99801
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
99802
|
Adhikari S, Essandoh MA, Starr WC, Sah P, La Force CN, Eleshy RG, Lutter EI, Nelson TL. Eumelanin-Inspired Antimicrobial with Biocidal Activity against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2022; 5:545-551. [PMID: 35113537 DOI: 10.1021/acsabm.1c01036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reliance on antibiotics and antimicrobials to treat bacterial infectious diseases is threatened by the emergence of antibiotic resistance and multi-drug-resistant organisms, thus having the potential to greatly impact human health. Thus, the discovery and development of antimicrobials capable of acting on antibiotic-resistant bacteria is a major area of significance in scientific research. Herein, we present the development of a eumelanin-inspired antimicrobial capable of killing methicillin-resistant Staphylococcus aureus (MRSA). By ligating quaternary ammonium-functionalized "arms" to a eumelanin-inspired indole with intrinsic antimicrobial activity, an antimicrobial agent with enhanced activity was prepared. This resulting antimicrobial, EIPE-1, had a minimum inhibitory concentration of 16 μg/mL (17.1 μM) against a clinical isolate of MRSA obtained from an adult cystic fibrosis patient. The biocidal activity occurred within 30 min of exposure and resulted in changes to the bacterial cell surface as visualized with a scanning electron microscope. Taken together, these studies demonstrate that EIPE-1 is effective at killing MRSA.
Collapse
Affiliation(s)
- Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Martha A Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - William C Starr
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Prakash Sah
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Colleen N La Force
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rawan G Eleshy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Erika I Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Toby L Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
99803
|
Duan X, Zhang G, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging‐Modality Transformable Characteristics for Improved Biological Applications**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guo‐Qiang Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction Tianjin Stomatological Hospital The Affiliated Stomatological Hospital of Nankai University Tianjin 300041 China
| |
Collapse
|
99804
|
Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Gold (I/III)‐Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sagar R. Mudshinge
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Yuhao Yang
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University 2999 North Renmin Lu Shanghai 201620 China
| | - Gerald B. Hammond
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Zhichao Lu
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| |
Collapse
|
99805
|
Collett JD, Krause JA, Guan H. Nickel Hydride Complexes Supported by a Pyrrole-Derived Phosphine Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel D. Collett
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
99806
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
99807
|
Demmenie M, Kolpakov P, Nagata Y, Woutersen S, Bonn D. Scratch-Healing Behavior of Ice by Local Sublimation and Condensation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2179-2183. [PMID: 35145575 PMCID: PMC8819648 DOI: 10.1021/acs.jpcc.1c09590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
We show that the surface of ice is scratch healing: micrometer-deep scratches in the ice surface spontaneously disappear by thermal relaxation on the time scale of roughly an hour. Following the dynamics and comparing it to different mass transfer mechanisms, we find that sublimation from and condensation onto the ice surface is the dominant scratch-healing mechanism. The scratch-healing kinetics shows a strong temperature dependence, following an Arrhenius behavior with an activation energy of ΔE = 58.6 ± 4.6 kJ/mol, agreeing with the proposed sublimation mechanism and at odds with surface diffusion or fluid flow or evaporation-condensation from a quasi-liquid layer.
Collapse
Affiliation(s)
- Menno Demmenie
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Paul Kolpakov
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sander Woutersen
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
99808
|
Wang S, Gao L, Su N, Yang L, Gao F, Dou X, Feng C. Inversion of Supramolecular Chirality by In Situ Hydrolyzation of Achiral Diethylene Glycol Motifs. J Phys Chem B 2022; 126:1325-1333. [PMID: 35113541 DOI: 10.1021/acs.jpcb.1c10018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral inversion of supramolecular assemblies is of great research interest due to its broad practical applications. However, chiral structure transition induced by in situ regulation of building molecules has remained a challenge. Herein, left-handed fibrous assemblies were constructed by C2-symmetic l-phenylalanine coupled with diethylene glycol (LPFEG) molecules. In situ hydrolyzing terminal diethylene glycol motifs in LPFEG successfully inverted the chirality of the nanofibers from left- to right-handedness. The transition of right-handed fibers into left-handed fibers could also be achieved via hydrolyzing DPFEG molecules. Circular dichroism (CD) spectroscopy, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy revealed that the back-folded achiral diethylene glycol played a vital role in L/DPFEG molecular arrangements and removing terminal diethylene glycol could induce the opposite rotation of molecular assemblies. Thanks to this merit, the enantioselective separation of racemic phenylalanine was obtained and the enantiomeric excess (ee) values could achieve around ±20% after separation. This study not only provides a new strategy to regulate the chiral structure via dynamic modulation of terminal substituents but also presents a promising application in the field of enantioselective separation.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Su
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengli Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
99809
|
Thürlemann M, Böselt L, Riniker S. Learning Atomic Multipoles: Prediction of the Electrostatic Potential with Equivariant Graph Neural Networks. J Chem Theory Comput 2022; 18:1701-1710. [PMID: 35112866 DOI: 10.1021/acs.jctc.1c01021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of electrostatic interactions remains a challenging problem for classical potential-energy functions. The commonly used fixed partial-charge approximation fails to reproduce the electrostatic potential at short range due to its insensitivity to conformational changes and anisotropic effects. At the same time, possibly more accurate machine-learned (ML) potentials struggle with the long-range behavior due to their inherent locality ansatz. Employing a multipole expansion offers in principle an exact treatment of the electrostatic potential such that the long-range and short-range electrostatic interactions can be treated simultaneously with high accuracy. However, such an expansion requires the calculation of the electron density using computationally expensive quantum-mechanical (QM) methods. Here, we introduce an equivariant graph neural network (GNN) to address this issue. The proposed model predicts atomic multipoles up to the quadrupole, circumventing the need for expensive QM computations. By using an equivariant architecture, the model enforces the correct symmetry by design without relying on local reference frames. The GNN reproduces the electrostatic potential of various systems with high fidelity. Possible uses for such an approach include the separate treatment of long-range interactions in ML potentials, the analysis of electrostatic potential surfaces, and static multipoles in polarizable force fields.
