51
|
He P, Ma W, Xu J, Wei J, Liu X, Zuo P, Cui ZK, Zhuang Q. Induced Crystallization-Controllable Nanoarchitectonics of 3D-Ordered Hierarchical Macroporous Co@N-Doped Carbon Frameworks for Enhanced Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204649. [PMID: 36354192 DOI: 10.1002/smll.202204649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The construction of ordered hierarchical porous structures in metal-organic frameworks (MOFs) and their derivatives is highly promising to meet the low-density and high-performance demands of microwave absorption materials. However, traditional methods based on sacrificial templates or corrosive agents inevitably suffer from the collapse of the microporous framework and the accumulation of nanoparticles during the carbonization transformation, resulting in the deteriorating impedance match, which greatly limits the incident and attenuation of microwaves. Herein, an induced crystallization and controllable nanoarchitectonics strategy is employed to replace traditional growing-etching methods and successfully synthesize carbonized 3D-ordered macroporous Co@N-doped carbon (3DOM Co@NDC) based on the 3D-ordered template. The obtained 3D-ordered macroporous structure ensures the stable growth of hybrid carbon frameworks and CoC nanoparticles without collapse, preserves abundant interfaces for both the incident and attenuation performance, so as to significantly improve the impedance matching and absorption properties compared to conventional MOFs derivatives. The minimum reflection loss of 3DOM Co@NDC is -57.36 dB at the thickness of 1.9 mm, and the effective bandwidth is 7.36 GHz at 1.6 mm. Moreover, the innovative strategy to prepare 3D-ordered hierarchical macroporous structures opens up a new avenue for advanced MOFs-derived absorbers with excellent performance.
Collapse
Affiliation(s)
- Peng He
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenjun Ma
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Xu
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Wei
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyun Liu
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peiyuan Zuo
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qixin Zhuang
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
52
|
Xing J, Wang X, Zhang Y, Fu X. Preparation of N
x
−Fe/Fe
3
C/KVO
3
composites by heat treatment for high‐performance electrocatalytic oxygen evolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202203656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junjie Xing
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiaohan Wang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Yu Zhang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiuli Fu
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| |
Collapse
|
53
|
Lu Z, Huang Y, Shao L, Cao M, Hu S, Liu C, Wang X, Ren B. In-situ Raman spectroscopic insight into charge delocalization-improved electrical conductivity in metal-cyanide frameworks. NANOSCALE 2022; 14:18184-18191. [PMID: 36454109 DOI: 10.1039/d2nr05285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Porous crystalline materials (PCMs) have attracted widespread attention due to their high porosity and chemical tunability. To solve the problem of the low electrical conductivity of traditional PCMs, a guest-promoted approach has been developed to impart electrical conductivity, whereas microscopic understanding of this process from experiments is largely lacking. Here we use in-situ electrochemical surface-enhanced Raman spectroscopy (EC-SERS) to investigate the microscopic mechanism of the enhanced electrical conductivity in metal-cyanide frameworks, in Prussian Blue (PB), induced by alkali metal ions. The EC-SERS result demonstrates that the charge is localized around the iron atom in PB and becomes delocalized on the CN bond after insertion of the alkali metal ions, verified by density functional theory (DFT) calculations. The enhanced electrical conductivity of PCMs promoted by the guest via the through-bond mechanism instead of the through-space hopping mechanism in pristine PB, offers a new approach to develop conductive PCMs.
Collapse
Affiliation(s)
- Zhixuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yajun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Liting Shao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Maofeng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
54
|
Huang Q, Zhao P, Wang W, Lv L, Zhang W, Pan B. In Situ Fabrication of Highly Dispersed Co-Fe-Doped-δ-MnO 2 Catalyst by a Facile Redox-Driving MOFs-Derived Method for Low-Temperature Oxidation of Toluene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53872-53883. [PMID: 36426993 DOI: 10.1021/acsami.2c16620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cost-efficient and durable manganese-based catalysts are in great demand for the catalytic elimination of volatile organic compounds (VOCs), which are dominated not only by the nanostructures but also by the oxygen vacancies and Mn-O bond in the catalysts. Herein, a series of nanostructured Co-Fe-doped-δ-MnO2 catalysts (Co-Fe-δ-MnO2) with high dispersion were in situ fabricated by employing metal-organic-frameworks (MOFs) as reducing agents, dopants, and templates all at the same time. The as-obtained Co-Fe-δ-MnO2-20% catalyst exhibited robust durability and high catalytic activity (225 °C) for toluene combustion even in the presence of 5 vol % water vapor, which is 50 °C lower than that of pristine δ-MnO2. Various characterizations revealed that the homogeneously dispersed codoping of Co and Fe ions into δ-MnO2 promotes the generation of oxygen vacancies and weakens the strength of the Mn-O bond, thus increasing the amount of adsorbed oxygen (Oads) and improving the mobility of lattice oxygen (Olatt). Meanwhile, due to successfully inheriting the framework structures of MOFs, the obtained catalyst exhibited a high surface area and three-dimensional mesoporous structure, which contributes to diffusion and increases the number of active sites. Moreover, in situ DRIFTS results confirmed that the toluene degradation mechanism on the Co-Fe-δ-MnO2-20% follows the MVK mechanism and revealed that more Oads and high-mobility Olatt induced by this novel method contribute to accumulating and mineralizing key intermediates (benzoate) and thus promote toluene oxidation. In conclusion, this work stimulates the opportunities to develop Co-Fe-δ-MnO2 as a class of nonprecious-metal-based catalysts for controlling VOC emissions.
Collapse
Affiliation(s)
- Qianlin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Puzhen Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
55
|
Cho C, Oh H, Lee JS, Kang LJ, Oh EJ, Hwang Y, Kim SJ, Bae YS, Kim EJ, Kang HC, Choi WI, Yang S. WITHDRAWN: Prussian blue nanozymes coated with pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials 2022; 291:121851. [PMID: 36435562 DOI: 10.1016/j.biomaterials.2022.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.
