51
|
Abstract
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast.
Collapse
Affiliation(s)
- S K Winchester
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1083, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Osteocalcin (OC) is an abundant noncollagenous bone matrix protein, yet its function is largely unknown. However, targeted ablation of two OC genes in mice lead to increased bone formation (Ducy et al. Nature 382:448-452; 1996). This implied that OC inhibits osteoblast activity, and that these cells express an OC receptor. In order to characterize the putative OC receptor, we used the Cytosensor microphysiometer to measure responses of a proliferative-stage, conditionally immortalized human osteoblast cell line (HOB-03-C5) to purified bovine OC (bOC). The Cytosensor measures a change in the extracellular acidification rate, which is primarily a measurement of metabolic activity. Treatment of the HOB cells for 5-60 sec with 0.17 micromol/L bOC generated a time-dependent, transient increase in the acidification rate that became optimal after 25 sec. Likewise, treatment of the cells for 25 sec with 0.021 to 1.9 micromol/L bOC caused a dose-dependent 70% increase in the acidification rate. Pre-treatment of the cells for 2 h with inhibitors of adenylyl cyclase, phospholipase C, and intracellular calcium release inhibited the response of the cells to bOC by 50%-100%, which suggested that the putative OC receptor was coupled to a G-protein. These observations from the Cytosensor were confirmed by measuring intracellular cyclic-adenosine monophosphate (cAMP) concentrations in response to bOC. Treatment of the cells for 10 min with bOC decreased basal cAMP levels by 65% in a dose-dependent manner with an IC50 of 0.22 microM. However, cotreatment of the cells with forskolin, which activates adenylyl cyclase, blunted this suppression. Moreover, pretreatment of the cells with pertussis toxin for 48 h, which inhibits G(alpha)i proteins, reversed the suppressive effects of bOC on cAMP production. Treatment of the HOB cells for 48 h with 0.19 to 1.5 micromol/L bOC caused a dose-dependent 40% decrease in alkaline phosphatase activity with an IC50 of 0.21 micromol/L, which suggested that OC may inhibit HOB activity. Finally, although the maturation stage, conditionally immortalized HOB-02-C1 cells also responded to bOC as measured by the Cytosensor, two osteosarcoma cell lines, SaOS-2 and ROS 17/2.8, exhibited a 5- to 10-fold lower response to the bone matrix protein, suggesting that the putative OC receptor was downregulated in these cells. However, all of these bone cell lines responded to parathyroid hormone treatment. In conclusion, these results provide evidence that the HOB cells express an OC receptor, and that this receptor appears to be coupled to a G(alpha)-protein.
Collapse
Affiliation(s)
- P V Bodine
- Women's Health Research Institute, Wyeth-Ayerst Research, Radnor, PA 19087, USA.
| | | |
Collapse
|
53
|
Schiller PC, D'Ippolito G, Roos BA, Howard GA. Anabolic or catabolic responses of MC3T3-E1 osteoblastic cells to parathyroid hormone depend on time and duration of treatment. J Bone Miner Res 1999; 14:1504-12. [PMID: 10469278 DOI: 10.1359/jbmr.1999.14.9.1504] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated signaling (cAMP) and anabolic responses (mineralization of extracellular matrix [ECM]) to parathyroid hormone (PTH) in long-term (30 days) cultures of MC3T3-E1 cells, a murine model of osteoblast differentiation. Expression of PTH/PTH-related peptide receptor (PTH1R) mRNA is detected early and remains relatively constant for 2 weeks with somewhat higher levels observed during the second half of the culture period. In contrast to the relatively stable PTH1R mRNA expression, the cAMP response to PTH varies markedly with no response at day 5 and a marked response (80-fold versus control) by day 10. Responsiveness to PTH remains elevated with fluctuations of 30- to 80-fold stimulation throughout the remainder of the culture period. The timing and duration of PTH treatment to achieve in vitro mineralization of ECM was evaluated. When continuous PTH treatment was initiated before day 20, mineralization decreased. If continuous PTH treatment began on or after day 20, mineralization was unaffected. However, if treatment began on day 20 and then stopped on day 25, mineralization on day 30 was increased 5-fold. This mineralization response to intermittent PTH was confirmed in primary cultures of murine and human osteoblastic cells. These data provide a potential basis for understanding the differential responses to PTH (anabolic versus catabolic) and indicate the developmental temporal variance of anabolic and catabolic responses. Since cAMP signaling was relatively unchanged during this interval (day 10-30) and stimulation of adenylate cyclase only partially mimicked the PTH effect on increased mineralization, other signaling pathways are likely to be involved in order to determine the specific anabolic response to short-term PTH treatment during the differentiation process.
