51
|
Li N, Wei P, Yu L, Ji J, Zhao J, Gao C, Li Y, Yin Y. Dynamically Switchable Multicolor Electrochromic Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804974. [PMID: 30667601 DOI: 10.1002/smll.201804974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The dynamic optical switch of plasmonic nanostructures is highly desirable due to its promising applications in many smart optical devices. To address the challenges in the reversibility and transmittance contrast of the plasmonic electrochromic devices, here, a strategy is reported to fabricate color switchable electrochromic films through electro-responsive dissolution and deposition of Ag on predefined hollow shells of Au/Ag alloy. Using the hollow Au/Ag alloy nanostructures as stable seeds for site-specific deposition of Ag, elimination of the random self-nucleation events is enabled and optimal reversibility in color switching is allowed. The hollow structure further enables excellent transmittance contrast between the bleached and colored states. With its additional advantages such as the convenience for preparation, high sensitivity, and field-tunable optical property, it is believed that this new electrochromic film represents a unique platform for designing novel smart optical devices.
Collapse
Affiliation(s)
- Na Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Pingping Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Linan Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junyi Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jiupeng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
52
|
Jeong HH, Choi E, Ellis E, Lee TC. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B 2019. [DOI: 10.1039/c9tb00557a] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hybrid gold nanoparticles for biomedical applications are reviewed in the context of a novel classification framework and illustrated by recent examples.
Collapse
Affiliation(s)
- Hyeon-Ho Jeong
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
- Cavendish Laboratory
- University of Cambridge
| | - Eunjin Choi
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
| | - Elizabeth Ellis
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Research and Engineering (IMRE)
| | - Tung-Chun Lee
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Discovery
| |
Collapse
|
53
|
Liu B, Lu X, Qiao Z, Song L, Cheng Q, Zhang J, Zhang A, Huang Y, Chen T. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13047-13056. [PMID: 30300548 DOI: 10.1021/acs.langmuir.8b02989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) gold nanoparticle (Au NP) monolayer film possesses a lot of fascinating peculiarities, and has shown promising applications in photoelectrical devices, catalysis, spectroscopy, sensors, and anticounterfeiting. Because of the localized surface plasmon resonance (LSPR) property predetermined by the natural structure of metal nanoparticles, it is usually difficult to realize the reversible LSPR transition of 2D film. In this work, we report on the fabrication of a large-area free-standing Au NP monolayer film with dual-responsive switchable plasmonic property using a pH- or thermal-responsive dendronized copolymer as a stimuli-sensitive linker. In this system, an oligoethylene-glycol-based (OEG-based) dendronized copolymer (named PG1A) with pH or temperature sensitivity was first modified onto the surface of a Au NP. Then, polyethylene glycol dibenzyl aldehyde (PEG-DA) was introduced to interact with the amino moieties from PG1A before the process of oil-water interfacial self-assembly of NPs, resulting in an elastic, robust, pH- or temperature-sensitive interpenetrating network among Au NPs in monolayer films. In addition, the film could exhibit reversibly plasmonic shifts of about 77 nm and inherent color changes through varying temperature or pH. The obtained free-standing monolayer film also shows an excellent transferable property, which can be easily transferred onto substrates such as plastic molds, PDMS, copper grids, and silicon wafers. In virtue of these peculiarities of the free-standing property, special plasmonic signal, and homologous macroscopic color, the transferred film was primely applied to an anticounterfeiting security label with clear color change at the designed spots, providing a new avenue to plasmonic nanodevices with various applications.
Collapse
Affiliation(s)
- Baoqing Liu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Xuefei Lu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Ze Qiao
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Liping Song
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qian Cheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Jiawei Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Youju Huang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Tao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
54
|
Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 2018; 119:664-699. [DOI: 10.1021/acs.chemrev.8b00341] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hyunho Kang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kyle C. Bantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
55
|
Zuo Z, Wen Y, Zhang S. Interface-induced nucleation and growth: a new route for fabricating ordered silver nanohole arrays. NANOSCALE 2018; 10:14039-14046. [PMID: 29995028 DOI: 10.1039/c8nr00639c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal nanohole arrays exhibit fascinating optical properties originating from the excitation of surface plasmons, and have been demonstrated to be of great potential in many applications. However, the fabrication of large-area ordered metal nanohole arrays with a tunable optical response is still highly desired. Herein, a novel interface-induced vapor phase growth method is developed to achieve hexagonally arranged silver nanohole arrays with a centimeter-scale area, in which an interface is introduced via an ordered template and used to induce Ag selective nucleation and growth. The adhesive force of the template with the substrate is found to be crucial in the determination of the nucleation sites and the resulting nanostructures. The plasmonic responses of the nanohole arrays are regulated by controlling their structural features, which are realized through simply changing the template parameters and the Ag deposition thickness. The Ag nanohole array exhibits more than 20-fold Raman enhancement compared to a rough Ag film when its localized surface plasmon resonance (LSPR) is tuned to an optimized range, which indicates its potential in biochemical sensing applications. The present method for the preparation of large-area metal nanohole arrays may open up a new avenue to fabricate novel metal nanostructures and develop high-performance plasmonic devices.
