione cyclopentyl diester (BBGC), an effective inhibitor of GLO1, suppresses the progression of CLL. Bioinformatics analysis revealed that GLO1 expression is closely associated with CDK4 expression in a wide variety of cancer types, and inhibition of CDK4 through silencing of genes or inhibitors can downregulate GLO1 expression. Subsequent validation experiments demonstrated that GLO1 protein levels were downregulated in MEC-1 and Jurkat cell lines after palbociclib exposure, and combination treatment of palbociclib with GLO1 inhibitor BBGC effectively delayed the growth of tumor cell lines.
Collapse
Affiliation(s)
- Jiameng Tang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Jialing Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Qisheng Su
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530000, China.
| |
Collapse
|
99786
|
Lv H, Wang Z, An J, Li Z, Shi L, Shan Y. Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes (Basel) 2023. [DOI: 10.3390/pr11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Water is increasingly being used as a solvent in place of organic solvent in order to meet the demand for green chemical synthesis. Nevertheless, many of the reaction substrates are organic matter, which have low water solubility, resulting in a low reaction interface and limiting the development of organic-water biphasic systems. A surfactant is typically added to the two-phase system to form an emulsion to increase the contact area between the organic phase and the water. Compared to ordinary emulsion stabilized with the surfactant, Pickering emulsion offers better adhesion resistance, biocompatibility, and environmental friendliness. It possesses unrivaled benefits as an emulsifier and catalyst in a two-phase interfacial catalysis system (PIC). In this study, the amine group (NNDB) was employed to alter the surface of graphene oxide (GO). A stable Pickering emulsion was created by adsorbing GO-NNDB on the toluene–water interface. It was determined that the emulsion system had good stability by analyzing digital photographs and microscope images of droplets at various temperatures, and fluorescence microscopy images of emulsion droplets created by both newly added and recovered emulsifiers. This work provided the groundwork for future applications of Pickering emulsion in interfacial catalysis.
Collapse
Affiliation(s)
- Huihui Lv
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zebo Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jialong An
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Shan
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
99787
|
Rabaa M, Mezher M, Aridi A, Naoufal D, Khalil MI, Awad R, Abdeen W. Influence of Lanthanum Doping on the Photocatalytic and Antibacterial Capacities of Mg0.33Ni0.33Co0.33Fe2O4 Nanoparticles. Catalysts 2023. [DOI: 10.3390/catal13040693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The increase in environmental pollution, especially water pollution, has intensified the requirement for new strategies for the treatment of water sources. Furthermore, the improved properties of nano-ferrites permit their usage in wastewater treatment. In this regard, novel Mg0.33Ni0.33Co0.33LaxFe2−xO4 nanoparticles (NPs), where 0.00≤x≤0.08, were synthesized to test their photocatalytic, antibacterial and antibiofilm activities. The structural and optical properties of the prepared NPs were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy and photoluminescence (PL) analysis. As La content increases, the bandgap energy increases, whereas the particle size decreases. The photocatalytic activity of the prepared NPs is evaluated by the degradation of methylene blue (MB) dye under sunlight irradiation. Superior activity is exhibited by Mg0.33Ni0.33Co0.33La0.01Fe1.99O4 NPs. The influence of catalyst dosage, pH, temperature and addition of graphene (Gr) on the photodegradation reaction was studied. Increasing the pH and temperature improved the rate of the photodegradation reaction. The antibacterial and antibiofilm activities of the NPs were assessed against Escherichia coli, Leclercia adecarboxylata, Staphylococcus aureus and Enterococcus faecium. Mg0.33Ni0.33Co0.33Fe2O4 NPs inhibited bacterial growth. They had bacteriostatic activity on all isolates, with a greater effect on Gram-positive bacteria. All tested nano-ferrites had significant antibiofilm activities against some biofilms.
