51
|
Mabry KM, Schroeder ME, Payne SZ, Anseth KS. Three-Dimensional High-Throughput Cell Encapsulation Platform to Study Changes in Cell-Matrix Interactions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21914-21922. [PMID: 27050338 DOI: 10.1021/acsami.5b11359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In their native extracellular microenvironment, cells respond to a complex array of biochemical and mechanical cues that can vary in both time and space. High-throughput methods that allow characterization of cell-laden matrices are valuable tools to screen through many combinations of variables, ultimately helping to evolve and test hypotheses related to cell-ECM signaling. Here, we developed a platform for high-throughput encapsulation of cells in peptide-functionalized poly(ethylene glycol) hydrogels. Hydrogels were synthesized using a thiol-ene, photoclick reaction, which allowed the cell matrix environment to be modified in real time. Matrix signals were dynamically altered by in situ tethering of RGDS (0-1.5 mM), a fibronectin-derived adhesive peptide that induced more elongation than RLD or IKVAV, and/or by increasing the matrix modulus (1 to 6 kPa). This method was demonstrated with aortic valvular interstitial cells (VICs), a population of cells responsible for the pathological fibrosis and matrix remodeling that leads to aortic stenosis. VIC response to cell-matrix interactions was characterized by quantifying cell morphology and the fraction of cells exhibiting α-smooth muscle actin (αSMA) stress fibers, a hallmark of the myofibroblast phenotype. VICs elongated in response to RGDS addition, with a dramatic change in morphology within 24 h. Myofibroblast activation was also dependent on RGDS addition, with VICs exhibiting high activation (16-24%) in 1 kPa gels with RGDS. Response to RGDS was path-dependent, with the amount of time exposed to the adhesive ligand important in determining VIC morphology and activation. Although VIC aspect ratios were dependent on the amount of time spent in a stiff vs soft gel, low levels of VIC activation (≤4%) were observed in any gels cultured in higher modulus (6 kPa vs 1 kPa) microenvironments.
Collapse
Affiliation(s)
- Kelly M Mabry
- Department of Chemical and Biological Engineering, ‡Department of Materials Science, and §Howard Hughes Medical Institute and the BioFrontiers Institute, University of Colorado at Boulder , Boulder, Colorado 80303, United States
| | - Megan E Schroeder
- Department of Chemical and Biological Engineering, ‡Department of Materials Science, and §Howard Hughes Medical Institute and the BioFrontiers Institute, University of Colorado at Boulder , Boulder, Colorado 80303, United States
| | - Samuel Z Payne
- Department of Chemical and Biological Engineering, ‡Department of Materials Science, and §Howard Hughes Medical Institute and the BioFrontiers Institute, University of Colorado at Boulder , Boulder, Colorado 80303, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, ‡Department of Materials Science, and §Howard Hughes Medical Institute and the BioFrontiers Institute, University of Colorado at Boulder , Boulder, Colorado 80303, United States
| |
Collapse
|
52
|
Adlington K, Nguyen NT, Eaves E, Yang J, Chang CY, Li J, Gower AL, Stimpson A, Anderson DG, Langer R, Davies MC, Hook AL, Williams P, Alexander MR, Irvine DJ. Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. Biomacromolecules 2016; 17:2830-8. [PMID: 27461341 DOI: 10.1021/acs.biomac.6b00615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the "hit" monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | |
Collapse
|
53
|
Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016; 4:3433-3442. [PMID: 27746914 PMCID: PMC5024673 DOI: 10.1039/c6tb00331a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - H Rashidi
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - K Cameron
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - D C Hay
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| |
Collapse
|
54
|
Zant E, Grijpma DW. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks. Biomacromolecules 2016; 17:1582-92. [DOI: 10.1021/acs.biomac.5b01721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erwin Zant
- MIRA
Institute for Biomedical Technology and Technical Medicine and Department
of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dirk W. Grijpma
- MIRA
Institute for Biomedical Technology and Technical Medicine and Department
of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- W.
J. Kolff Institute, Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| |
Collapse
|
55
|
Coyle R, Jia J, Mei Y. Polymer microarray technology for stem cell engineering. Acta Biomater 2016; 34:60-72. [PMID: 26497624 PMCID: PMC4811723 DOI: 10.1016/j.actbio.2015.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. STATEMENT OF SIGNIFICANCE Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering.
Collapse
Affiliation(s)
- Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
56
|
Hook AL, Scurr DJ. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C 6 derivative pendant groups. SURF INTERFACE ANAL 2016; 48:226-236. [PMID: 27134321 PMCID: PMC4832844 DOI: 10.1002/sia.5959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Andrew L Hook
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| | - David J Scurr
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
57
|
Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 2016; 18:39-52. [PMID: 26748755 PMCID: PMC5409508 DOI: 10.1016/j.stem.2015.12.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface.
Collapse
Affiliation(s)
- Spencer W Crowder
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Thomas Whittaker
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Peter Papathanasiou
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
58
|
Smith JGW, Celiz AD, Patel AK, Short RD, Alexander MR, Denning C. Scaling human pluripotent stem cell expansion and differentiation: are cell factories becoming a reality? Regen Med 2015; 10:925-30. [PMID: 26542310 DOI: 10.2217/rme.15.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Adam D Celiz
- Laboratory of Biophysics & Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert D Short
- Mawson Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Morgan R Alexander
- Laboratory of Biophysics & Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
59
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
60
|
Wang H, Luo X, Leighton J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. BIOCHEMISTRY INSIGHTS 2015; 8:15-21. [PMID: 26462244 PMCID: PMC4589090 DOI: 10.4137/bci.s30377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells with great therapeutic potentials. The in vitro differentiation of ESC was designed by recapitulating embryogenesis. Significant progress has been made to improve the in vitro differentiation protocols by toning soluble maintenance factors. However, more robust methods for lineage-specific differentiation and maturation are still under development. Considering the complexity of in vivo embryogenesis environment, extracellular matrix (ECM) cues should be considered besides growth factor cues. ECM proteins bind to cells and act as ligands of integrin receptors on cell surfaces. Here, we summarize the role of the ECM and integrins in the formation of three germ layer progenies. Various ECM–integrin interactions were found, facilitating differentiation toward definitive endoderm, hepatocyte-like cells, pancreatic beta cells, early mesodermal progenitors, cardiomyocytes, neuroectoderm lineages, and epidermal cells, such as keratinocytes and melanocytes. In the future, ECM combinations for the optimal ESC differentiation environment will require substantial study.
Collapse
Affiliation(s)
- Han Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xie Luo
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jake Leighton
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
61
|
Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015; 61:257-65. [PMID: 26005764 PMCID: PMC4780257 DOI: 10.1016/j.biomaterials.2015.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 µM in cardiomyocytes cultured on the co-polymer compared to 0.5 µM on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials.
Collapse
Affiliation(s)
- Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Adam D Celiz
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Divya Rajamohan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|