Collapse
Affiliation(s)
- P C Schiller
- Geriatric Research, Education, and Clinical Center, and Research Service, Veterans Affairs Medical Center, and Department of Medicine, Miami, Florida 33125, USA
| | | | | | | |
Collapse
|
54
|
Jonsson KB, Frost A, Nilsson O, Ljunghall S, Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. ACTA ORTHOPAEDICA SCANDINAVICA 1999; 70:365-73. [PMID: 10569267 DOI: 10.3109/17453679908997826] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The culture of osteoblast-like cells of human origin has become an important experimental model in bone biology. We report here a comparison and evaluation of three of the most widely used systems available today: bone marrow stroma cell cultures (BMSC), human osteoblast explant cultures (hOB) and osteoblast explant cultures from collagenase-treated bone (hOBcol). Cultures from 16 bone specimens obtained from various donors were established and their expression of the osteoblast phenotype were then compared in secondary cultures by use of biochemical markers. BMSC had the highest basal and 1,25-dihydroxyvitaminD3 (1,25(OH)2D3)-induced alkaline phosphatase activities in all cell isolations, with levels approximately twice those in explant cultures. Basal osteocalcin secretion was low-to-undetectable in all cell cultures but was detected in 1,25(OH)2D3-stimulated cultures. BMSC produced half of the amount of osteocalcin synthesized in explant cultures. The BMSC cultures also synthesized the lowest amounts of type I collagen, whereas collagen type III synthesis did not differ significantly among the various cultures. When secondary cultures were treated with 100 nM dexamethasone in the presence of ascorbic acid (50 microg/mL) and beta-glycerophosphate (10 mM), cultures deposited calcium mineral into the cell layer within 2-4 weeks. PTH-induced cAMP formation was detected in only 5 of 15 isolations and no consistent isolation-dependent response pattern was seen. We conclude that BMSC cultures differ significantly from explant cultures obtained from the same bone specimen. However, all cultures represent cells which can differentiate further and induce mineralization of the extracellular matrix in response to osteoinductive drugs.
Collapse
Affiliation(s)
- K B Jonsson
- Department of Medical Sciences, University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
55
|
Stewart K, Walsh S, Screen J, Jefferiss CM, Chainey J, Jordan GR, Beresford JN. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res 1999; 14:1345-56. [PMID: 10457267 DOI: 10.1359/jbmr.1999.14.8.1345] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primitive cells of the osteoblast lineage are not well characterized but are known to be present within the STRO-1+ fraction of adult human bone and marrow. A survey of human osteosarcoma cell lines revealed that STRO-1 is expressed by MG-63 but not SaOS-2. Among murine cell lines tested, expression of STRO-1 was detected in the bipotential (adipocyte/osteoblast) line BMS-2 but not the committed osteoblast precursor MC3T3-E1. A proportion of cultured adult human bone marrow stromal cells (BMSCs) consistently expressed the STRO-1 antigen. The expression of a range of cell surface antigens was studied in relation to STRO-1 by flow cytometry and several, including the bone/liver/kidney isoform of alkaline phosphatase (ALP), were found to subtype the STRO-1+ population of BMSCs. Further, BMSCs dual-labeled with antibodies recognizing STRO-1 and ALP could be assigned to one of four fractions: STRO-1-/ALP-, STRO-1+/ALP-, STRO-1+/ALP+, and STRO-1-/ALP+. Cells from each fraction could be isolated in high purity and, when recultured, remained viable and exhibited a limited degree of phenotypic stability. Using reverse transcriptase-polymerase chain reaction, cells in the four fractions were found to express different levels of transcripts for the parathyroid hormone receptor (PTHr) and bone sialoprotein (BSP). The expression of transcripts for the nuclear transcription factor core-binding factor alpha 1/osteoblast-specific factor-2 (CBFA1/OSF2) was restricted to those fractions expressing STRO-1 and/or ALP. Treatment with 10 nM dexamethasone consistently increased the proportion of cells present in those fractions which expressed the highest levels of transcripts for PTHr and BSP (STRO-1+/ALP+ and STRO-1-/ALP+) while simultaneously decreasing the proportion present in the STRO-1+/ALP- fraction. In conclusion, the expression of STRO-1 in vitro remains a characteristic of less well differentiated cells of the osteoblast lineage; in cultures of BMSCs and in established human osteosarcoma cell lines, there is an inverse association between the expression of STRO-1 and ALP; dual labeling of BMSCs with monoclonal antibodies recognizing STRO-1 and ALP permits the identification and isolation of cells of the osteoblast lineage at different stages of differentiation.