Collapse
Affiliation(s)
- Mariam Rabaa
- Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Malak Mezher
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Amani Aridi
- Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Beirut P.O. Box 6573/14, Lebanon
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Beirut P.O. Box 6573/14, Lebanon
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Ramadan Awad
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
- Department of Physics, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Waleed Abdeen
- Department of Physics, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
- Physics Department, University College at Al-Jamom, Umm Al-Qura University, Mecca 24243, Saudi Arabia
| |
Collapse
|
99788
|
Olusanya SO, Ajayi SM, Sodeinde KO, Fapojuwo DP, Atunde MO, Diduyemi AE, Olumayede EG, Lawal OS. Hydrophobic modification of cellulose from oil palm waste in aqueous medium. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99789
|
Verkhivker G, Alshahrani M, Gupta G. Coarse-Grained Molecular Simulations and Ensemble-Based Mutational Profiling of Protein Stability in the Different Functional Forms of the SARS-CoV-2 Spike Trimers: Balancing Stability and Adaptability in BA.1, BA.2 and BA.2.75 Variants. Int J Mol Sci 2023; 24:ijms24076642. [PMID: 37047615 PMCID: PMC10094791 DOI: 10.3390/ijms24076642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
99790
|
Capone V, Della Torre L, Carannante D, Babaei M, Altucci L, Benedetti R, Carafa V. HAT1: Landscape of Biological Function and Role in Cancer. Cells 2023; 12:cells12071075. [PMID: 37048148 PMCID: PMC10092946 DOI: 10.3390/cells12071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vincenza Capone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Daniela Carannante
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Mehrad Babaei
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- IEOS CNR, 80138 Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
99791
|
Alharthi AI, Alotaibi MA, Alansi AM, Qahtan TF, Ali I, Al-Shalwi MN, Bakht MA. Solar-Driven Thermocatalytic Synthesis of Octahydroquinazolinone Using Novel Polyvinylchloride (PVC)-Supported Aluminum Oxide (Al 2O 3) Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2835. [PMID: 37049129 PMCID: PMC10096424 DOI: 10.3390/ma16072835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The chemical industry is one of the main fossil fuel consumers, so its reliance on sustainable and renewable resources such as wind and solar energy should be increased to protect the environment. Accordingly, solar-driven thermocatalytic synthesis of octahydroquinazolinone using polyvinylchloride (PVC)-supported aluminum oxide (Al2O3) as a catalyst under natural sunlight is proposed in this work. The Al2O3/PVC catalysts were characterized by FT-IR, SEM, BET, XRD, and XPS techniques. The obtained results indicate that the yield and reaction time can be modified by adjusting the molar ratio of the catalyst. To investigate the stability of the catalyst, the spent catalyst was reused in several reactions. The results indicated that, when a 50% Al2O3 catalyst is employed in an absolute solar heat, it performs exceptionally well in terms of yield (98%) and reaction time (35 min). Furthermore, the reaction times and yield of octahydroquinazolinone derivatives with an aryl moiety were superior to those of heteroaryl. All the synthesized compounds were well characterized by FT-IR, 1H-NMR, and 13C-NMR. The current work introduces a new strategy to use solar heat for energy-efficient chemical reactions using a cost-effective, recyclable environmentally friendly PVC/Al2O3 catalyst that produces a high yield.
