51
|
He P, Yi Q, Geng H, Shao Y, Liu M, Wu Z, Luo W, Liu Y, Valtchev V. Boosting the Catalytic Activity and Stability of Ru Metal Clusters in Hydrodeoxygenation of Guaiacol through MWW Zeolite Pore Constraints. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ping He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Qisong Yi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Yuanchao Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18, Changping, Beijing 102249, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18, Changping, Beijing 102249, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuanshuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
- Laboratoire Catalyse et Spectrochimie, Normandie Univ, ENSICAEN, UNICAEN, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France
| |
Collapse
|
52
|
Bioinspired Pd-Cu Alloy Nanoparticles as Accept Agent for Dye Degradation Performances. Int J Mol Sci 2022; 23:ijms232214072. [PMID: 36430550 PMCID: PMC9698934 DOI: 10.3390/ijms232214072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Dye degradation is a key reaction in organic decomposition production through electron donor transferring. Palladium (Pd) is the best-known element for synthesis Pd-based catalyst, the surface status determines the scope of relative applications. Here we first prepare Pd-Cu alloy nanoparticles (NPs) by co-reduction of Cu(acac)2 (acac = acetylacetonate) and Pd(C5HF6O2)2 in the presence of sodium borohydride (NaBH4) and glutathione (GSH). The obtained Pd-Cu is about ~10 nm with super-hydrophilicity in aqueous mediums. The structural analysis clearly demonstrated the uniform distribution of Pd and Cu element. The colloidal solution keeps stability even during 30 days. Bimetallic Pd-Cu NPs shows biocompatibility in form of cell lines (IMEF, HACAT, and 239 T) exposed to colloidal solution (50 µg mL-1) for 2 days. It shows the catalytic multi-performance for dye degradation such as methyl orange (MO), rhodamine B (RhB), and methylene blue (MB), respectively. The as-synthesized nanoparticles showed one of the best multiple catalytic activities in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. In addition, it exhibits peroxidase-like activity in the 3, 3', 5, 5'-Tetramethylbenzidine (TMB) color test and exhibit obvious difference with previous individual metal materials. By treated with high intensity focused ultrasound filed (HIFU), Pd-Cu NPs might be recrystallized and decreased the diameters than before. The enhancement in catalytic performance is observed obviously. This work expedites rational design and synthesis of the high-hierarchy alloy catalyst for biological and environment-friendly agents.
Collapse
|
53
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
54
|
In-situ synthesis of ultra-small Ni nanoparticles anchored on palygorskite for efficient reduction of 4-nitrophenol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
55
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Li Y, Zhong H, Jin Y, Guan B, Yue J, Zhao R, Huang Y. Metal-Organic Framework Accelerated One-Step Capture and Reduction of Palladium to Catalytically Active Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40408-40417. [PMID: 36000946 DOI: 10.1021/acsami.2c10594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recovery of noble metals and in situ transforming to functional materials hold great promise in the sustainability of natural resources but remain as a challenge. Herein, the variable chemical microenvironments created by the inorganic-organic hybrid composition of metal-organic frameworks (MOFs) were exploited to tune the metal-support interactions, thus establishing an integrated strategy for recovering and reducing palladium (Pd). Assisted by sonic waves and alcoholic solvent, selective capture of Pd(II) from a complicated matrix to directly afford Pd nanoparticles (NPs) in MOFs can be achieved in one step within several minutes. Mechanism investigation reveals that the Pd binding site and the energy barriers between ionic and metallic status are sensitive to chemical environments in different frameworks. Thanks to the clean, dispersive, and uniform nature of Pd NPs, Pd@MOFs synthesized from a complicated environment exhibited high catalytic activity toward 4-nitrophenol reduction and Suzuki coupling reactions.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiling Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Excellent stability for catalytic oxidation of methane over core–shell Pd@silicalite-1 with complete zeolite shell in wet conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Liu W, Tao J, Zhao Y, Ren L, Li C, Wang X, Chen J, Lu J, Wu D, Peng H. Boosting the deep oxidation of propane over zeolite encapsulated Rh-Mn bimetallic nanoclusters: Elucidating the role of confinement and synergy effects. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
