51
|
Zauderer MG, Alley EW, Bendell J, Capelletto E, Bauer TM, Callies S, Szpurka AM, Kang S, Willard MD, Wacheck V, Varghese AM. Phase 1 cohort expansion study of LY3023414, a dual PI3K/mTOR inhibitor, in patients with advanced mesothelioma. Invest New Drugs 2021; 39:1081-1088. [PMID: 33660194 PMCID: PMC8280020 DOI: 10.1007/s10637-021-01086-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND LY3023414 is a selective, ATP competitive inhibitor of class I PI3K isoforms, mTORC1/2 and DNA-PK. A Phase 1 dose escalation, 200 mg twice daily (BID) of LY3023414 was the determined recommended phase 2 dose (RP2D). We report the antitumor activity and safety of LY3023414 monotherapy in patients with advanced mesothelioma.METHODS Patients enrolled had advanced malignant pleural or peritoneal mesothelioma with measurable disease, ECOG PS 0–1, were refractory or ineligible to receive standard therapies. Patients received LY3023414 200 mg BID. This dose expansion cohort is intended to evaluate preliminary antitumor activity of LY3023414 by overall response rate. Safety, tolerability and pharmacokinetics were assessed. Biomarkers associated with treatment response was an exploratory endpoint. RESULTS Forty-two patients received LY3023414 for a median duration of 11.2 weeks (range: 1.1–53.0). One patient had a confirmed partial response (PR) (ORR 2.4%). Three patients had an unconfirmed PR. Seventeen patients had stable disease (SD) (DCR 43%). Most common adverse events (AEs) included fatigue (43%), nausea (43%), decreased appetite (38%), vomiting (33%), and diarrhea (29%). AEs were mostly mild or moderate. Grade ≥ 3 AEs were reported for 21% of patients with fatigue as the most frequent event (10%). Alterations of BAP1 were identified in 11/19 patients as the most common molecular aberration, followed by SETD2 and NF2 alterations. No obvious pattern of genetic changes/mutations in single genes or pathways was associated with anti-tumor activity. CONCLUSION LY3023414 monotherapy (200 mg BID) demonstrated an acceptable and manageable safety profile with limited single-agent activity in patients with advanced mesothelioma. ClinicalTrials.gov identifier: NCT01655225; Date of registration: 19 July 2012.
Collapse
Affiliation(s)
- Marjorie G Zauderer
- Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Taiho Oncology Inc, Princeton, NJ, USA.
| | | | - Johanna Bendell
- Sarah Cannon Research Institute / Tennessee Oncology, Nashville, TN, USA
| | | | - Todd M Bauer
- Sarah Cannon Research Institute / Tennessee Oncology, Nashville, TN, USA
| | | | | | - Suhyun Kang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Volker Wacheck
- Taiho Oncology Inc, Princeton, NJ, USA.,Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
52
|
Abstract
Despite multiple diagnostic toolkits, the diagnosis of diffuse malignant pleural mesothelioma relies primarily on proper histologic assessment. The definitive diagnosis of diffuse malignant pleural mesothelioma is based on the pathologic assessment of tumor tissue, which can be obtained from core biopsy sampling, pleurectomy, or other more extensive resections, such as extrapleural pneumonectomy. Given its rarity and overlapping microscopic features with other conditions, the histologic diagnosis of diffuse malignant pleural mesothelioma is challenging. This review discusses the pathologic features and the differential diagnosis of diffuse malignant pleural mesothelioma, including select diagnostic pitfalls.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Fernandez-Cuesta L, Mangiante L, Alcala N, Foll M. Challenges in lung and thoracic pathology: molecular advances in the classification of pleural mesotheliomas. Virchows Arch 2021; 478:73-80. [PMID: 33411030 DOI: 10.1007/s00428-020-02980-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The diagnosis and classification of malignant pleural mesothelioma (MPM) is extremely challenging; obtaining an accurate histopathological diagnosis of the different types and subtypes requires expert assessment and suitable biopsies that are not always available, which can leave doctors uncertain about the patient's diagnosis, sometimes resulting in a delay in the start of treatment. In this review, we discuss recent major advances in the molecular characterisation of MPM and their implications for histological classification. We detail what is known of the molecular landscape of MPM at the genomic, transcriptomic, and epigenomic levels, describe the similarities and dissimilarities of the multiple molecular classifications that have been proposed, and provide an overview of the current state of knowledge regarding inter- and intra-tumour heterogeneity. We also highlight the current gaps in knowledge and how addressing them would benefit classification, as well as the patients in general.