Collapse
Affiliation(s)
- Abdulrahman I. Alharthi
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Mshari A. Alotaibi
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Amani M. Alansi
- Chemistry Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Talal F. Qahtan
- Physics Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Imtiaz Ali
- Preparatory College, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Matar N. Al-Shalwi
- Electrochemical Sciences Research Chair (ESRC), Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md. Afroz Bakht
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
99792
|
Yin J, Su X, Yan S, Shen J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071255. [PMID: 37049348 PMCID: PMC10096623 DOI: 10.3390/nano13071255] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The unscientific application of pesticides can easily cause a series of ecological environmental safety issues, which seriously restrict the sustainable development of modern agriculture. The great progress in nanotechnology has allowed the continuous development of plant protection strategies. The nanonization and delivery of pesticides offer many advantages, including their greater absorption and conduction by plants, improved efficacy, reduced dosage, delayed resistance, reduced residues, and protection from natural enemies and beneficial insects. In this review, we focus on the recent advances in multifunctional nanoparticles and nanopesticides. The definition of nanopesticides, the types of nanoparticles used in agriculture and their specific synergistic mechanisms are introduced, their safety is evaluated, and their future application prospects, about which the public is concerned, are examined.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- College of Plant Protection, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
99793
|
Choi B, Park DK, Leo SY, Jiang P. Excellent physical durability and enhanced Fano absorption of SPR sensor platform based on Au-covered silica sphere monolayer. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99794
|
Krupinski K, Wagler J, Brendler E, Kroke E. A Non-Hydrolytic Sol–Gel Route to Organic-Inorganic Hybrid Polymers: Linearly Expanded Silica and Silsesquioxanes. Gels 2023; 9:gels9040291. [PMID: 37102903 PMCID: PMC10138140 DOI: 10.3390/gels9040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Condensation reactions of chlorosilanes (SiCl4 and CH3SiCl3) and bis(trimethylsilyl)ethers of rigid, quasi-linear diols (CH3)3SiO–AR–OSi(CH3)3 (AR = 4,4′-biphenylene (1) and 2,6-naphthylene (2)), with release of (CH3)3SiCl as a volatile byproduct, afforded novel hybrid materials that feature Si–O–C bridges. The precursors 1 and 2 were characterized using FTIR and multinuclear (1H, 13C, 29Si) NMR spectroscopy as well as single-crystal X-ray diffraction analysis in case of 2. Pyridine-catalyzed and non-catalyzed transformations were performed in THF at room temperature and at 60 °C. In most cases, soluble oligomers were obtained. The progress of these transsilylations was monitored in solution with 29Si NMR spectroscopy. Pyridine-catalyzed reactions with CH3SiCl3 proceeded until complete substitution of all chlorine atoms; however, no gelation or precipitation was found. In case of pyridine-catalyzed reactions of 1 and 2 with SiCl4, a Sol–Gel transition was observed. Ageing and syneresis yielded xerogels 1A and 2A, which exhibited large linear shrinkage of 57–59% and consequently low BET surface area of 10 m2⋅g−1. The xerogels were analyzed using powder-XRD, solid state 29Si NMR and FTIR spectroscopy, SEM/EDX, elemental analysis, and thermal gravimetric analysis. The SiCl4-derived amorphous xerogels consist of hydrolytically sensitive three-dimensional networks of SiO4-units linked by the arylene groups. The non-hydrolytic approach to hybrid materials may be applied to other silylated precursors, if the reactivity of the corresponding chlorine compound is sufficient.
Collapse
Affiliation(s)
- Katrin Krupinski
- Institute of Inorganic Chemistry, Department of Chemistry and Physics, Technische Universität Bergakademie Freiberg (TUBAF), Leipziger Strasse 29, 09596 Freiberg, Saxony, Germany
| | - Jörg Wagler
- Institute of Inorganic Chemistry, Department of Chemistry and Physics, Technische Universität Bergakademie Freiberg (TUBAF), Leipziger Strasse 29, 09596 Freiberg, Saxony, Germany
- Center of Efficient High Temperature Processes and Material Conversion (ZeHS), Technische Universität Bergakademie Freiberg (TUBAF), Winklerstr. 5, 09599 Freiberg, Saxony, Germany
| | - Erica Brendler
- Institute of Analytical Chemistry, Department of Chemistry and Physics, Technische Universität Bergakademie Freiberg (TUBAF), Leipziger Strasse 29, 09596 Freiberg, Saxony, Germany
| | - Edwin Kroke
- Institute of Inorganic Chemistry, Department of Chemistry and Physics, Technische Universität Bergakademie Freiberg (TUBAF), Leipziger Strasse 29, 09596 Freiberg, Saxony, Germany
- Center of Efficient High Temperature Processes and Material Conversion (ZeHS), Technische Universität Bergakademie Freiberg (TUBAF), Winklerstr. 5, 09599 Freiberg, Saxony, Germany
| |
Collapse
|
99795
|
Pruteanu LL, Bailey DS, Grădinaru AC, Jäntschi L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants (Basel) 2023; 12:antiox12040860. [PMID: 37107235 PMCID: PMC10135154 DOI: 10.3390/antiox12040860] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
It is more effective to maintain good health than to regain it after losing it. This work focuses on the biochemical defense mechanisms against free radicals and their role in building and maintaining antioxidant shields, aiming to show how to balance, as much as possible, the situations in which we are exposed to free radicals. To achieve this aim, foods, fruits, and marine algae with a high antioxidant content should constitute the basis of nutritional elements, since natural products are known to have significantly greater assimilation efficiency. This review also gives the perspective in which the use of antioxidants can extend the life of food products, by protecting them from damage caused by oxidation as well as their use as food additives.