Collapse
Affiliation(s)
- Chanmi Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Li-Jung Kang
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun-Jeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Ho Chul Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
56
|
Gao Y, Xia L, Yin J, Gan Z, Feng X, Meng G, Cheng Y, Xu X. Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn 2+ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. SMALL METHODS 2022; 6:e2200999. [PMID: 36284472 DOI: 10.1002/smtd.202200999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Compared with lithium-ion batteries (LIBs), aqueous zinc batteries (AZIBs) have received extensive attention due to their safety and cost advantages in recent years. The cathode determines the electrochemical performance of AZIBs to a large extent. Vanadium-based materials exhibit excellent capacity when used as AZIB cathodes. However, unexpected structural stress is inevitably induced during cycling and high current densities, which can gradually lead to structural deterioration and capacity decay. In fact, the stress/strain distribution in nanomaterials is crucial for electrochemical performance. In this work, the optimized stress distribution of the hierarchical hollow structure is verified by the finite element simulation of COMSOL software firstly. Guided by this model, a simple solvothermal method to synthesize hierarchical hollow vanadium oxide nanospheres (VO-NSs), consisting of ≈10 nm ultrathin nanosheets and ≈500 nm hollow inner cavities, is employed. And a highly disordered structure is introduced to the VO-NSs by in situ electrochemical oxidation, which can also weaken the structural stress during Zn2+ insertion and extraction. Benefiting from this unique structure, VO-NSs exhibit high-rate and stable Zn2+ storage capability. The strategy of engineering-driven material design provides new insights into the development of AZIB cathodes.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Linghan Xia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Junyi Yin
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Zihan Gan
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xiang Feng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Guodong Meng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
57
|
Global-Local CNTs Conductive Network Couple with Co-Based Polyhedral Promotes the Electrocatalytic Reduction of Oxygen. Catalysts 2022. [DOI: 10.3390/catal12121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional (3D) nanoreactor of global-local CNTs conductive network coupled with bimetallic MOFs-derived Co@N-C nanopolyhedra (denoted as gl-CNTs/Co@N-C) promotes the electrocatalytic reduction of oxygen owing to the improved mass transfer ability and stability. Here, the 1D/3D gl-CNTs/Co@N-C nanostructures with enhanced electrocatalytic properties were synthesized in one step by the direct thermolysis of Zn/Co-ZIF/MWCNTs precursor. Based on systematical optimization of the composition and structure, gl-CNTs/Co@N-C carbonaceous porous hybrids containing uniform Co nanoparticles (NPs) can not only effectively enable the conductivity but also expose more active sites. Consequently, the optimal gl-CNTs/Co@N-C nanostructure showed a significantly enhanced catalytic activity for the reduction of oxygen, the half-wave potential (E1/2) and diffusion-limited current density are 0.86 V (vs. RHE) and 5.34 mA cm−2, respectively. Moreover, this catalyst also showed long-term durability and methanol tolerance property, further highlighting the structure superiority of a precisely controllable nanoreactor.
Collapse
|
58
|
Fan C, Zhang X, Guo F, Xing Z, Wang J, Lin W, Tan J, Huang G, Zong Z. Design of five two-dimensional Co-metal-organic frameworks for oxygen evolution reaction and dye degradation properties. Front Chem 2022; 10:1044313. [DOI: 10.3389/fchem.2022.1044313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively investigated as oxygen evolution reaction (OER) materials because of their numerous advantages such as large specific surface areas, ultrathin thicknesses, well-defined active metal centers, and adjustable pore structures. Five Co-metal-organic frameworks, namely, [Co(L) (4.4′-bbidpe)H2O]n [YMUN 1 (YMUN for Youjiang Medical University for Nationalities)], {[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-bbibp)]·DMAC}n (YMUN 2), [Co(L) (3,5-bip)]n (YMUN 3), [Co(L) (1,4-bimb)]n (YMUN 4), and [Co(L) (4.4′-bidpe)H2O]n (YMUN 5), were designed and fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H2L) and rigid/flexible imidazole ligands. Their frameworks consist of two-dimensional lamellar networks with a number of differences in their details. Their frameworks are discussed and compared, and their oxygen evolution reaction electrochemical activities and photocatalysis dye degradation properties are investigated.
Collapse
|
59
|
Gu LL, Gao J, Qiu SY, Wang KX, Wang C, Sun KN, Zhu XD. Prussian-blue-derived FeS2 spheres with abundant pore canals for efficient hydrogen evolution reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Zhang X, Alvarado-Ávila MI, Liu Y, Yu D, Ye F, Dutta J. Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Bornamehr B, Presser V, Husmann S. Mixed Cu-Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode. ACS OMEGA 2022; 7:38674-38685. [PMID: 36340172 PMCID: PMC9631889 DOI: 10.1021/acsomega.2c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Batteries employing transition-metal sulfides enable high-charge storage capacities, but polysulfide shuttling and volume expansion cause structural disintegration and early capacity fading. The design of heterostructures combining metal sulfides and carbon with an optimized morphology can effectively address these issues. Our work introduces dopamine-coated copper Prussian blue (CuPB) analogue as a template to prepare nanostructured mixed copper-iron sulfide electrodes. The material was prepared by coprecipitation of CuPB with in situ dopamine polymerization, followed by thermal sulfidation. Dopamine controls the particle size and favors K-rich CuPB due to its polymerization mechanism. While the presence of the coating prevents particle agglomeration during thermal sulfidation, its thickness demonstrates a key effect on the electrochemical performance of the derived sulfides. After a two-step activation process during cycling, the C-coated KCuFeS2 electrodes showed capacities up to 800 mAh/g at 10 mA/g with nearly 100% capacity recovery after rate handling and a capacity of 380 mAh/g at 250 mA/g after 500 cycles.