Collapse
Affiliation(s)
| | - Lise Mangiante
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Nicolas Alcala
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Matthieu Foll
- Section of Genetics, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
54
|
Chia PL, Parakh S, Russell P, Gan HK, Asadi K, Gebski V, Murone C, Walkiewicz M, Liu Z, Thapa B, Scott FE, Scott AM, John T. Expression of EGFR and conformational forms of EGFR in malignant pleural mesothelioma and its impact on survival. Lung Cancer 2020; 153:35-41. [PMID: 33453471 DOI: 10.1016/j.lungcan.2020.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 01/24/2023]
Abstract
AIM Conformational forms of the epidermal growth factor receptor (EGFR) are pro-tumorigenic. The prevalence and impact of conformational forms of EGFR in malignant mesothelioma (MM) is unknown. We investigated expression of EGFR and conformational forms of EGFR by immunohistochemistry using EGFR-targeting monoclonal antibodies (mAb). In addition, EGFR gene amplification was investigated by fluorescent in-situ hybridization (FISH). Findings were correlated with survival. METHODS Patients treated between 1988 and 2014 were identified from the thoracic surgery database of the Austin Hospital, Melbourne, Australia. Tissue microarrays (TMAs) were constructed, subjected to wild type (wt) EGFR IHC staining and FISH analysis. Conformational and mutation forms of EGFR were detected by IHC using mAb806, and LMH-151 which detects EGFRVIII. `H-scores` were derived and EGFR expression correlated with survival by Kaplan-Meier and log rank analysis. RESULTS WtEGFR expression was seen in 93 % (299/321) of cases with overexpression (defined as an H-score ≥200) seen in more than half of cases (64 %). EGFR overexpression in MM was seen more commonly in the epithelioid subtype. EGFR overexpression was not associated with true EGFR amplification, although multiple copies were appreciated in samples with polysomy. EGFR expression did not correlate with survival. A conformational form of EGFR associated with EGFR dysregulation was found in 8.2 % of cases, and patients with these tumors had a trend towards a poorer outcome. No cases of the EGFRVIII mutation were identified. CONCLUSION MM consistently demonstrated high expression of EGFR, with a subset of tumors showing conformational EGFR forms consistent with EGFR dysregulation, but withoutEGFR amplification or EGFR VIII mutation. wtEGFR expression did not influence survival. The impact of EGFR conformation on survival warrants further investigation.
Collapse
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Sagun Parakh
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Prudence Russell
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Pathology, St Vincent's, Melbourne, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Khashayer Asadi
- Department of Pathology, Austin Health, Melbourne, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, Sydney, Australia
| | - Carmel Murone
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | | | - Zhanqi Liu
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bibhusal Thapa
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia
| | - Fiona E Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Olivia-Newton John Cancer Research Institute, Melbourne, Australia; Faculty of Medicine, University of Melbourne, Melbourne, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
55
|
Jean D, Delaunay T, Meiller C, Boisgerault N, Grard M, Caruso S, Blanquart C, Felley-Bosco E, Bennouna J, Tangy F, Grégoire M, Fonteneau JF. Reply to: Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. J Thorac Oncol 2020; 15:e113-e116. [PMID: 32593448 DOI: 10.1016/j.jtho.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.
| | - Tiphaine Delaunay
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Nicolas Boisgerault
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Marion Grard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Christophe Blanquart
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology Lungen- und Thoraxonkologie, Zentrum Zurich University Hospital, Zurich, Switzerland
| | - Jaafar Bennouna
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France; CHU de Nantes, Oncologie Thoracique et Digestive, Université de Nantes, Nantes, France
| | | | - Marc Grégoire
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Jean-François Fonteneau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| |
Collapse
|
56
|
Donahoe LL, de Perrot M. The Role of Extrapleural Pneumonectomy in Malignant Pleural Mesothelioma. Thorac Surg Clin 2020; 30:461-471. [DOI: 10.1016/j.thorsurg.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
57
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
58
|
P53-regulated miR-320a targets PDL1 and is downregulated in malignant mesothelioma. Cell Death Dis 2020; 11:748. [PMID: 32929059 PMCID: PMC7490273 DOI: 10.1038/s41419-020-02940-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.
