51
|
The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci 2022; 296:120437. [DOI: 10.1016/j.lfs.2022.120437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
|
52
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
53
|
Tan XG, Zhu J, Cui L. MicroRNA expression signature and target prediction in familial and sporadic primary macronodular adrenal hyperplasia (PMAH). BMC Endocr Disord 2022; 22:11. [PMID: 34986816 PMCID: PMC8729020 DOI: 10.1186/s12902-021-00910-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary macronodular adrenal hyperplasia (PMAH), previously termed ACTH-independent macronodular adrenal hyperplasia (AIMAH), is a rare cause of Cushing's syndrome usually characterized by functioning adrenal macronodules and increased cortisol production. METHODS To screen and analyse the microRNA (miRNA) profile of PMAH in order to elucidate its possible pathogenesis, a miRNA microarray was used to test tissue samples from patients with familial PMAH, patients with sporadic PMAH and normal control samples of other nontumour adrenocortical tissues and identify characteristic microRNA expression signatures. Randomly selected miRNAs were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the key signalling pathways and miRNAs involved in PMAH pathogenesis were determined by gene ontology and pathway analysis. RESULTS Characteristic microRNA expression signatures were identified for patients with familial PMAH (16 differentially expressed microRNAs) and patients with sporadic PMAH (8 differentially expressed microRNAs). The expression of the selected miRNAs was confirmed by qRT-PCR, suggesting the high reliability of the miRNA array analysis results. Pathway analysis showed that the most enriched pathway was the renal cell carcinoma pathway. Overexpression of miR-17, miR-20a and miR-130b may inhibit glucocorticoid-induced apoptosis in PMAH pathogenesis. CONCLUSION We identified the miRNA signatures in patients with familial and sporadic PMAH. The differentially expressed miRNAs may be involved in the mechanisms of PMAH pathogenesis. Specific miRNAs, such as miR-17, miR-20a and miR-130b, may be new targets for further functional studies of PMAH.
Collapse
Affiliation(s)
- Xiao-Gang Tan
- Department of Thoracic Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, 100053, China
| | - Jie Zhu
- Department of Urology Surgery, Chinese PLA General Hospital, Beijing, 100082, China
| | - Liang Cui
- Department of Urology Surgery, Civil Aviation General Hospital, Beijing, 100123, China.
| |
Collapse
|
54
|
Yin X, Yao D, Lam MHW, Liang H. A facile biosynthesis strategy of plasmid DNA-derived nanowires for readable microRNA logic operations. J Mater Chem B 2022; 10:3055-3063. [DOI: 10.1039/d1tb02699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple microRNAs (miRNAs) logical assays have attracted wide attention recently, which can be applied to mimic and reveal cellular events at the molecular level. However, it remains challenging to develop...
Collapse
|
55
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
56
|
Kandimalla R, Shimura T, Mallik S, Sonohara F, Tsai S, Evans DB, Kim SC, Baba H, Kodera Y, Von Hoff D, Chen X, Goel A. Identification of Serum miRNA Signature and Establishment of a Nomogram for Risk Stratification in Patients With Pancreatic Ductal Adenocarcinoma. Ann Surg 2022; 275:e229-e237. [PMID: 32398486 PMCID: PMC7648727 DOI: 10.1097/sla.0000000000003945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of the study was to perform mRNA-miRNA regulatory network analyses to identify a miRNA panel for molecular subtype identification and stratification of high-risk patients with pancreatic ductal adenocarcinoma (PDAC). BACKGROUND Recent transcriptional profiling effort in PDAC has led to the identification of molecular subtypes that associate with poor survival; however, their clinical significance for risk stratification in patients with PDAC has been challenging. METHODS By performing a systematic analysis in The Cancer Genome Atlas and International Cancer Genome Consortium cohorts, we discovered a panel of miRNAs that associated with squamous and other poor molecular subtypes in PDAC. Subsequently, we used logistic regression analysis to develop models for risk stratification and Cox proportional hazard analysis to determine survival prediction probability of this signature in multiple cohorts of 433 patients with PDAC, including a tissue cohort (n = 199) and a preoperative serum cohort (n = 51). RESULTS We identified a panel of 9 miRNAs that were significantly upregulated (miR-205-5p and -934) or downregulated (miR-192-5p, 194-5p, 194-3p, 215-5p, 375-3p, 552-3p, and 1251-5p) in PDAC molecular subtypes with poor survival [squamous, area under the receiver operating characteristic curve (AUC) = 0.90; basal, AUC = 0.89; and quasimesenchymal, AUC = 0.83]. The validation of this miRNA panel in a tissue clinical cohort was a significant predictor of overall survival (hazard ratio = 2.48, P < 0.0001), and this predictive accuracy improved further in a risk nomogram which included key clinicopathological factors. Finally, we were able to successfully translate this miRNA predictive signature into a liquid biopsy-based assay in preoperative serum specimens from PDAC patients (hazard ratio: 2.85, P = 0.02). CONCLUSION We report a novel miRNA risk-stratification signature that can be used as a noninvasive assay for the identification of high-risk patients and potential disease monitoring in patients with PDAC.
Collapse
Affiliation(s)
- Raju Kandimalla
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Tadanobu Shimura
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Saurav Mallik
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Susan Tsai
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas B Evans
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Song Cheol Kim
- Department of Hepatic and Pancreatobiliary Surgery, Asan Medical Center, Seoul, Korea
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Xi Chen
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
57
|
Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev Oncol Hematol 2021; 169:103565. [PMID: 34871719 DOI: 10.1016/j.critrevonc.2021.103565] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death worldwide and cancer incidence and mortality are rapidly growing. These massive amounts of cancer patients require rapid diagnosis and efficient treatment strategies. However, the currently utilized methods are invasive and cost-effective. Recently, the effective roles of exosomes as promising diagnostic, prognostic, and predictive biomarkers have been revealed. Exosomes are membrane-bound extracellular vesicles containing RNAs, DNAs, and proteins, and are present in a wide array of body fluids. Exosomal cargos have shown the potential to detect various types of cancers at early stages with high sensitivity and specificity. They can also delivery therapeutic agents efficiently. In this article, an overview of recent advances in the research of exosomal biomarkers and their applications in cancer diagnosis and treatment has been provided. Furthermore, the advantages and challenges of exosomes as liquid biopsy targets are discussed and the clinical implications of using exosomal miRNAs have been revealed.
Collapse
|
58
|
Uthayopas K, de Sá AGC, Alavi A, Pires DEV, Ascher DB. TSMDA: Target and symptom-based computational model for miRNA-disease-association prediction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:536-546. [PMID: 34631283 PMCID: PMC8479276 DOI: 10.1016/j.omtn.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput sequencing techniques has revealed a primary role of microRNAs (miRNAs) in a wide range of diseases, including cancers and neurodegenerative disorders. Understanding novel relationships between miRNAs and diseases can potentially unveil complex pathogenesis mechanisms, leading to effective diagnosis and treatment. The investigation of novel miRNA-disease associations, however, is currently costly and time consuming. Over the years, several computational models have been proposed to prioritize potential miRNA-disease associations, but with limited usability or predictive capability. In order to fill this gap, we introduce TSMDA, a novel machine-learning method that leverages target and symptom information and negative sample selection to predict miRNA-disease association. TSMDA significantly outperforms similar methods, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.989 and 0.982 under 5-fold cross-validation and blind test, respectively. We also demonstrate the capability of the method to uncover potential miRNA-disease associations in breast, prostate, and lung cancers, as case studies. We believe TSMDA will be an invaluable tool for the community to explore and prioritize potentially new miRNA-disease associations for further experimental characterization. The method was made available as a freely accessible and user-friendly web interface at http://biosig.unimelb.edu.au/tsmda/.