Collapse
Affiliation(s)
- Behnoosh Bornamehr
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department
of Materials Science & Engineering, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
| | - Volker Presser
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department
of Materials Science & Engineering, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
- Saarene—Saarland
Center for Energy Materials and Sustainability, Campus C4 2, 66123Saarbrücken, Germany
| | - Samantha Husmann
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
| |
Collapse
|
63
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
64
|
Wei Y, Zheng M, Zhu W, Zhang Y, Hu W, Pang H. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction. J Colloid Interface Sci 2022; 631:8-16. [DOI: 10.1016/j.jcis.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
65
|
Ma Y, Yu Y, Wang J, Lipton J, Tan HN, Zheng L, Yang T, Liu Z, Loh XJ, Pennycook SJ, Shen L, Kou Z, Taylor AD, Wang J. Localizing Tungsten Single Atoms around Tungsten Nitride Nanoparticles for Efficient Oxygen Reduction Electrocatalysis in Metal-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105192. [PMID: 35730766 PMCID: PMC9534944 DOI: 10.1002/advs.202105192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Combining isolated atomic active sites with those in nanoparticles for synergizing complex multistep catalysis is being actively pursued in the design of new electrocatalyst systems. However, these novel systems have been rarely studied due to the challenges with synthesis and analysis. Herein, a synergistically catalytic performance is demonstrated with a 0.89 V (vs reversible hydrogen electrode) onset potential in the four-step oxygen reduction reaction (ORR) by localizing tungsten single atoms around tungsten nitride nanoparticles confined into nitrogen-doped carbon (W SAs/WNNC). Through density functional theory calculations, it is shown that each of the active centers in the synergistic entity feature a specific potential-determining step in their respective reaction pathway that can be merged to optimize the intermediate steps involving scaling relations on individual active centers. Impressively, the W SAs/WNNC as the air cathode in all-solid-state Zn-air and Al-air batteries demonstrate competitive durability and reversibility, despite the acknowledged low activity of W-based catalyst toward the ORR.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
- Department of Chemical and Biomolecular EngineeringTandon School of EngineeringNew York UniversityBrooklynNY11201USA
| | - Yong Yu
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
| | - Junhui Wang
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jason Lipton
- Department of Chemical and Biomolecular EngineeringTandon School of EngineeringNew York UniversityBrooklynNY11201USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
| | - Hui Ning Tan
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Tong Yang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomHong Kong999077P. R. China
| | - Zhaolin Liu
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A* STAR)2 Fusionopolis WayInnovis138634Singapore
| | - Xian Jun Loh
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A* STAR)2 Fusionopolis WayInnovis138634Singapore
| | - Stephen J. Pennycook
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
| | - Lei Shen
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - André D. Taylor
- Department of Chemical and Biomolecular EngineeringTandon School of EngineeringNew York UniversityBrooklynNY11201USA
| | - John Wang
- Department of Materials Science and EngineeringFaculty of EngineeringNational University of SingaporeSingapore117574Singapore
| |
Collapse
|
66
|
Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
67
|
Zhang Y, Wang H, Gao K, Huang D, Hou L, Yang Y. Efficient removal of Cs(I) from water using a novel Prussian blue and graphene oxide modified PVDF membrane: Preparation, characterization, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156530. [PMID: 35679934 DOI: 10.1016/j.scitotenv.2022.156530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was fabricated via phase inversion for trace radionuclide cesium (137Cs) removal from water. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze chemical composition and morphology of the membrane, and the properties in terms of water flux and Cs+ removal were studied under different PB dosage, pH and co-existing ions conditions. It was observed that the addition of GO improved the dispersion of PB, and the PVDF-PB-GO membrane presented the highest Cs+ removal efficiency (99.6 %) and water flux (1638.2 LMH/bar) at pH = 7 with 0.1 wt% GO and 5 wt% PB. In addition, Langmuir and pseudo-second-order kinetics models fitted well for Cs+ adsorption by the PVDF-PB-GO membrane, illustrating that the Cs+ was removed via chemical adsorption dominated by Fe(CN)64- defect sites of PB and the oxygen groups of GO. Furthermore, the membrane showed a significant selectivity and reusability towards trace radioactive cesium, even in the presence of excess co-existing ions and in real water, which strongly verified that the modified membrane had application potential.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Huixian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Kexuan Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Doudou Huang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Li''an Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China; Xi'an High-Tech Institute, Xi'an 710025, PR China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| |
Collapse
|
68
|
Zhang X, Toledo-Carrillo EA, Yu D, Dutta J. Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40371-40381. [PMID: 36006982 PMCID: PMC9460436 DOI: 10.1021/acsami.2c08192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multiple and hierarchical manganese (Mn)-based Prussian blue analogues obtained on different substrates are successfully prepared using a universal, facile, and simple strategy. Different functional groups and surface charge distributions on carbon cloth have significant effects on the morphologies and nanostructures of Mn-based Prussian blue analogues, thereby indirectly affecting their physicochemical properties. Combined with the advantages of the modified carbon cloth and the nanostructured Mn-based Prussian blue analogues, the composite with negative surface charge formed by the electronegativity differences shows good electrochemical properties, leading to improvement in charge efficiency during capacitive desalination. An asymmetric device fabricated with Mn-based Prussian blue analogue-modified F-doped carbon cloth as the cathode and acid-treated carbon cloth as the anode presents the highest salt adsorption capacity of 10.92 mg g-1 with a charge efficiency of 82.28% and the lowest energy consumption of 0.45 kW h m-3 at 1 V due to the main influencing factor from the negative surface charge leading to co-ion expulsion boosting the capacitive deionization performance. We provide insights for further exploration of the relationship between second-phase materials and carbon cloth, while offering some guidance for the design and preparation of electrodes for desalination and beyond.
Collapse
|
69
|
Zhao Y, Guo Y, Lu XF, Luan D, Gu X, Lou XWD. Exposing Single Ni Atoms in Hollow S/N-Doped Carbon Macroporous Fibers for Highly Efficient Electrochemical Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203442. [PMID: 35797421 DOI: 10.1002/adma.202203442] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The development of efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) is highly desirable for clean energy and fuel conversion. Herein, the facile preparation of Ni single atoms embedded hollow S/N-doped carbon macroporous fibers (Ni SAs@S/N-CMF) as efficient catalysts for OER through pyrolysis of designed CdS-NiSx /polyacrylonitrile composite fibers is reported. Specifically, CdS provides the sulfur source for the doping of polyacrylonitrile-derived carbon matrix and simultaneously creates the hollow macroporous structure, while NiSx is first reduced to nanoparticles and finally evolves into single Ni atoms through the atom migration-trapping strategy. Benefiting from the abundantly exposed single Ni atoms and hollow macroporous structure, the resultant Ni SAs@S/N-CMF electrocatalysts deliver outstanding activity and stability for OER. Specifically, it needs an overpotential of 285 mV to achieve the benchmark current density of 10 mA cm-2 with a small Tafel slope of 50.8 mV dec-1 .