Collapse
Affiliation(s)
- Lavinia Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd., St Johns Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Andrei Cristian Grădinaru
- Department of Genetics, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iaşi, 700490 Iaşi, Romania
| | - Lorentz Jäntschi
- Institute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
99796
|
Yadav M, Lal K, Jose DA, Ghule VD, Tittal RK. Synthesis, photophysical and DFT investigations on 1,2,3-triazoles linked to chalcone and chalco-pyrene. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99797
|
Wu S, Chen G, Chen EY, Farshidpour LS, Zhang Q, Wang G, Chen QH. Core Structure-Activity Relationship Studies of 5,7,20- O-Trimethylsilybins in Prostate Cancer Cell Models. Pharmaceuticals (Basel) 2023; 16:531. [PMID: 37111288 PMCID: PMC10145751 DOI: 10.3390/ph16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Silibinin, also known as silybin, is isolated from milk thistle (Silybum marianum). Silibinin has been demonstrated to be a good lead compound due to its potential to prevent and treat prostate cancer. Its moderate potency and poor pharmacokinetic profile hindered it from moving forward to therapeutic use. Our research group has been working on optimizing silibinin for the potential treatment of castration-resistant prostate cancer. Our previous studies established 5,7,20-O-trimethylsilybins as promising lead compounds as they can selectively suppress androgen receptor (AR)-positive LNCaP cell proliferation. Encouraged by the promising data, the present study aims to investigate the relationships between the core structure of 5,7,20-O-trimethylsilybin and their antiproliferative activities towards AR-positive (LNCaP) and AR-negative prostate cancer cell lines (PC-3 and DU145). The structure-activity relationships among the four different core structures (including flavanonol-type flavonolignan (silibinin), flavone-type flavonolignan (hydnocarpin D), chalcone-type flavonolignan, and taxifolin (a flavonolignan precursor) indicate that 5,7,20-O-trimethylsilybins are the most promising scaffold to selectively suppress AR-positive LNCaP prostate cancer cell proliferation. Further investigation on the antiproliferative potency of their optically enriched versions of the most promising 5,7,20-O-trimethylsilybins led to the conclusion that (10R,11R) derivatives (silybin A series) are more potent than (10S,11S) derivatives (silybin B series) in suppressing AR positive LNCaP cell proliferation.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Eva Y. Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Leyla S. Farshidpour
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| |
Collapse
|
99798
|
Ashokan D, Rajathi K. A green Approach for Synthesis of Pyridinium Sulfonamide Ionic Liquids: Characterization and Their Biological Activities. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
99799
|
Okła E, Białecki P, Kędzierska M, Pędziwiatr-Werbicka E, Miłowska K, Takvor S, Gómez R, de la Mata FJ, Bryszewska M, Ionov M. Pegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicity. Int J Mol Sci 2023; 24:ijms24076638. [PMID: 37047610 PMCID: PMC10094790 DOI: 10.3390/ijms24076638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer’s disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability −74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Piotr Białecki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Samuel Takvor
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
99800
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|