Collapse
Affiliation(s)
- K Stewart
- School of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
56
|
Koh AJ, Beecher CA, Rosol TJ, McCauley LK. 3',5'-Cyclic adenosine monophosphate activation in osteoblastic cells: effects on parathyroid hormone-1 receptors and osteoblastic differentiation in vitro. Endocrinology 1999; 140:3154-62. [PMID: 10385409 DOI: 10.1210/endo.140.7.6872] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH has anabolic and catabolic effects in bone through activation of the PTH-1 (PTH/PTHrP) receptor and the cAMP/protein kinase A pathway. The effects of agents that regulate cAMP in nontransformed osteoblasts in relation to cell differentiation have not been described. The purpose of this study was to determine the effects of PTH fragments with differing cAMP-stimulating activity, and nonPTH cAMP regulators on PTH-1 receptor expression and activity, and osteoblast differentiation in vitro using MC3T3-E1 and primary rat calvarial cells. PTH (1-34), but not PTH (53-84), (7-34), or PTHrP (107-139) treatment (24 h) resulted in down-regulation of steady-state messenger RNA for the PTH-1 receptor. Forskolin (a stimulator of cAMP accumulation) also down regulated the PTH-1 receptor, whereas 9-(tetrahydro-2-furyl) adenine (THFA) (an inhibitor of adenylyl cyclase) had no effect. Similarly, PTH (1-34) treatment for 48 h abolished PTHrP binding to cell surface receptors; however, neither the PTH analogs nor the cAMP regulating agents altered PTH binding or numbers of binding sites on osteoblastic cells. Basal levels of cAMP were reduced in cultured cells treated for 6 days with PTH (7-34) or THFA compared with controls. In contrast, PTH-stimulated cAMP levels were significantly increased in cultures treated with PTH (7-34) and THFA for 6 days during osteoblast differentiation and were decreased in cultures treated with PTH (1-34) and forskolin compared with controls. To evaluate effects of the cAMP pathway on osteoblast differentiation, cultures were treated continuously with PTH analogs and cAMP regulators during an 18-day differentiation regime, total RNA was isolated at multiple time points, and Northern blot analysis for osteocalcin (OCN) was performed. THFA and PTH (7-34)-treated cultures had increased OCN expression; whereas, PTH (1-34) and forskolin reduced OCN expression. Interestingly, PTH (7-34) and THFA-treated cultures had increased mineralized nodule formation, in contrast to PTH (1-34) and forskolin treatment, which reduced nodule formation. Similarly, calcium accumulation in cultures was significantly increased in the PTH (7-34) and THFA-treated cultures and reduced in the PTH (1-34) and forskolin-treated cultures. These data demonstrate that agents that increase cAMP down regulate PTH-1 receptor messenger RNA and inhibit osteoblast differentiation in vitro. Agents that reduce or block adenylyl cyclase or cAMP activity do not alter PTH-1 receptor expression or binding, but have striking effects on promoting osteoblast differentiation. We conclude that many effects of PTH on osteoblasts may be mimicked or antagonized by agents that alter cAMP activity and bypass the PTH-1 receptor.