Collapse
Affiliation(s)
- Yafei Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xue Feng Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
70
|
Li Y, Zhang Q, Song Z, Shu K, Yang Z, Hu H, Lu Y, Tang X, Zhou X. Manipulating the morphology and the electronic structures of nickel-cobalt selenides@N-doped carbon for aqueous alkaline batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Enhanced Electrochemical Water Oxidation Activity by Structural Engineered Prussian Blue Analogue/rGO Heterostructure. Molecules 2022; 27:molecules27175472. [PMID: 36080240 PMCID: PMC9458107 DOI: 10.3390/molecules27175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Prussian blue analogue (PBA), with a three-dimensional open skeleton and abundant unsaturated surface coordination atoms, attracts extensive research interest in electrochemical energy-related fields due to facile preparation, low cost, and adjustable components. However, it remains a challenge to directly employ PBA as an electrocatalyst for water splitting owing to their poor charge transport ability and electrochemical stability. Herein, the PBA/rGO heterostructure is constructed based on structural engineering. Graphene not only improves the charge transfer efficiency of the compound material but also provides confined growth sites for PBA. Furthermore, the charge transfer interaction between the heterostructure interfaces facilitates the electrocatalytic oxygen evolution reaction of the composite, which is confirmed by the results of the electrochemical measurements. The overpotential of the PBA/rGO material is only 331.5 mV at a current density of 30 mA cm−2 in 1.0 M KOH electrolyte with a small Tafel slope of 57.9 mV dec−1, and the compound material exhibits high durability lasting for 40 h.
Collapse
|
72
|
Liu J, Wang L, Huang Z, Fan F, Jiao L, Li F. Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
73
|
Chen J, Li Y, Ye H, Zhu P, Fu XZ, Sun R. A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide. Dalton Trans 2022; 51:13451-13461. [PMID: 35994011 DOI: 10.1039/d2dt02013k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prussian blue analogues (PBAs) as a class of metal-organic frameworks demonstrate a promising platform to develop cost-effective high-performance electrocatalysts. However, the construction of delicate micro/nanostructures and controllable doping are still a challenging task for the fabrication of highly efficient copper-based electrocatalysts. Herein, we report a facile synthesis of copper foam supported Cu3P@Co-Cu3P (CH@PBA-P/CF) sub-microwire arrays as an active electrocatalyst for alkaline water splitting. The Co-Cu3P shell derived from the Cu3[Co(CN)6]2 PBA serves as the source of active sites. Co doping and construction of core-shell structures endow the CH@PBA-P/CF electrocatalyst with abundant catalytic sites, enhanced intrinsic activity, and low charge transport resistance. The catalytic electrode integrated with 3D copper foam and 1D sub-microwire arrays is highly conductive and stable, which promotes the charge transport and improves the structural stability. As a consequence, CH@PBA-P/CF shows impressive catalytic performances toward the HER and OER in terms of low overpotentials of 231 and 312 mV at a current density of 50 mA cm-2 in 1 M KOH, respectively. Notably, the water electrolyzer using the CH@PBA-P/CF electrode exhibits better water splitting performance than the one using noble metal-based couples.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunming Li
- School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China.
| | - Huangqing Ye
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Rong Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
74
|
Peng Q, Zhuang X, Wei L, Shi L, Isimjan TT, Hou R, Yang X. Niobium-Incorporated CoSe 2 Nanothorns with Electronic Structural Alterations for Efficient Alkaline Oxygen Evolution Reaction at High Current Density. CHEMSUSCHEM 2022; 15:e202200827. [PMID: 35704336 DOI: 10.1002/cssc.202200827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Developing cost-effective, highly active, and robust electrocatalysts for oxygen evolution reaction (OER) at high current density is a critical challenge in water electrolysis since the sluggish kinetics of the OER significantly impedes the energy conversion efficiency of overall water splitting. Here, a 1D nanothorn-like Nb-CoSe2 /CC (CC=carbon cloth) structure was developed as an efficient OER catalyst. The optimized Nb-CoSe2 /CC catalyst exhibited remarkable OER performance with the low overpotentials of 220 mV at 10 mA cm-2 and 297 mV 200 mA cm-2 and a small Tafel slope (54.1 mV dec-1 ) in 1.0 m KOH electrolyte. More importantly, the Nb-CoSe2 /CC electrode displayed superior stability after 60 h of continuous operation. In addition, cell voltages of 1.52 and 1.93 V were required to achieve 10 and 500 mA cm-2 for the electrolyzer made of Nb-CoSe2 /CC (anode) and the Pt/C (cathode). Density functional theory (DFT) calculations combined with experimental results revealed that incorporating niobium into the CoSe2 could optimize the adsorption free energy of the reaction intermediates and enhance the conductivity to improve the catalytic activity further. Additionally, the super-hydrophilicity of Nb-CoSe2 /CC resulting from the surface defects increased the surface wettability and facilitated reaction kinetics. These results indicate that Nb-CoSe2 /CC intrinsically enhances OER performance and possesses potential practical water electrolysis applications.