59
|
Xu P, Zhao W, Liu X, Jia B, He J, Fu L, Xu B. Dramatic Enhancement of Thermoelectric Performance in PbTe by Unconventional Grain Shrinking in the Sintering Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202949. [PMID: 35900904 DOI: 10.1002/adma.202202949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Nanostructure engineering is a key strategy for tailoring properties in the fields of batteries, solar cells, thermoelectrics, and so on. Limited by grain coarsening, however, the nanostructure effect gradually degrades during the materials' manufacturing and in-service period. Herein, a strategy of cleavage-fracture for grain shrinking is developed in a Pb0.98 Sb0.02 Te sample during sintering, and the grain size remains stable after repeated tests. Moreover, the initial grain boundary is filled by fractured slender grains and enriched by dislocations, evolving into a hierarchical grain-boundary structure. The lattice thermal conductivity (klat ) is greatly reduced to approach the amorphous limit. As a result, a record-high ZT value of ≈1.9 is obtained at 815 K in the n-type Pb0.98 Sb0.02 Te sample and a decent efficiency of 6.7% in thermoelectric device. This strategy for grain shrinking will shed light on the application of nanostructure engineering under high temperature and extreme conditions in other material systems.
Collapse
Affiliation(s)
- Pengfei Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xixi Liu
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baohai Jia
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaqing He
- Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liangwei Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Biao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
60
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
61
|
Sun Z, Sun K, Gao M, Metin Ö, Jiang H. Optimizing Pt Electronic States through Formation of a Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202206108. [DOI: 10.1002/anie.202206108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Zi‐Xuan Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Kang Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Ming‐Liang Gao
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Önder Metin
- Department of Chemistry College of Sciences Koç University Istanbul 34450 Turkey
| | - Hai‐Long Jiang
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| |
Collapse
|
62
|
Kamakura Y, Yasuda S, Hosokawa N, Nishioka S, Hongo S, Yokoi T, Tanaka D, Maeda K. Selective CO 2-to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shuhei Yasuda
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Naoki Hosokawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunta Nishioka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Sawa Hongo
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
63
|
Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Tiburcio E, Zheng Y, Mon M, Martín N, Ferrando Soria J, Armentano D, Leyva Pérez A, Pardo E. Highly Efficient MOF-Driven Silver Subnanometer Clusters for the Catalytic Buchner Ring Expansion Reaction. Inorg Chem 2022; 61:11796-11802. [PMID: 35861311 PMCID: PMC9380725 DOI: 10.1021/acs.inorgchem.2c01508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The preparation of novel efficient catalysts—that
could
be applicable in industrially important chemical processes—has
attracted great interest. Small subnanometer metal clusters can exhibit
outstanding catalytic capabilities, and thus, research efforts have
been devoted, recently, to synthesize novel catalysts bearing such
active sites. Here, we report the gram-scale preparation of Ag20 subnanometer clusters
within the channels of a highly crystalline three-dimensional anionic
metal–organic framework, with the formula [Ag20]@AgI2NaI2{NiII4[CuII2(Me3mpba)2]3}·48H2O [Me3mpba4– = N,N′-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. The resulting
crystalline solid catalyst—fully characterized with the help
of single-crystal X-ray diffraction—exhibits high catalytic
activity for the catalytic Buchner ring expansion reaction. The present work describes the MOF-driven
preparation of
well-defined ligand-free Ag20 nanoclusters, which are efficiently stabilized
by the MOF channels. The small Ag20 nanoclusters, prepared in the gram scale,
are used as efficient and recoverable catalysts for the Buchner ring
expansion reaction. These results expand the toolkit of readily affordable
Ag species for heterogeneous catalysis in organic synthesis.