Collapse
Affiliation(s)
- Moritz Thürlemann
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lennard Böselt
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
99810
|
Srivastava AK, Srivastava R, Bharati AP, Singh AK, Sharma A, Das S, Tiwari PK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Analysis of Biosynthetic Gene Clusters, Secretory, and Antimicrobial Peptides Reveals Environmental Suitability of Exiguobacterium profundum PHM11. Front Microbiol 2022; 12:785458. [PMID: 35185816 PMCID: PMC8851196 DOI: 10.3389/fmicb.2021.785458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Halotolerant bacteria produce a wide range of bioactive compounds with important applications in agriculture for abiotic stress amelioration and plant growth promotion. In the present study, 17 biosynthetic gene clusters (BGCs) were identified in Exiguobacterium profundum PHM11 belonging to saccharides, desmotamide, pseudaminic acid, dipeptide aldehydes, and terpene biosynthetic pathways representing approximately one-sixth of genomes. The terpene biosynthetic pathway was conserved in Exiguobacterium spp. while the E. profundum PHM11 genome confirms the presence of the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway for the isopentenyl diphosphate (IPP) synthesis. Further, 2,877 signal peptides (SPs) were identified using the PrediSi server, out of which 592 proteins were prophesied for the secretion having a transmembrane helix (TMH). In addition, antimicrobial peptides (AMPs) were also identified using BAGEL4. The transcriptome analysis of PHM11 under salt stress reveals the differential expression of putative secretion and transporter genes having SPs and TMH. Priming of the rice, wheat and maize seeds with PHM11 under salt stress led to improvement in the root length, root diameters, surface area, number of links and forks, and shoot length. The study shows that the presence of BGCs, SPs, and secretion proteins constituting TMH and AMPs provides superior competitiveness in the environment and make E. profundum PHM11 a suitable candidate for plant growth promotion under salt stress.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
- Alok Kumar Srivastava,
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Sudipta Das
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anchal Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
- *Correspondence: Prem Lal Kashyap, ;
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
99811
|
Kang JS, Kang S, Suh JM, Park SM, Yoon DK, Lim MH, Kim WY, Seo M. Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices. J Am Chem Soc 2022; 144:2657-2666. [PMID: 35112850 DOI: 10.1021/jacs.1c11306] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circularly polarized light (CPL) is an inherently chiral entity and is considered one of the possible deterministic signals that led to the evolution of homochirality. While accumulating examples indicate that chirality beyond the molecular level can be induced by CPL, not much is yet known about circumstances where the spin angular momentum of light competes with existing molecular chiral information during the chirality induction and amplification processes. Here we present a light-triggered supramolecular polymerization system where chiral information can both be transmitted and nonlinearly amplified in a "sergeants-and-soldiers" manner. While matching handedness with CPL resulted in further amplification, we determined that opposite handedness could override molecular information at the supramolecular level when the enantiomeric excess was low. The presence of a critical chiral bias suggests a bifurcation point in the homochirality evolution under random external chiral perturbation. Our results also highlight opportunities for the orthogonal control of supramolecular chirality decoupled from molecular chirality preexisting in the system.