Collapse
Affiliation(s)
- Zewen Zuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China. and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yibing Wen
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China.
| | - Sheng Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
56
|
Wang JZ, Guo ZQ, Zhou JP, Lei YX. Plasmon-enhanced photocatalytic activity of Na 0.9Mg 0.45Ti 3.55O 8 loaded with noble metals directly observed with scanning Kelvin probe microscopy. NANOTECHNOLOGY 2018; 29:305709. [PMID: 29741495 DOI: 10.1088/1361-6528/aac34a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The noble metals Au, Ag and Pt were loaded onto Na0.9Mg0.45Ti3.55O8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.
Collapse
Affiliation(s)
- Jing-Zhou Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China. Ordos Institute of Technology, Ordos 017000, People's Republic of China
| | | | | | | |
Collapse
|
57
|
Shao L, Zhuo X, Wang J. Advanced Plasmonic Materials for Dynamic Color Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704338. [PMID: 29125645 DOI: 10.1002/adma.201704338] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/02/2017] [Indexed: 05/12/2023]
Abstract
Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display.
Collapse
Affiliation(s)
- Lei Shao
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
58
|
Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, Man T, Qu X, Li L, Zhang W, Pei H. Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706887. [PMID: 29388269 DOI: 10.1002/adma.201706887] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Conducting hydrogels provide great potential for creating designer shape-morphing architectures for biomedical applications owing to their unique solid-liquid interface and ease of processability. Here, a novel nanofibrous hydrogel with significant enzyme-like activity that can be used as "ink" to print flexible electrochemical devices is developed. The nanofibrous hydrogel is self-assembled from guanosine (G) and KB(OH)4 with simultaneous incorporation of hemin into the G-quartet scaffold, giving rise to significant enzyme-like activity. The rapid switching between the sol and gel states responsive to shear stress enables free-form fabrication of different patterns. Furthermore, the replication of the G-quartet wires into a conductive matrix by in situ catalytic deposition of polyaniline on nanofibers is demonstrated, which can be directly printed into a flexible electrochemical electrode. By loading glucose oxidase into this novel hydrogel, a flexible glucose biosensor is developed. This study sheds new light on developing artificial enzymes with new functionalities and on fabrication of flexible bioelectronics.
Collapse
Affiliation(s)
- Ruibo Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Shaopeng Wang
- Division of Physical Biology and Bioimaging Center College of Life Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademic University, FI-20520, Turku, Finland
| | - Feng Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Weijia Zhang
- Institutes of Biomedical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
59
|
Ou W, Zou Y, Wang K, Gong W, Pei R, Chen L, Pan Z, Fu D, Huang X, Zhao Y, Lu W, Jiang J. Active Manipulation of NIR Plasmonics: the Case of Cu 2-xSe through Electrochemistry. J Phys Chem Lett 2018; 9:274-280. [PMID: 29293337 DOI: 10.1021/acs.jpclett.7b03305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Active control of nanocrystal optical and electrical properties is crucial for many of their applications. By electrochemical (de)lithiation of Cu2-xSe, a highly doped semiconductor, dynamic and reversible manipulation of its NIR plasmonics has been achieved. Spectroelectrochemistry results show that NIR plasmon red-shifted and reduced in intensity during lithiation, which can be reversed with perfect on-off switching over 100 cycles. Electrochemical impedance spectroscopy reveals that a Faradaic redox process during Cu2-xSe (de)lithiation is responsible for the optical modulation, rather than simple capacitive charging. XPS analysis identifies a reversible change in the redox state of selenide anion but not copper cation, consistent with DFT calculations. Our findings open up new possibilities for dynamical manipulation of vacancy-induced surface plasmon resonances and have important implications for their use in NIR optical switching and functional circuits.
Collapse
Affiliation(s)
- Weihui Ou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yu Zou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Kewei Wang
- Nano-Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Wenbin Gong
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Liwei Chen
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Zhenghui Pan
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dongdong Fu
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xin Huang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yanfei Zhao
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Weibang Lu
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jiang Jiang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
60
|
Affiliation(s)
- Nina Jiang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 852, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 852, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 852, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
61
|
Tang P, Jiang X, Wang Y, Chen H, Zhang YS, Gao P, Wang H, Li X, Zhou J. Plasmonic Nanoprobe of (Gold Triangular Nanoprism Core)/(Polyaniline Shell) for Real-Time Three-Dimensional pH Imaging of Anterior Chamber. Anal Chem 2017; 89:9758-9766. [PMID: 28809545 DOI: 10.1021/acs.analchem.7b01623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) molecular imaging enables the study of biological processes in both living and nonviable systems at the molecular level and has a high potential on early diagnosis. In conjunction with specific molecular probes, optical coherent tomography (OCT) is a promising imaging modality to provide 3D molecular features at the tissue level. In this study, we introduced (gold triangular nanoprism core)/(polyaniline shell) nanoparticles (GTNPs@PANI) as an OCT contrast agent and pH-responsive nanoprobe for 3D imaging of pH distribution. These core/shell nanoparticles possessed significantly different extinction and scattering properties in acidic and basic microenvironments. The switch of the optical features of the nanoparticles upon pH change was reversible, and the response time was less than 1.0 s. The nanoprobe successfully indicated the acid regions of a mimic tumor from the basic region in a gelatin-based phantom under OCT imaging. As a demonstration of practical applications, real-time 3D OCT imaging of pH and lactic acid in the anterior chamber of a fish eye was realized by GTNPs@PANI nanoparticles. Using GTNPs@PANI nanoparticles as the contrast probes for OCT imaging, noninvasive and real-time molecular imaging in both living and nonviable systems at the microscale can be achieved.
Collapse
Affiliation(s)
| | | | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|