Collapse
Affiliation(s)
- Korawich Uthayopas
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, VIC, Australia
| | - Alex G C de Sá
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, VIC, Australia.,Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville 3010, VIC, Australia
| | - Azadeh Alavi
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, VIC, Australia
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, VIC, Australia.,School of Computing and Information Systems, University of Melbourne, Parkville 3052, VIC, Australia
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, VIC, Australia.,Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville 3010, VIC, Australia.,Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
59
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
60
|
Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021; 476:4191-4203. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, General Surgery, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, 317200, Zhejiang Province, People's Republic of China.
| |
Collapse
|
61
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
62
|
Carotenuto P, Amato F, Lampis A, Rae C, Hedayat S, Previdi MC, Zito D, Raj M, Guzzardo V, Sclafani F, Lanese A, Parisi C, Vicentini C, Said-Huntingford I, Hahne JC, Hallsworth A, Kirkin V, Young K, Begum R, Wotherspoon A, Kouvelakis K, Azevedo SX, Michalarea V, Upstill-Goddard R, Rao S, Watkins D, Starling N, Sadanandam A, Chang DK, Biankin AV, Jamieson NB, Scarpa A, Cunningham D, Chau I, Workman P, Fassan M, Valeri N, Braconi C. Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nat Commun 2021; 12:6738. [PMID: 34795259 PMCID: PMC8602334 DOI: 10.1038/s41467-021-27099-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
FOLFIRINOX, a combination of chemotherapy drugs (Fluorouracil, Oxaliplatin, Irinotecan -FOI), provides the best clinical benefit in pancreatic ductal adenocarcinoma (PDAC) patients. In this study we explore the role of miRNAs (MIR) as modulators of chemosensitivity to identify potential biomarkers of response. We find that 41 and 84 microRNA inhibitors enhance the sensitivity of Capan1 and MiaPaCa2 PDAC cells respectively. These include a MIR1307-inhibitor that we validate in further PDAC cell lines. Chemotherapy-induced apoptosis and DNA damage accumulation are higher in MIR1307 knock-out (MIR1307KO) versus control PDAC cells, while re-expression of MIR1307 in MIR1307KO cells rescues these effects. We identify binding of MIR1307 to CLIC5 mRNA through covalent ligation of endogenous Argonaute-bound RNAs cross-linking immunoprecipitation assay. We validate these findings in an in vivo model with MIR1307 disruption. In a pilot cohort of PDAC patients undergoing FOLFIRONX chemotherapy, circulating MIR1307 correlates with clinical outcome.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- TIGEM - Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Francesco Amato
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Colin Rae
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maria C Previdi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Domenico Zito
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maya Raj
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | | | - Andrea Lanese
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Claudia Parisi
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Caterina Vicentini
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Albert Hallsworth
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Kate Young
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Ruwaida Begum
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | | | | | | | | | - Sheela Rao
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - David Watkins
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - David K Chang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Nigel B Jamieson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Ian Chau
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The Royal Marsden NHS Trust, London and Surrey, London, UK.
- Beatson West of Scotland Cancer Centre, Glasgow, UK.
| |
Collapse
|
63
|
Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205168. [PMID: 34680317 PMCID: PMC8534163 DOI: 10.3390/cancers13205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Optimal patient selection for radiotherapy in pancreatic cancer is unestablished and may be improved with molecular profiling. To this end, we developed and validated a microRNA signature that predicted for worse locoregional recurrence and overall survival in patients with resectable pancreatic cancer. In a separate cohort of patients with borderline resectable and locally advanced pancreatic cancer, this risk signature was also predictive of worse locoregional recurrence, distant recurrence, and overall survival. Additionally, borderline resectable or locally advanced patients who had high risk score and did not receive radiation had worse outcomes compared to patients who either had low risk score or received radiation, irrespective of risk score. This risk signature may be useful in assessing patient prognosis and tailor therapy in patients with resectable, borderline resectable, or locally advanced pancreatic cancer, but requires further study. Abstract Background: Optimal patient selection for radiotherapy in pancreatic ductal adenocarcinoma (PDAC) is unestablished. Molecular profiling may select patients at high risk for locoregional recurrence (LRR) who would benefit from radiation. Methods: We included resectable pancreatic cancer (R-PDAC) patients, divided into training and validation cohorts, treated among three institutions with surgery and adjuvant chemotherapy, and borderline resectable or locally advanced pancreatic cancer (BR/LA-PDAC) patients treated with chemotherapy with or without radiation at the primary study institution. We isolated RNA from R-PDAC surgical specimens. Using NanoString, we identified miRNAs differentially expressed between normal and malignant pancreatic tissue. ElasticNet regression identified two miRNAs most predictive of LRR in the training cohort, miR-181b/d and miR-575, which were used to generate a risk score (RS). We evaluated the association of the median-dichotomized RS with recurrence and overall survival (OS). Results: We identified 183 R-PDAC and 77 BR/LA-PDAC patients with median follow up of 37 months treated between 2001 and 2014. On multivariable analysis of the R-PDAC training cohort (n = 90), RS was associated with worse LRR (HR = 1.34; 95%CI 1.27–11.38; p = 0.017) and OS (HR = 2.89; 95%CI 1.10–4.76; p = 0.027). In the R-PDAC validation cohort, RS was associated with worse LRR (HR = 2.39; 95%CI 1.03–5.54; p = 0.042), but not OS (p = 0.087). For BR/LA-PDAC, RS was associated with worse LRR (HR = 2.71; 95%CI 1.14–6.48; p = 0.025), DR (HR = 1.93; 95%CI 1.10–3.38; p = 0.022), and OS (HR = 1.97; 95%CI 1.17–3.34; p = 0.011). Additionally, after stratifying by RS and receipt of radiation in BR/LA-PDAC patients, high RS patients who did not receive radiation had worse LRR (p = 0.018), DR (p = 0.006), and OS (p < 0.001) compared to patients with either low RS or patients who received radiation, irrespective of RS. Conclusions: RS predicted worse LRR and OS in R-PDAC and worse LRR, DR, and OS in BR/LA-PDAC. This may select patients who would benefit from radiation and should be validated prospectively.
Collapse
|
64
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
65
|
Schlick K, Kiem D, Greil R. Recent Advances in Pancreatic Cancer: Novel Prognostic Biomarkers and Targeted Therapy-A Review of the Literature. Biomolecules 2021; 11:1469. [PMID: 34680101 PMCID: PMC8533343 DOI: 10.3390/biom11101469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma carries a devastating prognosis. For locally advanced and metastatic disease, several chemotherapeutic regimens are currently being used. Over the past years, novel approaches have included targeting EGFR, NTRK, PARP, K-Ras as well as stroma and fibrosis, leading to approval of NTRK and PARP inhibitors. Moreover, immune check point inhibitors and different combinational approaches involving immunotherapeutic agents are being investigated in many clinical trials. MiRNAs represent a novel tool and are thought to greatly improve management by allowing for earlier diagnosis and for more precise guidance of treatment.