Collapse
Affiliation(s)
- Jun Su Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sungwoo Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woo Youn Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
99812
|
Qiao L, Fang WH, Long R. Dual Passivation of Point Defects at Perovskite Grain Boundaries with Ammonium Salts Greatly Inhibits Nonradiative Charge Recombination. J Phys Chem Lett 2022; 13:954-961. [PMID: 35060385 DOI: 10.1021/acs.jpclett.1c04038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Experiments demonstrate that grain boundaries (GBs) exhibit detrimental effect on carrier lifetimes in MAPbI3 (MA= CH3NH3+). On the basis of the nonadiabatic (NA) molecular dynamics simulations, we demonstrated that NH4Cl can simultaneously passivate the common point defects that introduce recombination centers at GBs and accelerate electron-hole recombination but shows small effects in the bulk. The MA interstitial (MAi) and the substitutional MA to Pb (MAPb) in pristine MAPbI3 leave the band gap and charge recombination rates largely unchanged but create deep electron traps at GBs by separately either distorting inorganic octahedra or creating an I-dimer. Cl- and NH4+ remove the in-gap states by either restoring the distorted octahedra or destroying the I-dimer. Thus, the band gap recovers to the pristine system, NA coupling decreases, and decoherence accelerates, extending the carrier lifetime even twice longer than MAPbI3. This study shows that the negative role of GBs can be removed by dually passivating with NH4Cl.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
99813
|
Jiang J, Wang X, Liu S, Zhang S, Yang B, Zhao Y, Lu S. Enantioselective Cascade Annulation of α‐Amino‐ynones and Enals Enabled by Gold and Oxidative NHC Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianfeng Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Sichen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Binmiao Yang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yu Zhao
- Department of Chemistry National University of Singapore (NUS) 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
99814
|
Sun Q, Liu M, Ruan H, Chen C, Zhao Y, Tan G, Wang X. The cis/ trans conformation approach for tuning the magnetic coupling in a diradical: isolation of pure pyridine-based diradical dianions. Chem Commun (Camb) 2022; 58:1708-1711. [PMID: 35023510 DOI: 10.1039/d1cc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron reductions of 3,3'-bis(2,6-dimesitylpyridin-4-yl)-1,1'-biphenyl 1 with elemental potassium in the absence and presence of 18-c-6 afforded the diradical dianion salts [K+]2˙[trans-1]˙˙2- and [K(18-c-6)]+2˙[cis-1]˙˙2-, which exhibit trans and cis configurations, respectively. The transoid conformer could be converted to the cisoid one through reacting with 18-c-6.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
99815
|
Yang W, Dilanga Siriwardane EM, Hu J. Crystal Structure Prediction Using an Age-Fitness Multiobjective Genetic Algorithm and Coordination Number Constraints. J Phys Chem A 2022; 126:640-647. [PMID: 35060745 DOI: 10.1021/acs.jpca.1c07170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystal structure prediction (CSP) has emerged as one of the most important approaches for discovering new materials. CSP algorithms based on evolutionary algorithms and particle swarm optimization have discovered a great number of new materials. However, these algorithms based on ab initio calculation of free energy are inefficient. Moreover, they have severe limitations in terms of scalability. We recently proposed a promising crystal structure prediction method based on atomic contact maps, using global optimization algorithms to search for the Wyckoff positions by maximizing the match between the contact map of the predicted structure and the contact map of the true crystal structure. However, our previous contact-map-based CSP algorithms have two major limitations: (1) the loss of search capability due to getting trapped in local optima; (2) it only uses the connection of atoms in the unit cell to predict the crystal structure, ignoring the chemical environment outside the unit cell, which may lead to unreasonable coordination environments. Herein, we propose a novel multiobjective genetic algorithm for contact-map-based crystal structure prediction by optimizing three objectives, including contact map match accuracy, individual age, and coordination number match. Furthermore, we assign the age values to all the individuals of the GA and try to minimize the age, aiming to avoid the premature convergence problem. Our experimental results show that compared to our previous CMCrystal algorithm, our multiobjective crystal structure prediction algorithm (CMCrystalMOO) can reconstruct the crystal structure with higher quality and alleviate the problem of premature convergence. The source code is open sourced and can be accessed at https://github.com/usccolumbia/MOOCSP.
Collapse
Affiliation(s)
- Wenhui Yang
- School of Mechanical Engineering, Guizhou University, Guiyang 550055, China
| | | | - Jianjun Hu
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29201, United States
| |
Collapse
|
99816
|
A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils. COATINGS 2022. [DOI: 10.3390/coatings12020201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Magnesium (Mg) is the most essential element constituent in chlorophyll molecules that regulates photosynthesis processes. The physiological response of ‘Superior Seedless’ grapes was evaluated under different foliar magnesium fertilization such as sulfate magnesium (MgSO4·7 H2O), magnesium disodium EDTA (Mg-EDTA), and magnesium nanoparticles (Mg-NPs) during the berry development stages (flowering, fruit set, veraison, and harvest). In general, the ‘Superior Seedless’ vine had a higher performance in photosynthesis with Mg-NPs application than other forms. The Fy/Fm ratio declined rapidly after the fruit set stage; then, it decreased gradually up until the harvesting stage. However, both MgSO4 and Mg-EDTA forms showed slight differences in Fv/Fm ratio during the berry development stages. The outcomes of this research suggest that the Fv/Fm ratio during the growth season of the ‘Superior Seedless’ vine may be a good tool to assess magnesium fertilization effects before visible deficiency symptoms appear. Mg-NPs are more effective at improving ‘Superior Seedless’ berry development than the other magnesium forms. These findings suggest that applying foliar Mg-NPs to vines grown on salinity-sandy soil alleviates the potential Mg deficiency in ‘Superior Seedless’ vines and improves bunches quality.
Collapse
|
99817
|
Abstract
Hydrogenated borophenes─borophanes─have recently been synthesized as a new platform for studying low-dimensional borides, but most of their lattice structures remain unknown. Here, we determine the structures of borophane polymorphs on Ag(111) by performing extensive structural search using the cluster expansion method augmented with first-principles calculations. Our results reveal rich borophane polymorphs whose stability depends on hydrogen pressure. At relatively low hydrogen pressures, borophane structures with rhombic patterns of two-center-two-electron B-H bonds are energetically preferred, in excellent agreement with two experimentally observed phases. In a wider range of hydrogen pressures, the structure with a combination of two-center-two-electron B-H and three-center-two-electron B-H-B bonds is a deep global minimum, rationalizing its experimental prevalence. For all these borophane polymorphs, their hydrogen "skin" raises the energy barriers for oxidation above 1.1 eV, while their work functions can be reduced by more than 0.5 eV through varying the hydrogen coverage.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peikun Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaoyu Xuan
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
99818
|
|
99819
|
Szefczyk M, Ożga K, Drewniak-Świtalska M, Rudzińska-Szostak E, Hołubowicz R, Ożyhar A, Berlicki Ł. Controlling the conformational stability of coiled-coil peptides with a single stereogenic center of a peripheral β-amino acid residue. RSC Adv 2022; 12:4640-4647. [PMID: 35425498 PMCID: PMC8981378 DOI: 10.1039/d2ra00111j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
The key issue in the research on foldamers remains the understanding of the relationship between the monomers structure and conformational properties at the oligomer level. In peptidomimetic foldamers, the main goal of which is to mimic the structure of proteins, a main challenge is still better understanding of the folding of peptides and the factors that influence their conformational stability. We probed the impact of the modification of the peptide periphery with trans- and cis-2-aminocyclopentanecarboxylic acid (ACPC) on the structure and stability of the model coiled-coil using circular dichroism (CD), analytical ultracentrifugation (AUC) and two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Although, trans-ACPC and cis-ACPC-containing mutants differ by only one peripheral stereogenic center, their conformational stability is strikingly different.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Magda Drewniak-Świtalska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
99820
|
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochim Acta 2022; 189:83. [PMID: 35118576 DOI: 10.1007/s00604-021-05153-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.