Collapse
Affiliation(s)
- Estefanía Tiburcio
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Valencia 46980, Spain
| | - Yongkun Zheng
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Marta Mon
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Nuria Martín
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Valencia 46980, Spain
| | - Jesús Ferrando Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Cosenza87036, Italy
| | - Antonio Leyva Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Valencia 46980, Spain
| |
Collapse
|
65
|
Wang J, Zhu P, Liu C, Liu H, Zhang W, Zhang X. Regulating Encapsulation of Small Pt Nanoparticles inside Silicalite-1 Zeolite with the Aid of Sodium Ions for Enhancing n-Hexane Reforming. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710065, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
66
|
Hu ZP, Qin G, Han J, Zhang W, Wang N, Zheng Y, Jiang Q, Ji T, Yuan ZY, Xiao J, Wei Y, Liu Z. Atomic Insight into the Local Structure and Microenvironment of Isolated Co-Motifs in MFI Zeolite Frameworks for Propane Dehydrogenation. J Am Chem Soc 2022; 144:12127-12137. [PMID: 35762495 DOI: 10.1021/jacs.2c02636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embedding metal species into zeolite frameworks can create framework-bond metal sites in a confined microenvironment. The metals sitting in the specific T sites of zeolites and their crystalline surroundings are both committed to the interaction with the reactant, participation in the activation, and transient state achievement during the whole catalytic process. Herein, we construct isolated Co-motifs into purely siliceous MFI zeolite frameworks (Co-MFI) and reveal the location and microenvironment of the isolated Co active center in the MFI zeolite framework particularly beneficial for propane dehydrogenation (PDH). The isolated Co-motif with the distorted tetrahedral structure ({(≡SiO)2Co(HO-Si≡)2}, two Co-O-Si bonds, and two pseudobridging hydroxyls (Co···OH-Si) is located at T1(7) and T3(9) sites of the MFI zeolite. DFT calculations and deuterium-labeling reactions verify that the isolated Co-motif together with the MFI microenvironment collectively promotes the PDH reaction by providing an exclusive microenvironment to preactivate C3H8, polarizing the oxygen in Co-O-Si bonds to accept H* ({(≡SiO)CoHδ- (Hδ+O-Si≡)3}), and a scaffold structure to stabilize the C3H7* intermediate. The Co-motif active center in Co-MFI goes through the dynamic evolutions and restoration in electronic states and coordination states in a continuous and repetitive way, which meets the requirements from the series of elementary steps in the PDH catalytic cycle and fulfills the successful catalysis like enzyme catalysis.
Collapse
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Gangqiang Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingfeng Han
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Wenna Zhang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Nan Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yijun Zheng
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Te Ji
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
67
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
68
|
Sun ZX, Sun K, Gao ML, Metin Ö, Jiang HL. Optimizing Pt Electronic States through Formation of Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zi-Xuan Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Kang Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Ming-Liang Gao
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Önder Metin
- Koç University: Koc Universitesi Chemistry TURKEY
| | - Hai-Long Jiang
- University of Science and Technology of China (USTC) Department of Chemistry No. 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
69
|
Deng L, Fan S, Chen Y, Chen J, Mai Z, Xiao Z. In Situ Growing CuO/ZIF-8 into Nickel Foam to Fabricate a Binder-Free Self-Supported Glucose Biosensor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Deng
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zenghui Mai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
70
|
Chakraborty D, Mullangi D, Chandran C, Vaidhyanathan R. Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS OMEGA 2022; 7:15275-15295. [PMID: 35571831 PMCID: PMC9096826 DOI: 10.1021/acsomega.2c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Covalent organic frameworks (COFs) as crystalline polymers possess ordered nanochannels. When their channels are adorned with catalytically active functional groups, their highly insoluble and fluffy powder texture makes them apt heterogeneous catalysts that can be dispersed in a range of solvents and heated to high temperatures (80-180 °C). This would mean very high catalyst density, facile active-site access, and easy separation leading to high isolated yields. Different approaches have been devised to anchor or disperse the catalytic sites into the nanospaces offered by the COF pores. Such engineered COFs have been investigated as catalysts for many organic transformation