Collapse
Affiliation(s)
- Qimin Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoling Zhuang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Longgui Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ruobing Hou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
75
|
Li Y, Chen J, Lu M, Peng Y, Tan Y, Zhang X, Lin X, Ma G, Reddy RCK, Xu Z, Wu Y. Metal Organic Framework‐Derived Ultrafine ZnO/Co3ZnC Particles Embedded in N‐Doped Carbon Concave‐Dodecahedron Towards Enhanced Lithium Storage. ChemElectroChem 2022. [DOI: 10.1002/celc.202200775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yilin Li
- South China Normal University chemistry ChinaGuangzhou 510631 Guangzhou CHINA
| | - Jiahao Chen
- South China Normal University chemistry CHINA
| | - Man Lu
- South China Normal University chemistry CHINA
| | - Yanhua Peng
- South China Normal University chemistry CHINA
| | - Yuzhen Tan
- South China Normal University chemistry CHINA
| | | | - Xiaoming Lin
- South China Normal University School of chemistry Guangzhou High Education Mega Center Panyu District, Guangzhou 510006 Guangzhou CHINA
| | - Guozheng Ma
- South China Normal University chemistry CHINA
| | | | - Zhiguang Xu
- South China Normal University chemistry CHINA
| | - Yongbo Wu
- South China Normal University Physics and Telecommunication Engineering CHINA
| |
Collapse
|
76
|
Xu CM, Peng J, Liu XH, Lai WH, He XX, Yang Z, Wang JZ, Qiao Y, Li L, Chou SL. Na 1.51 Fe[Fe(CN) 6 ] 0.87 ·1.83H 2 O Hollow Nanospheres via Non-Aqueous Ball-Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodium-Ion Batteries. SMALL METHODS 2022; 6:e2200404. [PMID: 35730654 DOI: 10.1002/smtd.202200404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Prussian blue analogues (PBAs) have attracted extensive attention as cathode materials in sodium-ion batteries (SIBs) due to their low cost, high theoretical capacity, and facile synthesis process. However, it is of great challenge to control the crystal vacancies and interstitial water formed during the aqueous co-precipitation method, which are also the key factors in determining the electrochemical performance. Herein, an antioxidant and chelating agent co-assisted non-aqueous ball-milling method to generate highly-crystallized Na2- x Fe[Fe(CN)6 ]y with hollow structure is proposed by suppressing the speed and space of crystal growth. The as-prepared Na2- x Fe[Fe(CN)6 ]y hollow nanospheres show low vacancies and interstitial water content, leading to a high sodium content. As a result, the Na-rich Na1.51 Fe[Fe(CN)6 ]0.87 ·1.83H2 O hollow nanospheres exhibit a high initial Coulombic efficiency, excellent cycling stability, and rate performance via a highly reversible two-phase transition reaction confirmed by in situ X-ray diffraction. It delivers a specific capacity of 124.2 mAh g-1 at 17 mA g-1 , presenting ultra-high rate capability (84.1 mAh g-1 at 3400 mA g-1 ) and cycling stability (65.3% capacity retention after 1000 cycles at 170 mA g-1 ). Furthermore, the as-reported non-aqueous ball-milling method could be regarded as a promising method for the scalable production of PBAs as cathode materials for high-performance SIBs.
Collapse
Affiliation(s)
- Chun-Mei Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Xiao-Hao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Xiang-Xi He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhuo Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jia-Zhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| |
Collapse
|
77
|
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue Analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci 2022; 628:64-78. [DOI: 10.1016/j.jcis.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
78
|
Jiang X, Xie Q, Lu G, Wang Y, Liu T, Liu Y, Tao X, Nai J. Synthesis of NiSe 2 /Fe 3 O 4 Nanotubes with Heteroepitaxy Configuration as a High-Efficient Oxygen Evolution Electrocatalyst. SMALL METHODS 2022; 6:e2200377. [PMID: 35491389 DOI: 10.1002/smtd.202200377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The rational design of high-efficient non-noble metal electrocatalysts for oxygen evolution reactions (OER) is of significance in electrochemical energy conversion. However, such low-cost but highly active electrocatalysts remain poorly developed because of the daunting synthetic challenge. Here, the synthesis of NiSe2 /Fe3 O4 nanotubes via a facile self-templating strategy, which manifests unique tetragonal morphology, asymmetric hollow interior, and unusual but adaptable heteroepitaxy structure, is reported. Benefiting from sufficient active sites and their improved activity around the heterointerface, accompanied by the good conductivity, the NiSe2 /Fe3 O4 nanotubes exhibit as a superior OER electrocatalyst, which affords the current density of 10 mA cm-2 at a very small overpotential of 199 mV, high attainable current density beyond 200 mA cm-2 , and mass activity of 984.5 A g-1 , as well as excellent stability for 100 h in the alkaline media. This work provides a unique synthetic pathway to fabricate superior OER electrocatalysts by optimizing their composition and architecture.
Collapse
Affiliation(s)
- Xin Jiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qifan Xie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tiefeng Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
79
|
Wang P, Li Y, Zhu D, Gong F, Fang S, Zhang Y, Sun S. Treatment dependent sodium-rich Prussian blue as a cathode material for sodium-ion batteries. Dalton Trans 2022; 51:9622-9626. [PMID: 35697302 DOI: 10.1039/d2dt01171a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the preparation of Prussian blue analogs (PBAs), Na+ loss and Fe2+ oxidation take place when washing with water. Sodium-rich PBAs were prepared with sodium ascorbate aqueous solution as the washing solution, which can suppress the Na+ loss and Fe2+ oxidation. As the cathode of sodium-ion batteries, it exhibited excellent electrochemical performance.
Collapse
Affiliation(s)
- Peiyuan Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China. .,Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Yonghao Li
- Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Denggui Zhu
- Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Feilong Gong
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Yonghui Zhang
- Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Shumin Sun
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| |
Collapse
|
80
|
Wu G, Zhou X, Lv WL, Qian C, Liu XW. Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. NANO LETTERS 2022; 22:4383-4391. [PMID: 35549482 DOI: 10.1021/acs.nanolett.2c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Zhou
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
81
|
Zhang F, Gao M, Huang S, Zhang H, Wang X, Liu L, Han M, Wang Q. Redox Targeting of Energy Materials for Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104562. [PMID: 34595770 DOI: 10.1002/adma.202104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The redox-targeting (RT) process or redox-mediated process, which provides great operation flexibility in circumventing the constraints intrinsically posed by the conventional electrochemical systems, is intriguing for various energy storage and conversion applications. Implementation of the RT reactions in redox-flow cells, which involves a close-loop electrochemical-chemical cycle between an electrolyte-borne redox mediator and an energy storage or conversion material, not only boosts the energy density of flow battery system, but also offers a versatile research platform applied to a wide variety of chemistries for different applications. Here, the recent progress of RT-based energy storage and conversion systems is summarized and great versatility of RT processes for various energy-related applications is demonstrated, particularly for large-scale energy storage, spatially decoupled water electrolysis, electrolytic N2 reduction, thermal-to-electrical conversion, spent battery material recycling, and more. The working principle, materials aspects, and factors dictating the operation are highlighted to reveal the critical roles of RT reactions for each application. In addition, the challenges lying ahead for deployment are stated and recommendations for addressing these constraints are provided. It is anticipated that the RT concept of energy materials will provide important implications and eventually offer a credible solution for advanced large-scale energy storage and conversion.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mengqi Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Shiqiang Huang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Xun Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Lijun Liu
- Clean Energy Research Centre, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Ming Han
- Clean Energy Research Centre, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
82
|
“Twin Lotus Flower” Adsorbents Derived from LaFe Cyanometallate for High-Performance Phosphorus Removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
83
|
Li Y, Pan F, Yin S, Tong C, Zhu R, Li G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
84
|
Zhang F, Zhang W, Wexler D, Guo Z. Recent Progress and Future Advances on Aqueous Monovalent-Ion Batteries towards Safe and High-Power Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107965. [PMID: 35338665 DOI: 10.1002/adma.202107965] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/25/2022] [Indexed: 05/24/2023]
Abstract
Aqueous monovalent-ion batteries have been rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their fast charging capability and high power densities. In recent years, Prussian blue analogues, polyanion-type compounds, and layered oxides have been widely developed as cathodes for aqueous monovalent-ion batteries because of their low cost and high theoretical capacity. Furthermore, many design strategies have been proposed to expand their electrochemical stability window by reducing the amount of free water molecules and introducing an electrolyte addictive. This review highlights the advantages and drawbacks of cathode and anode materials, and summarizes the correlations between the various strategies and the electrochemical performance in terms of structural engineering, morphology control, elemental compositions, and interfacial design. Finally, this review can offer rational principles and potential future directions in the design of aqueous monovalent-ion batteries.