Collapse
|
99821
|
Yuan JW, Zhang MM, Dong XY, Zang SQ. Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. NANOSCALE 2022; 14:1538-1565. [PMID: 35060593 DOI: 10.1039/d1nr07690f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically precise metal nanoclusters with specific chemical compositions have become a popular research topic due to their precise structures, attractive properties, and wide range of applications in various fields. Currently, among more than 100 reported metal nanoclusters with precise formulas, 38-atom coinage metal nanoclusters stand out due to their unique structural diversities, such as face-centered cubic (FCC) and body-centered cubic (BCC) arrangements. Among them, the formation of the metal cores includes vertex-sharing, face-fusion, and FCC cubes fusion. Due to their geometrical features, 38-atom coinage metal nanoclusters exhibit attractive properties, making them an ideal model for exploring structure-property relationships. Therefore, 38-atom coinage metal nanoclusters are a universal key to the treasure trove of nanoclusters, which can open almost all fields and are of great research significance. This paper focuses on the structure of 38-atom coinage metal nanoclusters and reviews the preparation and crystallization methods, excellent properties, and practical applications. Finally, future research prospects and development opportunities are provided.
Collapse
Affiliation(s)
- Jia-Wang Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
99822
|
Synthesis and Characterization of Anatase TiO2 Nanorods: Insights from Nanorods’ Formation and Self-Assembly. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Highly crystalline, organic-solvent-dispersible titanium dioxide (TiO2) nanorods (NRs) present promising chemicophysical properties in many diverse applications. In this paper, based on a modified procedure from literature, TiO2 NRs were synthesized via a ligand-assisted nonhydrolytic sol-gel route using oleic acid as the solvent, reagent, and ligand and titanium (IV) isopropoxide as the titanium precursor. This procedure produced monodisperse TiO2 NRs, as well as some semi-spherical titania nanocrystals (NCs) that could be removed by size-selective precipitation. X-ray diffraction and selected area electron diffraction results showed that the nanorods were anatase, while the semipheres also contained the TiO2(B) phase. By taking samples during the particle growth, it was found that the average length of the initially grown NRs decreased during the synthesis. Possible reasons for this unusual growth path, partially based on high-resolution transmission electron microscopy (HRTEM) observations during the growth, were discussed. The dispersion of anatase TiO2 nanorods was capable of spontaneous formation of lyotropic liquid crystals on the TEM grid and in bulk. Considering high colloidal stability together with the large optical birefringence displayed by these high refractive index liquid crystalline domains, we believe these TiO2 NRs dispersions are promising candidates for application in transparent and switchable optics.
Collapse
|
99823
|
Abstract
![]()
We extend the modular AMBER lipid
force field to include anionic
lipids, polyunsaturated fatty acid (PUFA) lipids, and sphingomyelin,
allowing the simulation of realistic cell membrane lipid compositions,
including raft-like domains. Head group torsion parameters are revised,
resulting in improved agreement with NMR order parameters, and hydrocarbon
chain parameters are updated, providing a better match with phase
transition temperature. Extensive validation runs (0.9 μs per
lipid type) show good agreement with experimental measurements. Furthermore,
the simulation of raft-like bilayers demonstrates the perturbing effect
of increasing PUFA concentrations on cholesterol molecules. The force
field derivation is consistent with the AMBER philosophy, meaning
it can be easily mixed with protein, small molecule, nucleic acid,
and carbohydrate force fields.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ross C Walker
- GlaxoSmithKline PLC, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ian R Gould
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| |
Collapse
|
99824
|
McCoy JC, Léger SJ, Frey CF, Vansco MF, Marchetti B, Karsili TNV. Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J Phys Chem A 2022; 126:485-496. [PMID: 35049299 DOI: 10.1021/acs.jpca.1c08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, formed via the reaction of ozone with volatile alkenes emitted into the troposphere. Small Criegee intermediates (e.g., CH2OO and CH3CHOO) are highly reactive, and their removal via unimolecular decay or bimolecular chemistry dominates their atmospheric lifetimes. As the molecular complexity of Criegee intermediates increases, their electronic absorption spectra show a bathochromic shift within the solar spectrum relevant to the troposphere. In these cases, solar photolysis may become a competitive contributor to their atmospheric removal. In this article, we report the conformer-dependent simulated electronic absorption spectra of two four-carbon-centered Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). Both MVK-oxide and MACR-oxide contain four low-energy conformers, which are convoluted in the experimentally measured spectra. Here, we deconvolute each conformer and estimate contributions from each of the four conformers to the experimentally measured spectra. We also estimate the photolysis rates and predict that solar photolysis should be a more competitive removal process for MVK-oxide and MACR-oxide (cf. CH2OO and CH3CHOO).