Collapse
Affiliation(s)
- Konstantin Schlick
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, 5020 Salzburg, Austria
| |
Collapse
|
66
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
67
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|
68
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
69
|
Wu C, Wu Z, Wang L, Chen Y, Huang X, Wang Z, Tian B. The Modulating Mechanisms of miRNA-196 in Malignancies and Its Prognostic Value: A Systematic Review and Meta-Analysis. Nutr Cancer 2021; 74:423-436. [PMID: 34435522 DOI: 10.1080/01635581.2021.1922718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulating studies have revealed that up- or downregulated miRNA-196 expression correlates with the prognostic value in various malignancies; however, existing single studies lack robust evidence to elucidate the role of miRNA-196 in malignancy. The pooled results showed that the upregulation of miRNA-196 expression was significantly correlated with unfavorable OS [HR 2.14; 95% confidence interval (CI), 1.78-2.57; p < 0.001)] and worse PFS (HR 2.84; 95% CI, 1.29-6.23, P = 0.01) in various malignancies. According to the regulatory mechanisms, studies shown that multiple tumors associated with transcription processes could be modulated by the miRNA-196 family; correspondingly, the miRNA-196 family exerted biological functions that could be regulated by various molecules. The upregulation of miRNA-196a, miRNA-196b and miRNA-196 expression is correlated with significantly unfavorable OS in multiple malignancies; similarly, miRNA-196 overexpression predicts poor PFS in multiple malignancies. Taken together, these findings indicate that miRNA-196a and miRNA-196b may serve as oncogenic molecules and may be potential prognostic biomarkers in multiple malignancies.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zuowei Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zihe Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Vieira NF, Serafini LN, Novais PC, Neto FSL, Cirino MLDA, Kemp R, Ardengh JC, Saggioro FP, Gaspar AF, Sankarankutty AK, Júnior JRL, Tirapelli DPDC, dos Santos JS. The role of circulating miRNAs and CA19-9 in pancreatic cancer diagnosis. Oncotarget 2021; 12:1638-1650. [PMID: 34434493 PMCID: PMC8378767 DOI: 10.18632/oncotarget.28038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis and treatment of pancreatic ductal adenocarcinoma (PA) remains a challenge in clinical practice. The aim of this study was to assess the role of microRNAs (miRNAs-21, -23a, -100, -107, -181c, -210) in plasma and tissue as possible biomarkers in the diagnosis of PA. Samples of plasma (PAp-n = 13), pancreatic tumors (PAt-n = 18), peritumoral regions (PPT-n = 9) were collected from patients during the surgical procedure. The control group consisted of samples from patients submitted to pancreatic surgery for trauma or cadaveric organs (PC-n = 7) and healthy volunteers donated blood (PCp-n = 6). The expression profile of microRNAs was measured in all groups using RT-PCR, serum CA19-9 levels were determined in PA and PC. In tissue samples, there was a difference in the expression of miRNAs-21, -210 (p < 0.05) across the PAt, PC and PPT groups. The PAp showed overexpression of miRNAs-181c, -210 (p < 0.05) when compared to PCp. The combination of miRNAs-21, -210 tissue expression and serum CA19-9 showed 100% accuracy in the diagnosis of PA, as well as miR-181c expression in the plasma (PApxPCp). The expression of microRNAs in plasma proved to be a promising tool for a noninvasive detection test for PA, as well as further studies will evaluate the utility of microRNAs expression as biomarkers for prognostic and response to therapy in PA.
Collapse
Affiliation(s)
- Nivaldo Faria Vieira
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Cezar Novais
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia, Marília, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Kemp
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Celso Ardengh
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alberto Facury Gaspar
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Resende Lopes Júnior
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
71
|
Dwedar FI, Shams-Eldin RS, Nayer Mohamed S, Mohammed AF, Gomaa SH. Potential value of circulatory microRNA10b gene expression and its target E-cadherin as a prognostic and metastatic prediction marker for breast cancer. J Clin Lab Anal 2021; 35:e23887. [PMID: 34264524 PMCID: PMC8373345 DOI: 10.1002/jcla.23887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Breast cancer (BC) is the leading cause of cancer death in women worldwide. Most BC studies on candidate microRNAs were tissue specimen based. Recently, there has been a focus on the study of cell‐free circulating miRNAs as promising biomarkers in (BC) diagnosis and prognosis. Therefore, we aimed to investigate the circulating levels of miR‐10b and its target soluble E‐ cadherin as potentially easily accessible biomarkers for breast cancer. Methods Sixty‐one breast cancer patients and forty‐eight age‐ and sex‐matched healthy volunteers serving as a control group were enrolled in the present study. Serum samples were used to assess miRNA10b expression by TaqMan miRNA assay technique. In addition, soluble E‐cadherin expression level in serum was determined using ELISA technique. Result Circulating miR‐10b expression level and serum sE‐cadherin was significantly upregulated in patients with BC compared to controls. Moreover, serum miR‐10b displayed progressive up‐regulation in advanced stages with higher level in metastatic compared to non‐metastatic BC. Additionally, the combined use of both serum miR‐10b and sE‐cadherin revealed the highest sensitivity and specificity for detection of BC metastasis (92.9% and 97.9% respectively) with an area under curve (AUC) of 0.98, 95% CI (0.958–1.00). Conclusion Our data suggest that circulating miR‐10b could be utilized as a potential non‐invasive serum biomarker for diagnosis and prognosis of breast cancer with better performance to predict BC metastasis achieved on measuring it simultaneously with serum sE‐cadherin. Further studies with a large cohort of patients are warranted to validate the serum biomarker for breast cancer management.
Collapse
Affiliation(s)
- Fatma Ibrahim Dwedar
- Department of Medical Biochemistry, Faculty of Medicine, Alexandra University, Alexandria, Egypt
| | - Reham Said Shams-Eldin
- Department of Medical Biochemistry, Faculty of Medicine, Alexandra University, Alexandria, Egypt
| | - Salwa Nayer Mohamed
- Department of Cancer management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ayman Farouk Mohammed
- Department of Clinical and Experimental Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Salwa Hamdi Gomaa
- Department of Chemical pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
72
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
73
|
Raimondi G, Gea-Sorlí S, Otero-Mateo M, Fillat C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers (Basel) 2021; 13:3233. [PMID: 34203557 PMCID: PMC8267801 DOI: 10.3390/cancers13133233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oncolytic adenoviruses (OA) are envisioned as a therapeutic option for patients with cancer, designed to preferentially replicate in cancer cells. However, the high number of genetic alterations in tumors can generate a context in which adenoviruses have difficulties replicating. Abnormal miRNAs expression is a trademark of pancreatic cancer, with several oncogenic miRNAs playing essential roles in cancer-associated pathways. The perturbed miRNome induces reprogramming of gene expression in host cells that can impact the complex interplay between cellular processes and viral replication. We have studied the effects of overexpressed miRNAs on oncolytic adenoviral activity and identified miRNAs modulators of adenoviral oncolysis in pancreatic cancer cells. Inhibition of the highly upregulated miR-222 sensitized cancer cells to oncolysis. To provide a therapeutic application to this insight, we engineered the oncolytic adenovirus AdNuPARmE1A with miR-222 binding sites, working as sponges to withdraw the miRNA from the cellular environment. AdNuPAR-E-miR222-S mediated-decrease of miR-222 expression in pancreatic cancer cells strongly improved the viral yield and enhanced the adenoviral cytotoxic effects. Antitumoral studies confirmed a high activity for AdNuPARmE1A-miR222-S in vivo, controlling tumor progression more effectively than the scrambled control virus in xenografts. We demonstrated that the increased antitumor potency of the novel oncolytic virus resulted from the combinatory effects of miR-222 oncomiR inhibition and the restoration of miR-222 target genes activity enhancing viral fitness.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Sabrina Gea-Sorlí
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
74
|
Miao P, Tang Y. Cascade Strand Displacement and Bipedal Walking Based DNA Logic System for miRNA Diagnostics. ACS CENTRAL SCIENCE 2021; 7:1036-1044. [PMID: 34235264 PMCID: PMC8228592 DOI: 10.1021/acscentsci.1c00277] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 05/05/2023]