Collapse
Affiliation(s)
- A J Koh
- The University of Michigan, Department of Periodontics/Prevention/Geriatrics, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
57
|
Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 1998; 273:32988-94. [PMID: 9830051 DOI: 10.1074/jbc.273.49.32988] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix molecules such as type I collagen are required for the adhesion, migration, proliferation, and differentiation of a number of cell types including osteoblasts. Matrix components often affect cell function by interacting with members of the integrin family of cell surface receptors. Previous work showed that collagen matrix synthesis, induced by addition of ascorbic acid to cells, precedes and is essential for the expression of osteoblast markers and induction of the osteocalcin promoter in murine MC3T3-E1 cells. This later response requires OSE2, the promoter element recognized by Osf2 (also called Cbfa1/AML3/PEBP2alphaA), a recently identified osteoblast-specific transcription factor. Osteoblasts express several integrins including alpha2beta1 which is a major receptor for type I collagen. This paper examines the role of the alpha2-integrin subunit in osteocalcin promoter activation and osteoblast differentiation. Disruption of alpha2-integrin-ECM interactions with a blocking antibody or DGEA peptide containing the cell-binding domain of type I collagen blocked activation of the mouse osteocalcin gene 2 promoter by ascorbic acid as well as induction of endogenous osteocalcin mRNA and mineralization. Furthermore, anti-alpha2-integrin blocking antibody or peptide reduced ascorbic acid-dependent binding of Osf2 to OSE2 without affecting levels of transcription factor mRNA. Time course studies revealed that ascorbic acid-dependent binding of Osf2 to OSE2 preceded increases in osteocalcin and bone sialoprotein expression and this increase in Osf2 binding was not accompanied by comparable changes in levels of transcription factor mRNA or protein. Taken together, these studies demonstrate that an alpha2-integrin-collagen interaction is required for activation of Osf2 and induction of osteoblast-specific gene expression. Furthermore, matrix signals may regulate Osf2 through a post-translational pathway or via an accessory factor.
Collapse
Affiliation(s)
- G Xiao
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry and Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
58
|
Divieti P, Lanske B, Kronenberg HM, Bringhurst FR. Conditionally immortalized murine osteoblasts lacking the type 1 PTH/PTHrP receptor. J Bone Miner Res 1998; 13:1835-45. [PMID: 9844101 DOI: 10.1359/jbmr.1998.13.12.1835] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoblasts synthesize and mineralize bone matrix and are principal target cells for parathyroid hormone (PTH). The type 1 PTH/PTH-related protein (PTHrP) receptor (PTH1R), cloned from rat osteoblastic cells, activates multiple intracellular signaling mechanisms. The specific roles of these PTH1R signals, or of responses to other types of PTH receptors that may be expressed, in regulating osteoblast function are incompletely understood. Use of established mammalian osteoblastic cell lines has led to much understanding of PTH action in bone, although such cells are of neoplastic origin or have other characteristics that compromise their validity as models of normal osteoblasts. To examine the role of the PTH1R in osteoblast biology, we have isolated a series of clonal murine calvarial osteoblastic cell lines that are only conditionally immortalized, via expression of a transgene encoding the tsA58 temperature-sensitive SV40 large T antigen, and that lack both functional alleles of the PTH1R gene. When cultured under nontransforming conditions, these cells stopped proliferating, expressed a series of characteristic osteoblastic genes (including the nonfunctional remnant of the PTH1R gene), and, after 3-4 weeks, produced mineralized bone nodules in a manner that was regulated by 1,25-dihydroxyvitamin D3 but not by PTH(1-84). Cyclic AMP measurements revealed no evidence of expression of alternate species of Gs-linked PTH receptors. Stable transfection with PTH1R cDNA reconstituted both PTH binding and adenylyl cyclase activation, increased basal osteocalcin expression, and supported PTH stimulation of c-Fos expression and matrix mineralization. These conditionally transformed, PTH1R(-/-) clonal osteoblastic cell lines should prove useful for studies of the regulation of osteoblast differentiation and function by both endogenous nonclassical species of PTH (or PTHrP) receptors and mutant signal-selective PTH1Rs.