Collapse
Affiliation(s)
- Julia C McCoy
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Spencer J Léger
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Conrad F Frey
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Michael F Vansco
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Barbara Marchetti
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| |
Collapse
|
99825
|
Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. Divergent Total Syntheses of (-)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J Am Chem Soc 2022; 144:2495-2500. [PMID: 35112847 DOI: 10.1021/jacs.1c13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hydrogen atom transfer (HAT)-initiated Dowd-Beckwith rearrangement reaction was developed, which enables the efficient assembly of diversely functionalized polyquinane frameworks. By incorporation of an iridium-catalyzed regio- and enantioselective hydrogenation and a diastereocontrolled ODI-[5+2] cycloaddition/pinacol rearrangement cascade reaction, the asymmetric total syntheses of eight tetraquinane natural products, including (-)-crinipellins A-F and (-)-dihydrocrinipellins A and B, have been achieved in a concise and divergent manner.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengping Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
99826
|
Zhao H, Su R, Teng L, Tian Q, Han F, Li H, Cao Z, Xie R, Li G, Liu X, Liu Z. Recent advances in flexible and wearable sensors for monitoring chemical molecules. NANOSCALE 2022; 14:1653-1669. [PMID: 35040855 DOI: 10.1039/d1nr06244a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years, real-time health management has received increasing attention, benefiting from the rapid development of flexible and wearable devices. Conventionally, flexible and wearable devices are used for collecting health data such as electrophysiological signals, blood pressure, heart rate, etc. The monitoring of chemical factors has shown growing significance, providing the basis for the screening, diagnosis, and treatment of many diseases. Nowadays, in order to understand the health status of the human body more comprehensively and accurately, researchers in the community have started putting effort into developing wearable devices for monitoring chemical factors. Progressively, more flexible chemical sensors with wearable real-time health-monitoring functionality have been developed thanks to advances relating to wireless communications and flexible electronics. In this review, we describe the variety of chemical molecules and information that can currently be monitored, including pH levels, glucose, lactate, uric acid, ion levels, cytokines, nutrients, and other biomarkers. This review analyzes the pros and cons of the most advanced wearable chemical sensors in terms of wearability. At the end of this review, we discuss the current challenges and development trends relating to flexible and wearable chemical sensors from the aspects of materials, electrode designs, and soft-hard interface connections.
Collapse
Affiliation(s)
- Hang Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Rui Su
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lijun Teng
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Qiong Tian
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Fei Han
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Hanfei Li
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Zhengshuai Cao
- Center for Opto-Electronic Engineering and Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ruijie Xie
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Guanglin Li
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhiyuan Liu
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
99827
|
Zhang G, Wang H, Wu W, Fan Q, Ding C. SO
2
F
2
‐Promoted Dehydroxylative Fluorination of Alcohols. ChemistrySelect 2022. [DOI: 10.1002/slct.202104114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guofu Zhang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Huimin Wang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Wenliang Wu
- Zhejiang Jitai New Materials Co. Ltd. Shao Xing Shi, Shangyu 312369 P. R. China
| | - Qiankun Fan
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chengrong Ding
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
99828
|
Ohyama J, Tsuchimura Y, Hirayama A, Iwai H, Yoshida H, Machida M, Nishimura S, Kato K, Takahashi K. Relationships among the Catalytic Performance, Redox Activity, and Structure of Cu-CHA Catalysts for the Direct Oxidation of Methane to Methanol Investigated Using In Situ XAFS and UV–Vis Spectroscopies. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Yuka Tsuchimura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroki Iwai
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo 060-0815, Japan
| |
Collapse
|
99829
|
Jaragh-Alhadad LA, Falahati M. Tin oxide nanoparticles trigger the formation of amyloid β oligomers/protofibrils and underlying neurotoxicity as a marker of Alzheimer's diseases. Int J Biol Macromol 2022; 204:154-160. [PMID: 35124024 DOI: 10.1016/j.ijbiomac.2022.01.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is known as one of the most common forms of dementia, and oligomerization of amyloid β (Aβ42) peptides can result in the onset of AD. Tin oxide nanoparticles (SnO2 NPs) showed several applications in biomedical fields can trigger unwanted interaction with proteins and inducing protein aggregation. Herein, we synthesized SnO2 NPs via the hydrothermal method and characterized by UV-visible, XRD, FTIR, TEM, and DLS techniques. Afterward, the formation of Aβ42 amyloid oligomers/protofibrils treated alone and with SnO2 NPs was explored by ThT and Nile red fluorescence and CD spectroscopic methods along with TEM imaging. The neurotoxicity of different spices of Aβ42 samples against PC-12 cells was then explored by MTT and caspase-3 activity assays. The characterization of SnO2 NPs confirmed the successful synthesis of crystalline NPs (20-30 nm). Different biophysical and cellular analyses indicated that SnO2 NPs accelerated Aβ42 fibrillogenesis and promoted amyloid oligomers/protofibrils cytotoxicity. As compared to the Aβ42 samples grown alone, the ThT and ANS fluorescence intensity along with ellipticity results indicated the promotory effect of SnO2 NPs on the formation of oligomers/protofibrils. Also, the cellular results showed that the treated Aβ42 samples with SnO2 NPs further reduced cell viability through activation of caspase-3. In conclusion, SnO2 NPs greatly accelerate the fibrillation of Aβ42 peptides and lead to the formation of more toxic species. The present data may offer further warrants into nano-based systems for biomedical applications in the central nervous system.