Abstract
DNA logic gated operations empower the highly efficient analysis of multiplex nucleic acid inputs, which have attracted extensive attention. However, the integration of DNA logic gates with abundant computational functions and signal amplification for biomedical diagnosis is far from being fully achieved. Herein, we develop a bipedal DNA walker based amplified electrochemical method for miRNA detection, which is then used as the basic unit for the construction of various logic circuits, enabling the analysis of multiplex miRNAs. In the bipedal walking process, target triggered strand displacement polymerization is able to produce a large number of strands for the fabrication of three-way junction-structured bipedal walkers. The following catalytic hairpin assembly ensures the walking event and the immobilization of signal probes for output. Ultrahigh sensitivity is realized due to the integration of dual signal amplification. In addition, under logic function controls by input triggered cascade strand displacement reactions, NOT, AND, OR, NAND, NOR, XOR, and XNOR logic gates are successfully established. The as-developed DNA logic system can also be extended to multi-input modes, which holds great promise in the fields of DNA computing, multiplex analysis, and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Yuguo Tang
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
| |
Collapse
|
75
|
Zhou M, Gao Y, Wang M, Guo X, Li X, Zhu F, Xu S, Qin R. MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10. J Cancer 2021; 12:3726-3740. [PMID: 33995647 PMCID: PMC8120187 DOI: 10.7150/jca.48418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: Cancer stem cells (CSCs) initiate and maintain tumorigenesis due to their unique pluripotency. However, pancreatic stem cell gene signatures are not completely revealed yet. Here, we isolated pancreatic cancer stem cells (P-CSCs) and exploited their distinct genome-wide mRNA and miRNA expression profiles using microarrays. Methods: CD24+ CD44+ ESA+ cells were isolated from two pancreatic xenograft cells by the flow cytometry and identified the stem cell-like properties by the tumor formation, self-renew and chemoresistance. Microarrays and qRT-PCR were used to exploit their distinct Genome-wide mRNA and miRNA expression profiles. The function and candidate target genes of key microRNA were detected after Ectopic restoration in the pancreatic cancer cell lines MIA Paca-2 (CSChigh) and BxPC-3 (CSClow). Results: In this study, we isolated P-CSCs from two xenografts cells. Genome-wide profiling experiments showed 479 genes and 15 microRNAs specifically expressed in the P-CSCs, including genes involved in TGF-β and p53 signaling pathways and particularly miR-146b-3p as the most significantly downregulated miRNA. We confirmed miR-146b-3p as a downregulated signature in pancreatic cancer tissues and cell line MIA Paca-2 (CSChigh) cells. Ectopic restoration of miR-146b-3p expression with pre-miR reduced cell proliferation, induced apoptosis, increased G1 phase and reduced S phase in cell cycle in MIA Paca-2 (CSChigh), but not in BxPC-3 (CSClow). Re-expression of miR-146b-3p with lentivirus significantly inhibited tumorigenicity in vivo in MIA Paca-2, but slightly in BxPC-3. Furthermore, we demonstrated that miR-146b-3p directly targeted MAP3K10 and might activate Hedgehog pathway as well through DYRK2 and GLI2. Conclusions: These results suggest that P-CSCs have distinct gene expression profiles. MiR-146b-3p inhibits proliferation and induced apoptosis in P-CSCs high cells lines by targeting MAP3K10. Targeting P-CSCs specific genes may provide novel strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Xu
- Department of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
76
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
77
|
MiR-10a in Pancreatic Juice as a Biomarker for Invasive Intraductal Papillary Mucinous Neoplasm by miRNA Sequencing. Int J Mol Sci 2021; 22:ijms22063221. [PMID: 33809988 PMCID: PMC8004614 DOI: 10.3390/ijms22063221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
New biomarkers are needed to further stratify the risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). Although microRNAs (miRNAs) are expected to be stable biomarkers, they can vary owing to a lack of definite internal controls. To identify universal biomarkers for invasive IPMN, we performed miRNA sequencing using tumor-normal paired samples. A total of 19 resected tissues and 13 pancreatic juice samples from 32 IPMN patients were analyzed for miRNA expression by next-generation sequencing with a two-step normalization of miRNA sequence data. The miRNAs involved in IPMN associated with invasive carcinoma were identified from this tissue analysis and further verified with the pancreatic juice samples. From the tumor-normal paired tissue analysis of the expression levels of 2792 miRNAs, 20 upregulated and 17 downregulated miRNAs were identified. In IPMN associated with invasive carcinoma (INV), miR-10a-5p and miR-221-3p were upregulated and miR-148a-3p was downregulated when compared with noninvasive IPMN. When these findings were further validated with pancreatic juice samples, miR-10a-5p was found to be elevated in INV (p = 0.002). Therefore, three differentially expressed miRNAs were identified in tissues with INV, and the expression of miR-10a-5p was also elevated in pancreatic juice samples with INV. MiR-10a-5p is a promising additional biomarker for invasive IPMN.
Collapse
|
78
|
Giannis D, Moris D, Barbas AS. Diagnostic, Predictive and Prognostic Molecular Biomarkers in Pancreatic Cancer: An Overview for Clinicians. Cancers (Basel) 2021; 13:1071. [PMID: 33802340 PMCID: PMC7959127 DOI: 10.3390/cancers13051071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/13/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and is associated with aggressive tumor behavior and poor prognosis. Most patients with PDAC present with an advanced disease stage and treatment-resistant tumors. The lack of noninvasive tests for PDAC diagnosis and survival prediction mandates the identification of novel biomarkers. The early identification of high-risk patients and patients with PDAC is of utmost importance. In addition, the identification of molecules that are associated with tumor biology, aggressiveness, and metastatic potential is crucial to predict survival and to provide patients with personalized treatment regimens. In this review, we summarize the current literature and focus on newer biomarkers, which are continuously added to the armamentarium of PDAC screening, predictive tools, and prognostic tools.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
79
|
Kim S, Bae WJ, Ahn JM, Heo JH, Kim KM, Choi KW, Sung CO, Lee D. MicroRNA signatures associated with lymph node metastasis in intramucosal gastric cancer. Mod Pathol 2021; 34:672-683. [PMID: 32973329 DOI: 10.1038/s41379-020-00681-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Although a certain proportion of intramucosal carcinomas (IMCs) of the stomach does metastasize, the majority of patients are currently treated with endoscopic resection without lymph node dissection, and this potentially veils any existing metastasis and may put some patients in danger. In this regard, biological markers from the resected IMC that can predict metastasis are warranted. Here, we discovered unique miRNA expression profiles that consist of 21 distinct miRNAs that are specifically upregulated (miR-628-5p, miR-1587, miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507, miR-4720-5p, miR-4742-5p, and miR-6779-5p) or downregulated (miR-106b-3p, miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p, miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-6831-5p) in metastatic (M)-IMC compared to nonmetastatic (N)-IMC, or nonneoplastic gastric mucosa. Intriguingly, most of these selected miRNAs showed stepwise increased or decreased expression from nonneoplastic tissue to N-IMC to M-IMC. This suggests that common oncogenic mechanisms are gradually intensified during the metastatic process. Using a machine-learning algorithm, we demonstrated that such miRNA signatures could distinguish M-IMC from N-IMC. Gene ontology and pathway analysis revealed that TGF-β signaling was enriched from upregulated miRNAs, whereas E2F targets, apoptosis-related, hypoxia-related, and PI3K/AKT/mTOR signaling pathways, were enriched from downregulated miRNAs. Immunohistochemical staining of samples from multiple institutions indicated that PI3K/AKT/mTOR pathway components, MAPK1, phospho-p44/42 MAPK, and pS6 were highly expressed and the expression of SMAD7, a TGF-β pathway component, was decreased in M-IMC, which could aid in distinguishing M-IMC from N-IMC. The miRNA signature discovered in this study is a valuable biological marker for identifying metastatic potential of IMCs, and provides novel insights regarding the metastatic progression of IMC.