Collapse
|
59
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Cakiroglu E, Senturk S. Genomics and Functional Genomics of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21176342. [PMID: 32882916 PMCID: PMC7504302 DOI: 10.3390/ijms21176342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the mesothelial cells lining the pleural surface of the chest wall and lung. The etiology of MPM is strongly associated with prior exposure to asbestos fibers, and the median survival rate of the diagnosed patients is approximately one year. Despite the latest advancements in surgical techniques and systemic therapies, currently available treatment modalities of MPM fail to provide long-term survival. The increasing incidence of MPM highlights the need for finding effective treatments. Targeted therapies offer personalized treatments in many cancers. However, targeted therapy in MPM is not recommended by clinical guidelines mainly because of poor target definition. A better understanding of the molecular and cellular mechanisms and the predictors of poor clinical outcomes of MPM is required to identify novel targets and develop precise and effective treatments. Recent advances in the genomics and functional genomics fields have provided groundbreaking insights into the genomic and molecular profiles of MPM and enabled the functional characterization of the genetic alterations. This review provides a comprehensive overview of the relevant literature and highlights the potential of state-of-the-art genomics and functional genomics research to facilitate the development of novel diagnostics and therapeutic modalities in MPM.
Collapse
Affiliation(s)
- Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| |
Collapse
|
61
|
Astoul P. Rethought histologic classification of pleural mesothelioma to better treat: go forward from looking back. Transl Lung Cancer Res 2020; 9:1613-1616. [PMID: 32953534 PMCID: PMC7481632 DOI: 10.21037/tlcr-20-592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology - Aix-Marseille University, Marseille, France
| |
Collapse
|
62
|
Pirker C, Bilecz A, Grusch M, Mohr T, Heidenreich B, Laszlo V, Stockhammer P, Lötsch-Gojo D, Gojo J, Gabler L, Spiegl-Kreinecker S, Dome B, Steindl A, Klikovits T, Hoda MA, Jakopovic M, Samarzija M, Mohorcic K, Kern I, Kiesel B, Brcic L, Oberndorfer F, Müllauer L, Klepetko W, Schmidt WM, Kumar R, Hegedus B, Berger W. Telomerase Reverse Transcriptase Promoter Mutations Identify a Genomically Defined and Highly Aggressive Human Pleural Mesothelioma Subgroup. Clin Cancer Res 2020; 26:3819-3830. [PMID: 32317288 DOI: 10.1158/1078-0432.ccr-19-3573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/13/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Human malignant pleural mesothelioma (MPM) is characterized by dismal prognosis. Consequently, dissection of molecular mechanisms driving malignancy is of key importance. Here we investigate whether activating mutations in the telomerase reverse transcriptase (TERT) gene promoter are present in MPM and associated with disease progression, cell immortalization, and genomic alteration patterns. EXPERIMENTAL DESIGN TERT promoters were sequenced in 182 MPM samples and compared with clinicopathologic characteristics. Surgical specimens from 45 patients with MPM were tested for in vitro immortalization. The respective MPM cell models (N = 22) were analyzed by array comparative genomic hybridization, gene expression profiling, exome sequencing as well as TRAP, telomere length, and luciferase promoter assays. RESULTS TERT promoter mutations were detected in 19 of 182 (10.4%) MPM cases and significantly associated with advanced disease and nonepithelioid histology. Mutations independently predicted shorter overall survival in both histologic MPM subtypes. Moreover, 9 of 9 (100%) mutated but only 13 of 36 (36.1%) wild-type samples formed immortalized cell lines. TERT promoter mutations were associated with enforced promoter activity and TERT mRNA expression, while neither telomerase activity nor telomere lengths were significantly altered. TERT promoter-mutated MPM cases exhibited distinctly reduced chromosomal alterations and specific mutation patterns. While BAP1 mutations/deletions were exclusive with TERT promoter mutations, homozygous deletions at the RBFOX1 and the GSTT1 loci were clearly enriched in mutated cases. CONCLUSIONS TERT promoter mutations independently predict a dismal course of disease in human MPM. The altered genomic aberration pattern indicates that TERT promoter mutations identify a novel, highly aggressive MPM subtype presumably based on a specific malignant transformation process.
Collapse
Affiliation(s)
- Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Agnes Bilecz
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul Stockhammer
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Daniela Lötsch-Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Ariane Steindl
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Katja Mohorcic
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Luka Brcic
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | | | - Leonhard Müllauer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Wolfgang M Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
63
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|