Collapse
Affiliation(s)
- Laila Abdulmohsen Jaragh-Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
99830
|
Saraswat M, Ravi S, Shamasundar KR, Venkataramani S. Photochemistry of 3,6-Didehydropyridazine Biradical─An Untraceable Para Benzyne Analogue. J Phys Chem A 2022; 126:557-567. [PMID: 35049300 DOI: 10.1021/acs.jpca.1c09317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report matrix isolation infrared spectroscopic studies to characterize 3,6-didehydropyridazine 6, a heterocyclic analogue of para benzyne, combined with computations. In this regard, we have utilized 3,6-diiodopyridazine 11 as a photolytic precursor. The experiments toward the generation of the biradical are carried out in argon and nitrogen matrices at 4 K. Instead of the elusive biradical, we have observed a ring-opening product maleonitrile (Z)-7 upon irradiation at 254 nm. In contrast, prolonged irradiation at 254 nm leads only to Z-E isomerization, forming fumaronitrile (E)-7. The mechanistic aspects of ring-opening, product selectivity, and Z-E photoisomerization steps have been investigated in detail using high-level ab initio computations. These studies have found that 3,6-didehydropyridazine 6 is an untraceable intermediate, and the ring-opening step leading to maleonitrile is barrierless. In addition, we have proposed the involvement of the S1 (π-π*) state via conical intersection in the Z-E photoisomerization of maleonitrile.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| | | | - K R Shamasundar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| |
Collapse
|
99831
|
Du L, Sun L, Zhang H. Photochemical and electrochemical C-N borylation of arylhydrazines. Chem Commun (Camb) 2022; 58:1716-1719. [PMID: 35024703 DOI: 10.1039/d1cc06145c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The C-N borylation of arylhydrazine hydrochlorides with bis(pinacolato)diboron was achieved under photochemical and electrochemical conditions, respectively. This novel and scalable transformation provides two efficient and mild transition-metal-free synthetic routes towards aryl boronate esters from easily available arylhydrazines.
Collapse
Affiliation(s)
- Linlin Du
- College of Chemistry, Nanchang University, Nanchang 330031, China. .,Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Sun
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Hua Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China. .,Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
99832
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
99833
|
Sun Y, Guo J, Shen X, Lu Z. Ligand relay catalysis for cobalt-catalyzed sequential hydrosilylation and hydrohydrazidation of terminal alkynes. Nat Commun 2022; 13:650. [PMID: 35115508 PMCID: PMC8813943 DOI: 10.1038/s41467-022-28285-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Sequential double hydrofunctionalizationalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2-N,Si compounds via ligand relay catalysis. A phenomenon of ligand relay is found that the tridentate anionic N-ligand (OPAQ) could capture the cobalt ion from bidentate neutral P-ligand (Xantphos) cobalt complex. This protocol uses three abundant chemical feedstocks, alkynes, silanes, and diazo compounds, and also features operationally simple, mild conditions, low catalyst loading (1 mol%), and excellent functional group tolerance. The 1,2-N,Si compounds can be easily further derivatized to afford various substituted silane derivatives via Si-H functionalization, alcohols via Fleming-Tamao oxidation, free amines and amides via N-N bond cleavage and protection. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee. The ligand relay has been supported by control experiments and absorption spectra. In organic chemistry, performing sequential catalytic cycles with a single catalyst improves efficiency. Here the authors present a methodology to functionalize alkynes with nitrogen and silicon atoms, through two catalytic cycles with a homogeneous cobalt catalyst, which is bound to different ligands in each cycle.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
99834
|
Sheng B, Zeng C, Chen J, Ye WC, Tang W, Lan P, Banwell M. Total Syntheses of the Imidazo[1,2‐f]phenanthridine‐containing Alkaloid Zephycandidine A. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Wen-Cai Ye
- Jinan University College of Pharmacy CHINA
| | - Wei Tang
- Jinan University College of Pharmacy CHINA
| | | | - Martin Banwell
- Australian National University Research School of Chemistry Building 137Sullivans Creek Road 2601 Canberra AUSTRALIA
| |
Collapse
|
99835
|
Hua XN, Zhang WY, Shi PP. Two-step nonlinear optical switch in a hydrogen-bonded perovskite-type crystal. Chem Commun (Camb) 2022; 58:1712-1715. [PMID: 35023514 DOI: 10.1039/d1cc06306e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Switchable nonlinear optical (NLO) materials have aroused broad interest on account of their captivating optical and electronic properties. We demonstrate a novel perovskite-type crystal with exceptional hydrogen bond interactions that are associated with the onset of reorientational motions of organic cations and thus induce the occurrence of two successive phase transitions to be a two-step NLO switch. This finding affords an alternative approach for the design and assembly of switchable NLO materials.