Collapse
Affiliation(s)
- Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Won Jung Bae
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Ji Mi Ahn
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeong Woon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ohk Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
80
|
Wang C, Wang J, Cui W, Liu Y, Zhou H, Wang Y, Chen X, Chen X, Wang Z. Serum Exosomal miRNA-1226 as Potential Biomarker of Pancreatic Ductal Adenocarcinoma. Onco Targets Ther 2021; 14:1441-1451. [PMID: 33664577 PMCID: PMC7924134 DOI: 10.2147/ott.s296816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related mortality and it is urgent to find biomarkers for early detection of PDAC. Exosomal miRNAs are useful biomarkers for cancer detection. The aims of this study were to investigate the potential role of serum exosomal miRNA in detection of PDAC and to analyze the correlation between the levels of exosome miRNA and the tumor biological behaviors. Materials and Methods Thirteen serum samples were collected from five patients with PDACs, three healthy individuals (HIs) and five benign pancreatic lesions (BP) for a high throughput profiling analysis to identify an altered miRNA expression patterns in PDAC. Candidate exosomal miRNAs were filtered based on a second independent cohort that included 17 PDACs and 12 benign pancreatic lesions by quantitative real-time polymerase chain reaction (qRT-PCR). Four miRNAs were selected for miRNA validation as PDAC biomarkers in a subsequent set of samples. The association between candidate exosomal miRNA and tumor behavior (tumor invasion or metastases) was evaluated in 17 PDACs. In vitro studies were performed to evaluate the role of candidate exosomal miRNA on cell viability, apoptosis and cell migration in two PDAC cell lines. Results The expression of 11 miRNAs showed same trend between PDAC and BP, and between PDAC and HIs. Six of them were upregulated (miR-203b-5p, miR-342-5p, miR-337-5p, miR-149-5p, miR-877-5p, miR-203a-3p), and five were downregulated (miR-1226-3p, miR-3182, miR-625-3p, miR-624-5p, miR-664a-5p). miR-1226-3p was selected as the candidate exosomal biomarker for the PDAC detection. The expression of serum exosomal miRNA-1226-3p was downregulated in PDACs compared to the BPs (p = 0.025). miR-1226-3p had acceptable performance in predicting [area under the curve (AUC) = 0.74] PDAC. Exosomal miRNA-1226-3p level in PDAC with invasion or metastases was lower than that without invasion or metastases (p = 0.028). Transfection of miRNA-1226-3p significantly inhibited the proliferation of PANC-1 and BXP-3 cells, stimulated cell apoptosis and inhibited cell migration. Conclusion Serum exosomal miRNA-1226-3p is a potential biomarker in diagnosing and predicting the tumor invasion or metastases of PDAC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China.,Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210029, People's Republic of China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Wenjing Cui
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yongkang Liu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Hao Zhou
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yajie Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Xin Chen
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Xiao Chen
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Zhongqiu Wang
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
81
|
Satoh K. Molecular Approaches Using Body Fluid for the Early Detection of Pancreatic Cancer. Diagnostics (Basel) 2021; 11:375. [PMID: 33671729 PMCID: PMC7926932 DOI: 10.3390/diagnostics11020375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant form of gastrointestinal tumor and is the fourth leading cause of deaths due to cancer in Japan. This cancer shows a poor outcome due to the difficulty of its early diagnosis and its rapid growth. Once this disease becomes clinically evident, it is frequently accompanied by distant metastasis at the time of diagnosis. A recent multicenter study in Japan revealed that patients with the early stage of this disease (stage 0 and I) showed favorable prognosis after surgical resection, indicating the importance of early detection for improvement of PDAC prognosis. PDAC develops through a stepwise progression from the precursor lesion, and over the last few decades molecular analyses have shown the detailed genetic alterations that occur in this process. Since advances in molecular technologies have enabled the detection of genetic changes from a very small quantity of samples, a large number of non-invasive molecular approaches have been utilized in an attempt to find precursor or non-invasive carcinoma lesions. In this review, the current efforts in terms of the molecular approaches applied for the early detection of PDAC-especially using body fluids such as pancreatic juice, blood, and saliva-are summarized.
Collapse
Affiliation(s)
- Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi 983-8536, Japan
| |
Collapse
|
82
|
Interactions of a Water-Soluble Glycofullerene with Glucose Transporter 1. Analysis of the Cellular Effects on a Pancreatic Tumor Model. NANOMATERIALS 2021; 11:nano11020513. [PMID: 33670509 PMCID: PMC7922475 DOI: 10.3390/nano11020513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
In recent years, carbon nanomaterials have been intensively investigated for their possible applications in biomedical studies, especially as drug delivery vehicles. Several surface modifications can modulate the unique molecular structure of [60]fullerene derivatives, as well as their physicochemical properties. For this reason, covalent modifications that would enable a greater water solubilization of the fullerene buckyball have been rapidly investigated. The most exciting applications of fullerene nanomaterials are as drug delivery vectors, photosensitizers in photodynamic therapy (PDT), astransfection or MRI contrast agents, antimicrobials and antioxidants. From these perspectives, the glucose derivatives of [60]fullerene seem to be an interesting carbon nanomaterial for biological studies. It is well-known that cancer cells are characterized by an increased glucose uptake and it has also been previously reported that the glucose transporters (GLUTs) are overexpressed in several types of cancers, which make them attractive molecular targets for many drugs. This study explored the use of a highly water-soluble glycofullerene (called Sweet-C60) in pancreatic cancer studies. Here, we describe the PANC-1 cell proliferation, migration, metabolic activity and glycolysis rate after incubations with different concentrations of Sweet-C60. The final results did not show any influence of the Sweet-C60 on various cancer cellular events and glycolysis, suggesting that synthesized glycofullerene is a promising drug delivery vehicle for treating pancreatic cancer.
Collapse
|
83
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
84
|
Khan IA, Rashid S, Singh N, Rashid S, Singh V, Gunjan D, Das P, Dash NR, Pandey RM, Chauhan SS, Gupta S, Saraya A. Panel of serum miRNAs as potential non-invasive biomarkers for pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:2824. [PMID: 33531550 PMCID: PMC7854650 DOI: 10.1038/s41598-021-82266-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Early-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Safoora Rashid
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Nidhi Singh
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Sumaira Rashid
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Vishwajeet Singh
- grid.413618.90000 0004 1767 6103Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Prasenjit Das
- grid.413618.90000 0004 1767 6103Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- grid.413618.90000 0004 1767 6103Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra Mohan Pandey
- grid.413618.90000 0004 1767 6103Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- grid.413618.90000 0004 1767 6103Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Anoop Saraya
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
85
|
Peptidylarginine Deiminase Inhibitor Application, Using Cl-Amidine, PAD2, PAD3 and PAD4 Isozyme-Specific Inhibitors in Pancreatic Cancer Cells, Reveals Roles for PAD2 and PAD3 in Cancer Invasion and Modulation of Extracellular Vesicle Signatures. Int J Mol Sci 2021; 22:ijms22031396. [PMID: 33573274 PMCID: PMC7866560 DOI: 10.3390/ijms22031396] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.
Collapse
|
86
|
Yu Y, Tong Y, Zhong A, Wang Y, Lu R, Guo L. Identification of Serum microRNA-25 as a novel biomarker for pancreatic cancer. Medicine (Baltimore) 2020; 99:e23863. [PMID: 33350781 PMCID: PMC7769376 DOI: 10.1097/md.0000000000023863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
To identify serum microRNA-25 (miR-25) as a diagnostic biomarker for pancreatic cancer (PCa) and to evaluate its supplementary role with serum carbohydrate antigen 19-9 (CA19-9) in early identification of cancers.Eighty patients with pancreatic cancer and 91 non-cancer controls were enrolled in this study. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of miR-25. Levels of CA19-9, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) were measured by chemiluminescent immunoassay. The logistic model was established to evaluate the correlation of miR-25 with clinical characteristics. A risk model for PCa was conducted by R statistical software. Diagnostic utility for PCa and correlation with clinical characteristics were analyzed.The expression level of miR-25, in the PCa group was significantly higher (P < .05). Risk Model illustrated the relation between miR-25 and pancreatic cancer. With the combination of CA19-9, the performance of miR-25 in early stages (I+II) in the diagnosis of PCa was profoundly better than CA19-9 and miR-25 alone. This combination was more effective for discriminating PCa from non-cancer controls (AUC-ROC, 0.985; sensitivity, 97.50%; specificity, 90.11%) compared with CA19-9 alone or the combination of CA19-9 and CA125.The expression level of miR-25 among pancreatic cancer patients was significantly higher than that in the control group. miR-25 existed as one of the most relevant factors of PCa. miR-25 can serve as a novel noninvasive approach for PCa diagnosis, and with the supplementary of CA19-9, the combination was more effective, especially in early tumor screening.