Collapse
Affiliation(s)
- Fangli Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, innovation Campus, North Wollongong, New South Wales, 2500, Australia
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - David Wexler
- Faculty of Engineering and Information Science, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
85
|
Zhang S, Ling F, Wang L, Xu R, Ma M, Cheng X, Bai R, Shao Y, Huang H, Li D, Jiang Y, Rui X, Bai J, Yao Y, Yu Y. An Open-Ended Ni 3 S 2 -Co 9 S 8 Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201420. [PMID: 35285559 DOI: 10.1002/adma.202201420] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Sulfides are perceived as promising anode materials for potassium-ion batteries (PIBs) due to their high theoretical specific capacity and structural diversity. Nonetheless, the poor structural stability and sluggish kinetics of sulfides lead to unsatisfactory electrochemical performance. Herein, Ni3 S2 -Co9 S8 heterostructures with an open-ended nanocage structure wrapped by reduced graphene oxide (Ni-Co-S@rGO cages) are well designed as the anode for PIBs via a selective etching and one-step sulfuration approach. The hollow Ni-Co-S@rGO nanocages, with large surface area, abundant heterointerfaces, and unique open-ended nanocage structure, can reduce the K+ diffusion length and promote reaction kinetics. When used as the anode for PIBs, the Ni-Co-S@rGO exhibits high reversible capacity and low capacity degradation (0.0089% per cycle over 2000 cycles at 10 A g-1 ). A potassium-ion full battery with a Ni-Co-S@rGO anode and Prussian blue cathode can display a superior reversible capacity of 400 mAh g-1 after 300 cycles at 2 A g-1 . The unique structural advantages and electrochemical reaction mechanisms of the Ni-Co-S@rGO are revealed by finite-element-simulation in situ characterizations. The universal synthesis technology of bimetallic sulfide anodes for advanced PIBs may provide vital guidance to design high-performance energy-storage materials.
Collapse
Affiliation(s)
- Shipeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710127, P. R. China
| | - Fangxin Ling
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lifeng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mingze Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruilin Bai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Shao
- Jiujiang DeFu Technology Co. Ltd., Jiujiang, Jiangxi, 332000, P. R. China
| | - Huijuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dongjun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710127, P. R. China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
86
|
Li Y, Jing X, Li Q, Shen Y, Fang Q. Well-defined bimetal oxides derived from Prussian blue analogues with regulable active sites for phosphate removal. J Colloid Interface Sci 2022; 622:390-401. [PMID: 35525142 DOI: 10.1016/j.jcis.2022.04.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 01/31/2023]
Abstract
Two well-defined CoFe bimetal oxides are prepared from Prussian blue analogues (PBAs) as precursors with designable structures, which are further explored for phosphate removal. A speed-controlled coordination strategy is used to fabricate two CoFe PBA microcrystals with different morphologies, then two regular CoFe oxides are obtained via an intermediate-temperature calcination. CoFeS, a slow-speed coordination product with truncated microcube structure, contains less coordinated water and Fe3+ in its framework, but can create more mesopores and Fe3+ in its oxidative product of CoFeST300. CoFeST300 has been demonstrated to have higher adsorption capacity and affinity for phosphate adsorption compared to that of the fast-speed coordination product, due to its more Fe3+ as effective adsorption sites via ligand exchange. Besides, the inner-sphere complexation mechanism makes CoFeST300 high selectivity for phosphate removal compared to other co-existing anions. The application performance of CoFeST300 is examined by multiple continuous treatment of actual sewage, and the result of all effluent concentrations below 0.5 mg P/L verifies a promising potential of the fabricated adsorbent for phosphorus removal. Thus, design or regulation of the precursors is an efficiency method to fabricate an ideal metal oxide for phosphate adsorption.
Collapse
Affiliation(s)
- Yungui Li
- Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, PR China
| | - Xiaoxu Jing
- Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China; Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China
| | - Qingqing Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.