Collapse
Affiliation(s)
- Xiu-Ni Hua
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Wan-Ying Zhang
- School of Science, Bengbu University, Bengbu, 233030, P. R. China.
| | - Ping-Ping Shi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
99836
|
Bhattacharjee I, Sultana M, Bhunya S, Paul A. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chem Commun (Camb) 2022; 58:1672-1684. [PMID: 35024699 DOI: 10.1039/d1cc06238g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Collapse
Affiliation(s)
| | - Munia Sultana
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ankan Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
99837
|
Ameen F, Al-Maary KS, Almansob A, AlNadhari S. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02047-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99838
|
Mishra SR, Ahmaruzzaman M. Tin oxide based nanostructured materials: synthesis and potential applications. NANOSCALE 2022; 14:1566-1605. [PMID: 35072188 DOI: 10.1039/d1nr07040a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In view of their inimitable characteristics and properties, SnO2 nanomaterials and nanocomposites have been used not only in the field of diverse advanced catalytic technologies and sensors but also in the field of energy storage such as lithium-ion batteries and supercapacitors, and in the field of energy production such as solar cells and water splitting. This review discusses the various synthesis techniques such as traditional methods, including processes like thermal decomposition, chemical vapor deposition, electrospinning, sol-gel, hydrothermal, solvothermal, and template-mediated methods and green methods, which include synthesis through plant-mediated, microbe-mediated, and biomolecule-mediated processes. Moreover, the advantages and limitations of these synthesis procedures and how to overcome them that would lead to future research are also discussed. This literature also focuses on various applications such as environmental remediation, energy production, energy storage, and removal of biological contaminants. Therefore, the rise and journey of SnO2-based nanocomposites will motivate the modern generation of chemists to modify and design robust nanoparticles and nanocomposites that can effectively tackle significant environmental challenges. This overview concludes by providing future perspectives on research into tin oxide in synthesis and its various applications.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| |
Collapse
|
99839
|
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis. Structure 2022; 30:278-288.e3. [PMID: 34678159 PMCID: PMC8818020 DOI: 10.1016/j.str.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Peroxiredoxins are ubiquitous enzymes that detoxify peroxides and regulate redox signaling. During catalysis, a "peroxidatic" cysteine (CP) in the conserved active site reduces peroxide while being oxidized to a CP-sulfenate, prompting a local unfolding event that enables formation of a disulfide with a second, "resolving" cysteine. Here, we use nuclear magnetic resonance spectroscopy to probe the dynamics of the CP-thiolate and disulfide forms of Xanthomonas campestris peroxiredoxin Q. Chemical exchange saturation transfer behavior of the resting enzyme reveals 26 residues in and around the active site exchanging at a rate of 72 s-1 with a locally unfolded, high-energy (2.5% of the population) state. This unequivocally establishes that a catalytically relevant local unfolding equilibrium exists in the enzyme's CP-thiolate form. Also, faster motions imply an active site instability that could promote local unfolding and, based on other work, be exacerbated by CP-sulfenate formation so as to direct the enzyme along a functional catalytic trajectory.
Collapse
|
99840
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
99841
|
Ahlawat V, Deopa SPS, Patil S. Quantitative Elasticity of Flexible Polymer Chains Using Interferometer-Based AFM. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:526. [PMID: 35159871 PMCID: PMC8839736 DOI: 10.3390/nano12030526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
We estimate the elasticity of single polymer chains using atomic force microscope (AFM)-based oscillatory experiments. An accurate estimate of elasticity using AFM is limited by assumptions in describing the dynamics of an oscillating cantilever. Here, we use a home-built fiber-interferometry-based detection system that allows a simple and universal point-mass description of cantilever oscillations. By oscillating the cantilever base and detecting changes in cantilever oscillations with an interferometer, we extracted stiffness versus extension profiles for polymers. For polyethylene glycol (PEG) in a good solvent, stiffness-extension data showed significant deviation from conventional force-extension curves (FECs) measured in constant velocity pulling experiments. Furthermore, modeling stiffness data with an entropic worm-like chain (WLC) model yielded a persistence length of (0.5 ± 0.2 nm) compared to anomaly low value (0.12 nm ± 0.01) in conventional pulling experiments. This value also matched well with equilibrium measurements performed using magnetic tweezers. In contrast, polystyrene (PS) in a poor solvent, like water, showed no deviation between the two experiments. However, the stiffness profile for PS in good solvent (8M Urea) showed significant deviation from conventional force-extension curves. We obtained a persistence length of (0.8 ± 0.2 nm) compared to (0.22 nm ± 0.01) in pulling experiments. Our unambiguous measurements using interferometer yield physically acceptable values of persistence length. It validates the WLC model in good solvents but suggests caution for its use in poor solvents.
Collapse
Affiliation(s)
| | | | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India; (V.A.); (S.P.S.D.)
| |
Collapse
|
99842
|
Gong CH, Hu XZ, Han Z, Liu XF, Yang MZ, Zang SQ. Epitaxial coordination assembly of a semi-conductive silver-chalcogenide layer-based MOF. Chem Commun (Camb) 2022; 58:1788-1791. [PMID: 35039813 DOI: 10.1039/d1cc07160b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a carboxylic acid linker, this work achieved the epitaxially coordinated assembly of a Ag-S layer into a three-dimensional semi-conductive framework, with high thermal stability, as well as an interesting temperature-dependent luminescence response. This work provides a new avenue to prepare semi-conductive metal-chalcogenide layer-based materials in electricity-related applications.