Collapse
Affiliation(s)
- Yiwen Yu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Ailing Zhong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
87
|
Chhatriya B, Sarkar P, Nath D, Ray S, Das K, Mohapatra SK, Goswami S. Pilot study identifying circulating miRNA signature specific to alcoholic chronic pancreatitis and its implication on alcohol-mediated pancreatic tissue injury. JGH OPEN 2020; 4:1079-1087. [PMID: 33319040 PMCID: PMC7731805 DOI: 10.1002/jgh3.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 11/12/2022]
Abstract
Background and Aim Alcohol exerts its effects on organs in multiple ways. Alcoholic chronic pancreatitis (ACP) is a disease in which alcohol triggers the pathological changes in pancreas, leading to chronic inflammation and fibrosis. The molecular mechanism behind these changes is not clear. Identification of key circulating miRNA changes in ACP patients and determination of the fraction that is secreted from diseased pancreas not only could serve as potential biomarker for assessing disease severity, but also could help identifying the molecular alterations prevailing in the organ precipitating the disease, to some extent. Methods We performed microRNA microarray using the Affymetrix miRNA 4.0 platform to identify differentially expressed miRNAs in serum of ACP patients as compared to alcoholic control individuals and then found out how many of them could be pancreas-specific and exosomally secreted. We further analyzed a pancreatitis-specific gene expression data set to find out the differentially expressed genes in diseased pancreas and explored the possible role of those selected miRNAs in regulation of gene expression in ACP. Results We identified 14 miRNAs differentially expressed in both serum and pancreas and also identified their experimentally validated targets. Transcription factors modulating the miRNA expression in an alcohol-dependent manner were also identified and characterized to derive the miRNA-gene-TF interaction network responsible for progression of the disease. Conclusions Differentially expressed miRNA signature demonstrated significant changes in both pro- and anti-inflammatory pathways probably balancing the chronic inflammation in the pancreas. Our findings also suggested possible involvement of pancreatic stellate cells in disease progression.
Collapse
Affiliation(s)
| | - Piyali Sarkar
- Department of Cytogenetics Tata Medical Centre Kolkata India
| | - Debashis Nath
- Department of Medicine Indira Gandhi Memorial Hospital Agartala India
| | - Sukanta Ray
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | - Kshaunish Das
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | | | | |
Collapse
|
88
|
Ideno N, Mori Y, Nakamura M, Ohtsuka T. Early Detection of Pancreatic Cancer: Role of Biomarkers in Pancreatic Fluid Samples. Diagnostics (Basel) 2020; 10:diagnostics10121056. [PMID: 33291257 PMCID: PMC7762187 DOI: 10.3390/diagnostics10121056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide. Most patients with PDAC present with symptomatic, surgically unresectable disease. Therefore, the establishment of strategies for the early detection is urgently needed. Molecular biomarkers might be useful in various phases of a strategy to identify high-risk individuals in the general population and to detect high-risk lesions during intense surveillance programs combined with imaging modalities. However, the low sensitivity and specificity of biomarkers currently available for PDAC, such as carbohydrate 19-9 (CA19-9), contribute to the late diagnosis of this deadly disease. Although almost all classes of biomarker assays have been studied, most of them are used in the context of symptomatic diseases. Compared to other body fluids, pancreatic juice and duodenal fluid are better sources of DNA, RNA, proteins, and exosomes derived from neoplastic cells and have the potential to increase the sensitivity/specificity of these biomarkers. The number of studies using duodenal fluid with or without secretin stimulation for DNA/protein marker tests have been increasing because of the less-invasiveness in comparison to pancreatic juice collection by endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Genomic analyses have been very well-studied, and based on PDAC progression model, mutations detected in pancreatic juice/duodenal fluid seem to indicate the presence of microscopic precursors and high-grade dysplasia/invasive cancer. In addition to known proteins overexpressed both in precursors and PDACs, such as CEA and S100P, comprehensive proteomic analysis of pancreatic juice from patients with PDAC identified many proteins which were not previously described. A novel technique to isolate exosomes from pancreatic juice was recently invented and identification of exosomal microRNA’s 21 and 155 could be biomarkers for diagnosis of PDAC. Since many studies have explored biomarkers in fluid samples containing pancreatic juice and reported excellent diagnostic accuracy, we need to discuss how these biomarker assays can be validated and utilized in the strategy of early detection of PDAC.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Yasuhisa Mori
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8520, Japan
- Correspondence: ; Tel.: +81-99-275-5361
| |
Collapse
|
89
|
Schlick K, Hohla F, Hamacher F, Hackl H, Hufnagl C, Markus S, Magnes T, Gampenrieder SP, Melchardt T, Stättner S, Hauser-Kronberger C, Greil R, Rinnerthaler G. Overcoming negative predictions of microRNA expressions to gemcitabine response with FOLFIRINOX in advanced pancreatic cancer patients. Future Sci OA 2020; 7:FSO644. [PMID: 33437513 PMCID: PMC7787156 DOI: 10.2144/fsoa-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
FOLFIRINOX is superior to gemcitabine in patients with pancreatic cancer, but this regimen is associated with toxicity and biomarkers for response are warranted. MicroRNAs can mediate drug resistance and could provide predictive information. Altered expressions of several microRNAs including miR-21-5p, miR-10b-5p and miR-34a-5p have been previously linked to a worse response to gemcitabine. We investigated the influence of expression levels in tumor tissue of those three microRNAs on outcome to FOLFIRINOX. Twenty-nine patients with sufficient formalin-fixed paraffin-embedded tumor tissue were identified. There was no significant association between high and low expression groups for these three microRNA. We conclude that polychemotherapy combination can overcome intrinsic negative prognostic factors.
Collapse
Affiliation(s)
- Konstantin Schlick
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Florian Hohla
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
| | - Frank Hamacher
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Hufnagl
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Steiner Markus
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Teresa Magnes
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Simon Peter Gampenrieder
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Stättner
- Department of Surgery, Salzkammergutklinikum, Standort Vöcklabruck, Oberösterreich, Austria
- Department of Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Richard Greil
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
90
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
91
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
92
|
Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:218-239. [PMID: 33251334 PMCID: PMC7666327 DOI: 10.1016/j.omto.2020.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Collapse
|
93
|
Xu J, Yin Z, Yang L, Wu F, Fan J, Huang Q, Jin Y, Yang G. Evidence that dysplasia related microRNAs in Barrett's esophagus target PD-L1 expression and contribute to the development of esophageal adenocarcinoma. Aging (Albany NY) 2020; 12:17062-17078. [PMID: 32903213 PMCID: PMC7521496 DOI: 10.18632/aging.103634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Esophageal adenocarcinoma (EAC) is the cancer arising from the esophagus, which frequently develop from Barrett's esophagus (BE). Extracellular vesicles (EVs), particularly exosomes, are nanosized vesicles of endosomal origin released from various types of cells that have been implicated in cancers. However, the significance of circulating exosomes during the progression of BE to EAC remains unknown. Sera exosmal microRNAs were profiled from 13 EAC and 12BE patients compared to 12 healthy controls. We found a substantial dysregulation of exosomal miRNA levels in BE compared to healthy control, and identified a unique signature of 24 up regulated and 14 down regulated miRNAs. Further validation showed exosomal miR-196a, -26b, -21, and -143 expression was significantly higher in BE and continued to have higher levels in EAC compared to healthy controls; while sera exosomal miR-378, -210, -205, and -200c-3p were significantly lower expressed in BE patients compared to compared to controls. Further, miR-378, -210, -205, and -200c-3p continue to have even lower levels in EAC patients compared to BE. Interestingly, sera expression levels of exosomal miR-15a, -16, and -193a-3p were significantly down regulated in BE PD-L1(+) patients; Sera exosomal miR-15a, -15b, -16, and -193a-3p expression levels in EAC PD-L1(+) patients were significantly lower (all p < 0.01) when compared to EAC PD-L1(-) patients. More importantly, the BE-EAC group had longitudinally decreased exosomal expression levels of miR-15a, -15b, -16, and -193a-3p from BE status to their EAC progression. In conclusion, distinct microRNA expression patterns were demonstrated in circulating exosomes from Barrett's esophagus and esophageal adenocarcinoma; Furthermore exosomal microRNAs potentially targeting PD-L1 mRNA were down regulated in PD-L1 (+) BE and EAC patients.