Collapse
Affiliation(s)
- P Divieti
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | | | | | | |
Collapse
|
59
|
Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE. The derivation and characterization of stromal cell lines from the bone marrow of p53-/- mice: new insights into osteoblast and adipocyte differentiation. J Bone Miner Res 1998; 13:195-204. [PMID: 9495512 DOI: 10.1359/jbmr.1998.13.2.195] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have derived a series of clonal cell lines from the bone marrow of p53-/- mice that represent different stages of osteoblast and adipocyte differentiation. All cell lines show indefinite growth potential (>300 population doublings) and have generation times of 12-20 h. These cell lines have been grouped into three categories. The least mature clones are heterogeneous and appear to contain a subpopulation of stem cells, which can spontaneously generate foci that contain either adipocytes or mineralizing osteoblasts. The second category of clones are homogeneous and clearly correspond to mature osteoblasts because they express high levels of the anticipated osteoblastic markers in a stable fashion and cannot differentiate into adipocytes even in the presence of inducers. The clones in the third category are the most unique. Initially they appeared to correspond to mature osteoblasts because they express alkaline phosphatase in a homogeneous manner, secrete type I collagen, show a significant cyclic adenosine monophosphate response to parathyroid hormone, secrete osteocalcin, and mineralize extensively after only 4-7 days. However, in contrast to the mature osteoblasts, these clones can be induced to undergo massive adipocyte differentiation, and this differentiation is accompanied by the complete loss of expression of all osteoblastic markers except alkaline phosphatase. These observations indicate that some cells that have acquired all of the characteristics of mature osteoblasts can be diverted to the adipocyte pathway. Further characterization of these clones may be particularly relevant to osteoporotic conditions where increased adipocyte formation appears to occur at the expense of osteoblast formation.
Collapse
Affiliation(s)
- D L Thompson
- ZymoGenetics, Inc., Seattle, Washington 98102, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Donahue HJ, Zhou Z, Li Z, McCauley LK. Age-related decreases in stimulatory G protein-coupled adenylate cyclase activity in osteoblastic cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E776-81. [PMID: 9357808 DOI: 10.1152/ajpendo.1997.273.4.e776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study we examined parathyroid hormone (PTH)-, forskolin (FSK)-, and cholera toxin (CTX)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in rat osteoblastic cells (ROB) isolated from young (4 mo), mature (12 mo), and old (24-28 mo) male rats. Exposure to PTH increased cAMP accumulation in a concentration-dependent manner in all ROB cells examined. However, the maximum response in ROB from young rats was threefold greater than the maximum response in those from mature and old rats. Exposure to FSK also stimulated cAMP accumulation in a concentration-dependent manner, but there were no significant differences in responsiveness among ROB isolated from young, mature, and old rats. Exposure to CTX resulted in a dramatic concentration-dependent increase in cAMP in ROB from young rats but only a modest increase in ROB from mature and old rats. PTH binding kinetics were similar in ROB from rats in each age group. These data suggest an age-related defect in stimulatory G protein coupling to adenylate cyclase, which contributes to decreased osteoblastic responsiveness to PTH.
Collapse
Affiliation(s)
- H J Donahue
- Department of Orthopaedics and Rehabilitation and Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | | | |
Collapse
|
61
|
Xiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 1997; 11:1103-13. [PMID: 9212058 DOI: 10.1210/mend.11.8.9955] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Osteocalcin is a hormonally regulated calcium-binding protein made almost exclusively by osteoblasts. In normal cells, osteocalcin expression requires ascorbic acid (AA), an essential cofactor for osteoblast differentiation both in vivo and in vitro. To determine the mechanism of this regulation, subclones of MC3T3-E1 preosteoblasts were transiently transfected with 1.3 kb of the mouse osteocalcin gene 2 promoter driving expression of firefly luciferase. AA stimulated luciferase activity 20-fold after 4-5 days. This response was stereospecific to L-ascorbic acid and was only detected in MC3T3-E1 subclones showing strong AA induction of the endogenous osteocalcin gene. Similar results were also obtained in MC3T3-E1 cells stably transfected with the osteocalcin promoter. A specific inhibitor of collagen synthesis, 3,4-dehydroproline, blocked AA-dependent induction of promoter activity, indicating that regulation of the osteocalcin gene requires collagen matrix synthesis. Deletion analysis of the mOG2 promoter identified an essential region for AA responsiveness between -147 and -116 bp. This region contains a single copy of the previously described osteoblast-specific element, OSE2. Deletion and mutation of OSE2 in DNA transfection assays established the requirement for this element in the AA response. Furthermore, DNA-binding assays revealed that MC3T3-E1 cells contain OSF2, the nuclear factor binding to OSE2, and that binding of OSF2 to OSE2 is up-regulated by AA treatment. Taken collectively, our results indicate that an intact OSE2 sequence is required for the induction of osteocalcin expression by AA.
Collapse
Affiliation(s)
- G Xiao
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | |
Collapse
|