Collapse
Affiliation(s)
- Chun-Hua Gong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Zong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Zi Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
99843
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernandez G. Anti‐cooperative Self‐Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ingo Helmers
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | | | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Paul Wesarg
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Bartolome Soberats
- Universitat de les Illes Balears Facultat de Ciencies Quimica Organica SPAIN
| | - Linda S. Shimizu
- University of South Carolina Chemistry and Biochemistry UNITED STATES
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
99844
|
Sahu T, Chilamari M, Rai V. Protein inspired chemically orthogonal imines for linchpin directed precise and modular labeling of lysine in proteins. Chem Commun (Camb) 2022; 58:1768-1771. [PMID: 35037678 DOI: 10.1039/d1cc05559c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a chemoselective, site-selective, and modular technology for precision engineering of high-frequency lysine residues in native proteins. It enables a unique, unexplored reactivity landscape on the protein surface to facilitate their single-site modification. Further, the method presents bond-architecture flexibility and enables orthogonal tagging with probes of interest.
Collapse
Affiliation(s)
- Tularam Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Maheshwerreddy Chilamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
99845
|
Huang J, Cao T, Zhang Z, Yang Z. Semisynthesis of (-)-Bufospirostenin A Enabled by Photosantonin Rearrangement Reaction. J Am Chem Soc 2022; 144:2479-2483. [PMID: 35112846 DOI: 10.1021/jacs.1c12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An enantioselective semisynthesis of (-)-bufospirostenin A is described. The key steps in the synthesis involve use of our proposed biomimetic and diastereoselective photosantonin rearrangement reaction for construction of the 5/7 bicyclic motif, and a Co-catalyzed reversible double-bond isomerization reaction for installing the double bond in the seven-membered ring.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
99846
|
Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity Risk of iPSCs in vivo: Nip it in the Bud. PRECISION CLINICAL MEDICINE 2022; 5:pbac004. [PMID: 35692443 PMCID: PMC9026204 DOI: 10.1093/pcmedi/pbac004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
In 2006, Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4, Sox2, Klf44, and c-Myc. Since then, the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine. Of note, considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research. However, tumorigenicity, immunogenicity, and heterogeneity may hamper attempts to deploy this technology therapeutically. This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and how to assess the safety of induced pluripotent stem cells cell therapy products.
Collapse
Affiliation(s)
- Chaoliang Zhong
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Miao Liu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen 518032, Guangdong, China
| | - Haiying Zhu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
99847
|
Baidya M, Mallick S, De Sarkar S. Regioselective Synthesis of N2-Aryl 1,2,3-Triazoles via Electro-oxidative Coupling of Enamines and Aryldiazonium Salts. Org Lett 2022; 24:1274-1279. [PMID: 35112868 DOI: 10.1021/acs.orglett.1c04099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient synthetic route for the construction of N2-aryl 1,2,3-triazoles is reported via sequential C-N bond formation and electro-oxidative N-N coupling under metal-free conditions. Readily accessible 2-aminoacrylates and aryldiazonium salts were used as starting materials, and the developed protocol displays excellent functional group tolerance, allowing an extensive range of substrate scope up to 91% isolated yield. Various mechanistic studies, along with the isolation of an intermediate adduct, refer to successive ionic and radical reaction sequences.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
99848
|
Chen Z, Zhu H. Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. J Phys Chem Lett 2022; 13:1123-1130. [PMID: 35080888 DOI: 10.1021/acs.jpclett.1c04247] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonfullerene acceptors (NFAs) are regarded as star candidates for efficient organic solar cells with power conversion efficiency (PCE) over 18%. In contrast to the rapid development of NFA materials, however, the underlying excited-state dynamics which fundamentally govern the device performance remains unclear. In this Perspective, we discuss recent advances and provide our insights on photoinduced charge transfer and combination dynamics in NFA-based organic solar cells (OSCs), including the biphasic hole-transfer process and its correlation with morphology, the role of driving force and Marcus normal region behavior on interfacial hole-transfer properties, and charge recombination energy loss by NFA triplet formation. We also discuss our understanding of how to control the charge-transfer and recombination processes by phase morphology and molecular design to improve OSC performance. Finally, we suggest a few research directions, including the interfacial charge transfer and separation mechanism, the origin of low fill factor, and complex excited-state dynamics in multicomponent OSCs.
Collapse
Affiliation(s)
- Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
99849
|
Jiang ZG, Wu WH, Jin BX, Zeng HM, Jin ZG, Zhan CH. A chloride-doped silver-sulfide cluster [Ag 148S 26Cl 30(CCBu t) 60] 6+: hierarchical assembly, enhanced luminescence and cytotoxicity to cancer cells. NANOSCALE 2022; 14:1971-1977. [PMID: 35060991 DOI: 10.1039/d1nr07170j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The formation of high-nuclear silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we report an unprecedented gigantic Ag148 ([Ag148S26Cl30(CCBut)60](SbF6)6) cluster co-templated by Cl- and S2-, which was well-defined by single-crystal X-ray diffraction and high-resolution mass spectrometry. The cluster exhibits a hierarchical structure consisting of fused Ag24X16 kernel, Ag60X20 shell and "cluster of clusters assembling" of four pentagonal concave polyhedral {Ag16X5} units. Furthermore, the silver cluster emits red light at room temperature with a prominent 39.6% QY. The cellular uptake and cytotoxicity indicate that Ag148 induces apoptosis of cancer cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| | - Wei-Hong Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| | - Bo-Xing Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| | - Hui-Min Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| | - Zhi-Gang Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China.
| |
Collapse
|
99850
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|