| |
Collapse
|
87
|
Kim NW, Yu H, Oh J. Mesoporous K-doped NiCo 2O 4 derived from a Prussian blue analog: high-yielding synthesis and assessment as oxygen evolution reaction catalyst. RSC Adv 2022; 12:12371-12376. [PMID: 35480370 PMCID: PMC9037640 DOI: 10.1039/d2ra01235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
The conversion and storage of clean renewable energy can be achieved using water splitting. However, water splitting exhibits sluggish kinetics because of the high overpotentials of the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) and should therefore be promoted by OER and/or HER electrocatalysts. As the kinetic barrier of the former reaction exceeds that of the latter, high-performance OER catalysts are highly sought after. Herein, K-doped NiCo2O4 (HK-NCO) was hydrothermally prepared from a Prussian blue analog with a metal–organic framework structure and assessed as an OER catalyst. Extensive K doping increased the number of active oxygen vacancies and changed their intrinsic properties (e.g., binding energy), thus increasing conductivity. As a result, HK-NCO exhibited a Tafel slope of 49.9 mV dec−1 and a low overpotential of 292 mV at 10 mA cm−2, outperforming a commercial OER catalyst (Ir) and thus holding great promise as a component of high-performance electrode materials for metal-oxide batteries and supercapacitors. OER characteristics of K-doped NiCo2O4 catalyst and K doping control through simple hydrothermal synthesis.![]()
Collapse
Affiliation(s)
- Nam Woon Kim
- Department of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials (KIMM) Daejeon 34103 Republic of Korea
| | - Hyunung Yu
- Surface Analysis Team, Korea Research Institute of Standards and Science (KRISS) Daejeon 34113 Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
88
|
Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108384. [PMID: 34918850 DOI: 10.1002/adma.202108384] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Prussian blue analogues (PBAs) have attracted wide attention for their application in the energy storage and conversion field due to their low cost, facile synthesis, and appreciable electrochemical performance. At the present stage, most research on PBAs is focused on their material-level optimization, whereas their properties in practical battery systems are seldom considered. This review aims to first provide an overview of the history and parameters of PBA materials and analyze the fundamental principles toward rational design of PBAs, and then evaluate the prospects and challenges for PBAs for practical sodium-ion batteries, hoping to bridge the gap between laboratory research and commercial reality.
Collapse
Affiliation(s)
- Jian Peng
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Wang Zhang
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Qiannan Liu
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shulei Chou
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| |
Collapse
|
89
|
Three-dimensional Prussian blue nanoflower as a high-performance sodium storage electrode for water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
90
|
Ji L, Zhu Y, Teng X, Wang T, Wang S, Meyer TJ, Chen Z. Fabrication of complex, 3D, branched hollow carbonaceous structures and their applications for supercapacitors. Sci Bull (Beijing) 2022; 67:398-407. [PMID: 36546092 DOI: 10.1016/j.scib.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023]
Abstract
A unique "integrated hard-templating strategy" is described for facile synthesis of a carbonaceous material with a novel three-dimensional (3D) branched hollow architecture. A set of steps, including template formation, surface coating and template removal, all occur in a spontaneous and orderly manner in the one-pot hydrothermal process. Investigations on structural evolution during the process reveal that pre-synthesized zeolitic imidazolate framework-8 (ZIF-8) nanoparticles are first dissociated and then self-assembled into 3D branched superstructures of ZnO as templates. Initial self-assembly is followed by coating of the glucose-derived carbonaceous materials and etching of interior ZnO by organic acids released in situ by hydrolysis of glucose. The 3D-branched hollow architecture is shown to greatly enhance supercapacitor performance. The research described here provides guidance into the development of strategies for complex hollow carbonaceous architectures for a variety of potential applications.
Collapse
Affiliation(s)
- Lvlv Ji
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingying Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Teng
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel, NC 27599, USA
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
91
|
Yang L, Wang J, Lv H, Ji XM, Liu JM, Wang S. Hollow-Structured Microporous Organic Networks Adsorbents Enabled Specific and Sensitive Identification and Determination of Aflatoxins. Toxins (Basel) 2022; 14:137. [PMID: 35202164 PMCID: PMC8875801 DOI: 10.3390/toxins14020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin (AFT) contamination, commonly in foods and grains with extremely low content while high toxicity, has caused serious economic and health problems worldwide. Now researchers are making an effort to develop nanomaterials with remarkable adsorption capacity for the identification, determination and regulation of AFT. Herein, we constructed a novel hollow-structured microporous organic networks (HMONs) material. On the basis of Fe3O4@MOF@MON, hydrofluoric acid (HF) was introduced to remove the transferable metal organic framework (MOF) to give hollow MON structures. Compared to the original Fe3O4@MOF@MON, HMON showed improved surface area and typical hollow cavities, thus increasing the adsorption capacity. More importantly, AFT is a hydrophobic substance, and our constructed HMON had a higher water contact angle, greatly enhancing the adsorption affinity. From that, the solid phase extraction (SPE-HPLC) method developed based on HMONs was applied to analyze four kinds of actual samples, with satisfied recoveries of 85-98%. This work provided a specific and sensitive method for the identification and determination of AFT in the food matrix and demonstrated the great potential of HMONs in the field of the identification and control of mycotoxins.
Collapse
Affiliation(s)
| | | | | | | | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| |
Collapse
|
92
|
An X, Quan L, Liu J, Tang Q, Lan H, Liu H. Mo,Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting. J Colloid Interface Sci 2022; 615:456-464. [PMID: 35150953 DOI: 10.1016/j.jcis.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Designing non-precious electrocatalysts with multiple active centers and durability toward overall water splitting is of great significance for storing renewable energy. This study reports a low-cost Mo, Fe codoped NiCoPx electrocatalysts derived from Co-Fe Prussian blue analogue and following phosphorization process. Benefitted from the optimized electronic configuration, hierarchical structure and abundant active sites, the Mo,Fe-NiCoPx/NF electrode has shown competitive oxygen evolution reaction (ƞ10 = 197 mV) and hydrogen evolution reaction performance (ƞ10 = 99 mV) when the current density is 10 mA cm-2 in 1 M KOH solution. Moreover, the integrated water splitting device assembled by Mo,Fe-NiCoPx/NF as both anode and cathode only needs a voltage of 1.545 V to reach 10 mA cm-2. Density functional theory results further confirm that the Mo, Fe codoped heterostructure can synergistically optimize the d-band center and Gibbs free energy during electrocatalytic processes, thus accelerating the kinetics of electrochemical water splitting. This work demonstrates the importance of rational combination of metal doping and interface engineering for advanced catalytic materials.