reactions. These range from Suzuki-Miyaura coupling, Heck coupling, Knoevenagel condensation, Michael addition, alkene epoxidation, CO2 utilization, and more complex biomimetic catalysis. Such catalysts employ COF as a "passive" support that merely docks catalytically active inorganic clusters, or in other cases, the COF itself participates as an "active" support by altering the electronics of the inorganic catalytic sites through the redox activity of its framework. Even more, catalytic organic pockets or metal complexes have been directly tethered to COF walls to make them behave like single-site organocatalysts. Here, we have listed most COF-based organic transformations by categorizing them as metal-free non-noble-metal@COF and noble-metal@COF. The initial part of this review highlights the advantages of COFs as a component of a heterogeneous catalyst, while the latter part discusses all of the current literature on this topic.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| | - Dinesh Mullangi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Chandana Chandran
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| |
Collapse
|
71
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
72
|
Zhu Y, Huang Y, Yan T, Li J, Li Y, Drake HF, Zhong H, Jin Y, Zhao R, Zhou H. Metal-Organic Framework-Based Nanoheater with Photo-Triggered Cascade Effects for On-Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy. Adv Healthc Mater 2022; 11:e2200004. [PMID: 35306753 DOI: 10.1002/adhm.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Nanomedicine with stable light-heat conversion and spatiotemporally controllable drug activation is crucial for the success of photothermal therapy (PTT). Herein, a metal-organic framework (MOF)-based nanoheater with light-triggered multi-responsiveness is engineered to in-situ and on-demand sensitize cancer cells to local hyperthermia. Well-dispersed platinum nanoparticles synthesized inside nanospaces of the MOF are employed as the near-infrared (NIR)-harvesting unit with stable and high light-heat conversion performance. A conformation switchable polymer shell is constructed as a secondary light-responding unit to gate the targeted activation of a molecular inhibitor against thermoresistance. By cascade transformation of light stimuli to downstream signals, the nanoheater enables inhibitor release to go with local heating at the same time restricted in lesion sites to maximize efficacy and minimize systemic toxicity. The efficient photothermal conversion and the blockage of cellular heat-protective pathways provide a dual-mode of action which selectively sensitizes cancer cells to hyperthermia in a spatiotemporally controlled manner. With NIR as the remote switch, the MOF-based nanosystem demonstrates localized and boosted PTT efficacy against cancer both in vitro and in vivo. These results present nanosized MOFs as tailorable and versatile platforms for synergistic and precise cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Hao Yan
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| | - Jialuo Li
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Hannah F. Drake
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station TX 77843‐3255 USA
| |
Collapse
|
73
|
Xie Y, Shi X, Chen L, Lu J, Lu X, Sun D, Zhang L. Direct Electrodeposition of Bimetallic Nanostructures on Co-Based MOFs for Electrochemical Sensing of Hydrogen Peroxide. Front Chem 2022; 10:856003. [PMID: 35360537 PMCID: PMC8961982 DOI: 10.3389/fchem.2022.856003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Hydrogen peroxide (H2O2) is the most significant reactive oxygen species in biological systems. Here, we reported an electrochemical sensor for the detection of H2O2 on the basis of bimetallic gold-platinum nanoparticles (Au3Pt7 NPs) supported by Co-based metal organic frameworks (Co-MOFs). First, Au3Pt7 NPs, with optimal electrocatalytic activity and accessible active surface, can be deposited on the surface of the Co-MOF–modified glassy carbon electrodes (Au3Pt7/Co-MOFs/GCE) by one-step electrodeposition method. Then, the electrochemical results demonstrated that the two-dimensional (2D) Co-MOF nanosheets as the supporting material displayed better electrocatalytic properties than the 3D Co-MOF crystals for reduction of H2O2. The fabricated Au3Pt7/2D Co-MOF exhibited high electrocatalytic activity, and the catalytic current was linear with H2O2 concentration from 0.1 μM to 5 mM, and 5–60 mM with a low detection limit of 0.02 μM (S/N = 3). The remarkable electroanalytical performance of Au3Pt7/2D Co-MOF can be attributed to the synergistic effect of the high dispersion of the Au3Pt7 NPs with the marvelous electrochemical properties and the 2D Co-MOF with high-specific surface areas. Furthermore, this sensor has been utilized to detect H2O2 concentrations released from the human Hela cells. This work provides a new method for improving the performance of electrochemical sensors by choosing the proper support materials from diverse crystal morphology materials.