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Yang
- Oncology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Wu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinshuo Fan
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Huang
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
94
|
Diazoxide Protects against Myocardial Ischemia/Reperfusion Injury by Moderating ERS via Regulation of the miR-10a/IRE1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4957238. [PMID: 32963696 PMCID: PMC7495230 DOI: 10.1155/2020/4957238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Nowadays, reperfusion is still the most effective treatment for ischemic heart disease. However, cardiac reperfusion therapy would lead to reperfusion injury, which may have resulted from endoplasmic reticulum stress (ERS) during reperfusion. Diazoxide (DZ) is a highly selective mitochondrial adenosine triphosphate-sensitive potassium channel opener. Its protective effect on I/R injury has been confirmed in many organs such as the heart and brain. However, the mechanism of its protective effect has not been fully elucidated. MicroRNAs (miRNAs) are widely involved in pathologies of heart disease. In this study, we found that miR-10a expression was highly upregulated in the myocardial I/R groups, and DZ treatment significantly reduced the expression of miR-10a. More importantly, we found that DZ treatment can moderate ERS via regulation of the miR-10a/IRE1 pathway in the I/R and H/R models, thereby protecting myocardial H/R injury.
Collapse
|
95
|
Wang W, Ning JZ, Tang ZG, He Y, Yao LC, Ye L, Wu L. MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2. Exp Ther Med 2020; 20:53. [PMID: 32952643 PMCID: PMC7485308 DOI: 10.3892/etm.2020.9181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Pancreatic carcinoma (PC) is a rapidly progressive, fatal malignant tumor with the poorest prognosis among all major carcinoma types. MicroRNAs (miRNAs/miRs) have been indicated to be key post-transcriptional regulatory factors, which are involved in cancer development. The present study was designed to investigate the effect of miR-23a on PC cell proliferation, metastasis and apoptosis. The expression of miR-23a was detected in a normal pancreatic ductal epithelial cell line and three PC cell lines, and miR-23a inhibitor or mimics were transfected into the Panc-1 and MiaPaCa2 PC cells. The association between miR-23a and tissue factor pathway inhibitor (TFPI)-2 was examined using a luciferase reporter assay. MTT and flow cytometry assays were used to assess cell viability and apoptosis, respectively. Furthermore, wound-healing, Transwell and Matrigel assays were used to evaluate cell migration and invasion abilities, and the protein expression level of TFPI-2 was determined using western blot analysis. The results of the present study revealed that miR-23a was upregulated in PC cells. Furthermore, TFPI-2 was identified as a downstream target of miR-23a, and TFPI-2 expression was found to be increased following miR-23a knockdown. In addition, functional assays revealed that downregulation of miR-23a decreased PC cell proliferation, migration and invasiveness and promoted cell apoptosis, while miR-23a overexpression exerted the opposite effects. Furthermore, TFPI-2 knockdown rescued the biological effects on PC cells, which were induced by miR-23a knockdown. The results of the present study indicated that miR-23a negatively modulated TFPI-2 expression in vitro and enhanced the malignant phenotypes of PC cells. Therefore, miR-23a may be a potential marker and/or target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying He
- School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Li-Chao Yao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Ye
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
96
|
Ramamoorthy K, Anandam KY, Yasujima T, Srinivasan P, Said HM. Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319:G323-G332. [PMID: 32683950 PMCID: PMC7509260 DOI: 10.1152/ajpgi.00178.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B1 (thiamin) plays essential roles in normal metabolism and function of all human/mammalian cells, including the pancreatic acinar cells (PACs). PACs obtain thiamin from their surrounding circulation via transport across the plasma membrane, a process that is mediated by thiamin transporter (THTR)-1 and THTR-2. We have previously characterized different aspects of thiamin uptake by mouse and human primary PACs, but little is known about posttranscriptional regulation of the uptake event. We addressed this by focusing on the predominant thiamin transporter THTR-1 (encoded by SLC19A2 gene) in PACs. Transfecting pmirGLO-SLC19A2 3'-untranslated region (UTR) into mouse-derived PAC 266-6 cells leads to a significant reduction in luciferase activity compared with cells transfected with empty vector. Subjecting the SLC19A2 3'-UTR to different in silico algorithms identified multiple putative microRNA binding sites in this region. Focusing on miR-200a-3p (since it is highly expressed in mouse and human pancreas), we found that transfecting PAC 266-6 and human primary PACs (hPACs) with mimic miR-200a-3p leads to a significant inhibition of THTR-1 expression (both protein and mRNA levels) and in thiamin uptake. In contrast, transfection by miR-200a-3p inhibitor leads to an increase in THTR-1 expression and thiamin uptake. Additionally, truncating the region carrying miR-200a-3p binding site in SLC19A2 3'-UTR and mutating the binding site lead to abrogation in the inhibitory effect of this microRNA on luciferase activity in PAC 266-6. These results demonstrate that expression of THTR-1 and thiamin uptake in PACs is subject to posttranscriptional regulation by microRNAs.NEW & NOTEWORTHY The findings of this study show, for the first time, that the membrane transporter of vitamin B1, i.e., thiamin transporter-1 (THTR-1), is subject to regulation by microRNAs (specifically miR-200a-3p) in mouse and human primary pancreatic acinar cells (PACs). The results also show that this posttranscriptional regulation has functional consequences on the ability of PACs to take in the essential micronutrient thiamin.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Kasin Yadunandam Anandam
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Tomoya Yasujima
- 4Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Padmanabhan Srinivasan
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,2Department of Medicine, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
97
|
Boussadia Z, Zanetti C, Parolini I. Role of microenvironmental acidity and tumor exosomes in cancer immunomodulation. Transl Cancer Res 2020; 9:5775-5786. [PMID: 35117938 PMCID: PMC8798230 DOI: 10.21037/tcr.2020.03.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is a complex milieu in which tumor grows, develops and progresses through a complex bi-directional cross-talk with immune-, stromal cells, and the extracellular matrix (ECM). In this context, tumor-derived exosomes (TE) drive the fate of tumor cells through a stimulatory or inhibitory role on immune system. In fact, TE can induce the apoptosis of cells of the immune surveillance, and enhance the proliferation and survival of stromal cells that sustain tumor development. However, depending on the molecular cargo, TE are also able to stimulate anti-tumor immune response. TME is mainly characterized by the acidic pH that contributes to tumor development, through multiple mechanisms. Among these, the impairment of tumor immune surveillance does occur within acidic TME, and is directly mediated by acidic pH or by molecular cargo carried by TE. Little is known about the role of TE in immunomodulation in acidic conditions. The present review summarizes the studies describing the role of microenvironmental acidity and TE in immune system modulation.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Cristiana Zanetti
- Deparment of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Isabella Parolini
- Deparment of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
98
|