Collapse
Affiliation(s)
- Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianqiao Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
93
|
Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
94
|
Zhang J, Li Y, Liang X, Liu Q, Chen Q, Chen M. Sulfur Vacancies-Engineered Ni 3 S 4-x Hollow Microspheres with Optimized Anionic Adsorption Energy for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106074. [PMID: 34862735 DOI: 10.1002/smll.202106074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Nickel sulfides with high theoretical capacitance have aroused tremendous attention for next-generation supercapacitors. Unfortunately, the structural durability of nickel sulfides is insufficient to support the long-term working situation. Herein, Ni3 S4-x hollow microspheres with sulfur vacancies (Ni3 S4-x HMs) are constructed by a liquid-phase anion exchange process using the Ni-MOF as the precursor. Both experimental investigation and theoretical analysis suggest that the deliberately introduced sulfur vacancies effectively improve the anionic adsorptive ability of nickel sulfides in the KOH electrolyte, significantly enhancing the reversible capacitance and structural durability (1884 F g-1 at 2 A g-1 , capacity retention of 97.9% after 10 000 cycles). In addition, an asymmetrical solid-state supercapacitor consisting of Ni3 S4-x HMs cathode and activated carbon anode shows infusive energy/power density (33.05 Wh kg-1 /1.68 kW kg-1 ) and remains 82.4% over 10 000 repeated charging/discharging processes in the KOH-PVA gel electrolyte. The strategies can be developed to enlighten the structural design of various metal sulfides materials adopted in electrochemical energy storage devices including alkali ion batteries, supercapacitors, and electrocatalysts.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yu Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Xinqi Liang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qian Liu
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
95
|
Li X, Shang Y, Yan D, Guo L, Huang S, Yang HY. Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. ACS NANO 2022; 16:453-461. [PMID: 34978811 DOI: 10.1021/acsnano.1c07231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cycle stability and voltage retention of a Na2Mn[Fe(CN)6] (NMF) cathode for sodium-ion batteries (SIBs) has been impeded by the huge distortion from NaMnII[FeIII(CN)6] to MnIII[FeIII(CN)6] caused by the Jahn-Teller (JT) effect of Mn3+. Herein, we propose a topotactic epitaxy process to generate K2Mn[Fe(CN)6] (KMF) submicron octahedra and assemble them into octahedral superstructures (OSs) by tuning the kinetics of topotactic transformation. As the SIB cathode, the self-assembly behavior of KMF improves the structural stability and decreases the contact area with the electrolyte, thereby inhibiting the transition metal in the KMF cathode from dissolving in the electrolyte. More importantly, the KMF partly transforms into NMF with Na+ de/intercalation, and the existing KMF acts as a stabilizer to disrupt the long-range JT order of NMF, thereby suppressing the overall JT distortion. As a result, the electrochemical performances of KMF cathodes outperform NMF with a highly reversible phase transition and outstanding cycling performance, and 80% capacity retention after 1500/1300 cycles at 0.1/0.5 A g-1. This work not only promotes creative synthetic methodologies but also promotes to explore the relationship between Jahn-Teller structural deformation and cycle stability.
Collapse
Affiliation(s)
- Xiaoxia Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Yang Shang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, P. R. China
| | - Dong Yan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Lu Guo
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
96
|
Ma D, Lee-Sie Eh A, Cao S, Lee PS, Wang J. Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO 2/PB Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1443-1451. [PMID: 34957823 DOI: 10.1021/acsami.1c20011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inorganic materials have been extensively studied for visible electrochromism in the past few decades. However, the single inorganic electrochromic (EC) material commonly exhibits a single color change, leading to a narrow spectrum of modulation, which offsets or limits the maximally energy-saving ability. Here, we present a wide-spectrum modulated EC device designed by combining the complementary EC nanocomposite of manganese dioxide (MnO2) and Prussian blue (PB) for enhanced energy savings. Porous MnO2 nanostructures serve as host frameworks for the templated growth of PB, resulting in MnO2/PB nanocomposites. The complementary optical modulation ranges of MnO2 and PB enable a widen-spectrum modulation across the solar region with the development of the MnO2/PB nanocomposite. The colored MnO2/PB device exhibited an optical modulation of 32.1% in the wide solar spectrum range of 320-1100 nm and blocked 72.0% of the solar irradiance. Furthermore, fast switching responses (2.7 s for coloration and 2.1 s for bleaching) and a high coloration efficiency (83.1 cm2·C-1) of the MnO2/PB EC device are also achieved. The high EC performance of the MnO2/PB nanocomposite device provides a new strategy for the design of high-performance energy-saving EC smart windows.
Collapse
Affiliation(s)
- Dongyun Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai200093, P. R. China
| | - Alice Lee-Sie Eh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore138602, Singapore
| | - Sheng Cao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi530004, China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore138602, Singapore
| | - Jinmin Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai200093, P. R. China
| |
Collapse
|
97
|
Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Supercapacitors possess very good power density. Besides this, their charge-discharge cycling stability and comparatively reasonable cost make them an incredible energy-storing device. The manufacturing strategy and the major parts like electrodes, current collector, binder, separator, and electrolyte define the performance of a supercapacitor. Among these, electrode materials play an important role when it comes to the performance of supercapacitors. They resolve the charge storage in the device and thus decide the capacitance. Porous carbon, conductive polymers, metal hydroxide, and metal oxides, which are some of the usual materials used for the electrodes in the supercapacitors, have some limits when it comes to energy density and stability. Major research in supercapacitors has focused on the design of stable, highly efficient electrodes with low cost. In this review, the most recent electrode materials used in supercapacitors are discussed. The challenges, current progress, and future development of supercapacitors are discussed as well. This study clearly shows that the performance of supercapacitors has increased considerably over the years and this has made them a promising alternative in the energy sector.
Collapse
|
98
|
Wang J, Kirlikovali KO, Kim SY, Kim DW, Varma RS, Jang HW, Farha OK, Shokouhimehr M. Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm 2022. [DOI: 10.1039/d1ce01737c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-lithium ion (e.g., Al3+, Ca2+, K+, Mg2+, Na+, and Zn2+) batteries have emerged as a promising platform for next-generation energy storage systems.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois, USA
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
99
|
Wu X, Jing Q, Sun F, Pang H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ZIF-67/PBA heterostructure composites was prepared by the ion-exchange method with ZIF-67 nanoparticles as host MOFs. The electrochemical performance of the ZIF-67/PBA heterostructure composites improved after low-temperature calcination.
Collapse
Affiliation(s)
- Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qingling Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Fancheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, P.R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
100
|
Huang J, Shan Q, Fang Y, Zhao N, Feng X. Shape-controlled Mn–Fe PBA derived micromotors for organic pollutant removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj01022d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new strategy is employed to prepare Mn–Fe PBA derived oxide micromotors with excellent motion performances through co-precipitation and heat treatment, which can be used for organic pollutant degradation with recycling and reusing advantages.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qi Shan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanan Fang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ning Zhao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|