Chen X, Song D. LncRNA MEG3 Participates in Caerulein-Induced Inflammatory Injury in Human Pancreatic Cells via Regulating miR-195-5p/FGFR2 Axis and Inactivating NF-κB Pathway. Inflammation 2020; 44:160-173. [PMID: 32856219 DOI: 10.1007/s10753-020-01318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute pancreatitis (AP) is a dysfunctional pancreas disease marked by severe inflammation. Long non-coding RNAs (lncRNAs) involving in the regulation of inflammatory responses have been frequently mentioned. The purpose of this study was to ensure the function and action mode of lncRNA maternally expressed gene 3 (MEG3) in caerulein-induced AP cell model. HPDE cells were treated with caerulein to establish an AP model in vitro. The expression of MEG3, miR-195-5p, and fibroblast growth factor receptor 2 (FGFR2) was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay, respectively. The expression of CyclinD1, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (Bax), FGFR2, P65, phosphorylated P65 (p-P65), alpha inhibitor of nuclear factor kappa beta (NF-κB) (IκB-α), and phosphorylated IκB-α (p-IκB-α) at the protein level was quantified by western blot. The concentrations of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were monitored by enzyme-linked immunosorbent assay (ELISA). The targeted relationship between miR-195-5p and MEG3 or FGFR2 was forecasted by the online software starBase v2.0 and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. As a result, the expression of MEG3 and FGFR2 was decreased in caerulein-induced HPDE cells, while the expression of miR-195-5p was increased. MEG3 overexpression inhibited cell apoptosis and inflammatory responses that were induced by caerulein. Mechanically, miR-195-5p was targeted by MEG3 and abolished the effects of MEG3 overexpression. FGFR2 was a target of miR-195-5p, and MEG3 regulated the expression of FGFR2 by sponging miR-195-5p. FGFR2 overexpression abolished miR-195-5p enrichment-aggravated inflammatory injuries. Moreover, the NF-κB signaling pathway was involved in the MEG3/miR-195-5p/FGFR2 axis. Collectively, MEG3 participates in caerulein-induced inflammatory injuries by targeting the miR-195-5p/FGFR2 regulatory axis via mediating the NF-κB pathway in HPDE cells.
Collapse
Affiliation(s)
- Xinghai Chen
- Department of Emergency and Critical Medicine, The Second Hospital of Jilin University, No. 218, Nanguan District, Ziqiang Street, Changchun, Jilin, 130041, China
| | - Debiao Song
- Department of Emergency and Critical Medicine, The Second Hospital of Jilin University, No. 218, Nanguan District, Ziqiang Street, Changchun, Jilin, 130041, China.
| |
Collapse
|
99
|
Gerovska D, Larrinaga G, Solano-Iturri JD, Márquez J, García Gallastegi P, Khatib AM, Poschmann G, Stühler K, Armesto M, Lawrie CH, Badiola I, Araúzo-Bravo MJ. An Integrative Omics Approach Reveals Involvement of BRCA1 in Hepatic Metastatic Progression of Colorectal Cancer. Cancers (Basel) 2020; 12:E2380. [PMID: 32842712 PMCID: PMC7565528 DOI: 10.3390/cancers12092380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
(1) Background & Aims: The roles of different cells in the tumor microenvironment (TME) are critical to the metastatic process. The phenotypic transformation of the liver cells is one of the most important stages of the hepatic metastasis progression of colorectal cancer (CRC). Our aim was to identify the major molecules (i.e., genes, miRNAs and proteins) involved in this process. (2) Methods: We isolated and performed whole-genome analysis of gene, miRNA, and protein expression in three types of liver cells (Ito cells, Kupffer cells, and liver sinusoidal endothelial cells) from the TME of a murine model of CRC liver metastasis. We selected the statistically significant differentially expressed molecules using the Student's t-test with Benjamini-Hochberg correction and performed functional statistically-significant enrichment analysis of differentially expressed molecules with hypergeometric distribution using the curated collection of molecular signatures, MSigDB. To build a gene-miRNA-protein network centered in Brca1, we developed a software package (miRDiana) that collects miRNA targets from the union of the TargetScan, MicroCosm, mirTarBase, and miRWalk databases. This was used to search for miRNAs targeting Brca1. We validated the most relevant miRNAs with real-time quantitative PCR. To investigate BRCA1 protein expression, we built tissue microarrays (TMAs) from hepatic metastases of 34 CRC patients. (3) Results: Using integrated omics analyses, we observed that the Brca1 gene is among the twenty transcripts simultaneously up-regulated in all three types of TME liver cells during metastasis. Further analysis revealed that Brca1 is the last BRCA1-associated genome surveillance complex (BASC) gene activated in the TME. We confirmed this finding in human reanalyzing transcriptomics datasets from 184 patients from non-tumor colorectal tissue, primary colorectal tumor and colorectal liver metastasis of the GEO database. We found that the most probable sequence of cell activation during metastasis is Endothelial→Ito→Kupffer. Immunohistochemical analysis of human liver metastases showed the BRCA1 protein was co-localized in Ito, Kupffer, and endothelial cells in 81.8% of early or synchronous metastases. However, in the greater part of the metachronous liver metastases, this protein was not expressed in any of these TME cells. (4) Conclusions: These results suggest a possible role of the co-expression of BRCA1 in Ito, Kupffer, and sinusoidal endothelial cells in the early occurrence of CRC liver metastases, and point to BRCA1 as a potential TME biomarker.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain
| | - Gorka Larrinaga
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
- BioCruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
| | - Jon Danel Solano-Iturri
- BioCruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
- Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Joana Márquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Patricia García Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Abdel-Majid Khatib
- University of Bordeaux, Allée Geoffroy St Hilaire, 33615 Pessac, France; INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, 33615 Pessac, France;
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - María Armesto
- Molecular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (C.H.L.)
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (C.H.L.)
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| |
Collapse
|
100
|
Dehbidi S, Farokhizadeh Z, Karimi MH, Afshari A, Behmanesh M, Sanati MH, Geramizadeh B, Yaghobi R. Evaluation of microRNA Gene Polymorphisms in Liver Transplant Patients with Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 08/30/2023]
Abstract
Background: Genetic polymorphism in the miRNA sequence might alter miRNA expression and/or maturation, which is associated with the development and progression of hepatocellular carcinoma (HCC) in liver transplant patients. Objectives: Therefore, the prevalence of miRNA-146a G > C (rs2910164), miRNA-499A > G (rs3746444), miRNA-149C > T (rs2292832), and miRNA-196a-2 C > T (rs11614913) gene polymorphisms was evaluated in liver recipients with HCC with or without experiencing graft rejection. Methods: In a cross-sectional study, tissue samples were collected from 60 HCC patients who underwent liver transplant surgery at Namazi Hospital, Shiraz, Iran, in 2013 - 2015. A control group consisting of 120 individuals was randomly selected, as well. The genomic DNA was extracted from collected tissues and blood samples. The miRNA-146a (rs2910164), miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) gene polymorphisms were evaluated in patients with HCC using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism were significantly associated with the increased risk of transplant rejection in patients with HCC (P = 0.05 and P = 0.05, respectively). The CC genotype and C allele of the miRNA-146a (rs2910164) were also significantly more frequent in male liver transplant patients who experienced acute rejection than in non-rejected ones (P = 0.05 and P = 0.03, respectively). However, no significant association was found between the genotypes and alleles of miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) polymorphisms and HCC outcomes in liver transplant recipients. Conclusions: The importance of the CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism in increasing the risk of transplant rejection was confirmed, but it needs further studies in larger populations.
Collapse
|