Collapse
Affiliation(s)
- Yixuan Xie
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianhua Shi
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linxi Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiange Lu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiange Lu, ; Duanping Sun, ; Luyong Zhang,
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiange Lu, ; Duanping Sun, ; Luyong Zhang,
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiange Lu, ; Duanping Sun, ; Luyong Zhang,
| |
Collapse
|
74
|
Guo H, Chen L, Zhang X, Chen H, Shao Y. Silicalite-1 Zeolite Encapsulated Fe Nanocatalyst for Fenton-like Degradation of Methylene Blue. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
75
|
Azhati A, Zhu H, Ouyang T, He T, Zeng Y, Wu P, Jiang J, Peng H, Che S. DNA-Assisted Creation of a Library of Ultrasmall Multimetal/Metal Oxide Nanoparticles Confined in Silica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107123. [PMID: 35174966 DOI: 10.1002/smll.202107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Supported ultrasmall metal/metal oxide nanoparticles (UMNPs) with sizes in the range of 1-5 nm exhibit unique properties in sensing, catalysis, biomedicine, etc. However, the metal-support and metal-metal precursor interactions were not as well controlled to stabilize the metal nanoparticles on/in the supports. Herein, DNA is chosen as a template and a ligand for the silica-supported UMNPs, taking full use of its binding ability to metal ions via either electrostatic or coordination interactions. UMNPs thus are highly dispersed in silica via self-assembly of DNA and DNA-metal ion interactions with the assistance of a co-structural directing agent (CSDA). A large number of metal ions are easily retained in the mesostructured DNA-silica materials, and their growth is controlled by the channels after calcination. Based on this directing concept, a material library, consisting of 50 mono- and 54 bicomponent UMNPs confined within silica and with narrow size distribution, is created. Theoretical calculation proves the indispensability of DNA with combination of several organics in the synthesis of ultrasmall metal nanoparticles. The Pt-silica and Pt/Ni-silica chosen from the library exhibit good catalytic performance for toluene combustion. This generalizable and straightforward synthesis strategy is expected to widen the corresponding applications of supported UMNPs.
Collapse
Affiliation(s)
- Arepati Azhati
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haiyin Zhu
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Pudong, Shanghai, 201210, China
| | - Tianwei Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyao He
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yifei Zeng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemical Science and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemical Science and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Honggen Peng
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
76
|
Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nat Commun 2022; 13:821. [PMID: 35145095 PMCID: PMC8831493 DOI: 10.1038/s41467-022-28356-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Subnanometric metal species confined inside the microporous channels/cavities of zeolites have been demonstrated as stable and efficient catalysts. The confinement interaction between the metal species and zeolite framework has been proposed to play the key role for stabilization, though the confinement interaction is elusive to be identified and measured. By combining theoretical calculations, imaging simulation and experimental measurements based on the scanning transmission electron microscopy-integrated differential phase contrast imaging technique, we have studied the location and coordination environment of isolated iridium atoms and clusters confined in zeolite. The image analysis results indicate that the local strain is intimately related to the strength of metal-zeolite interaction and a good correlation is found between the zeolite deformation energy, the charge state of the iridium species and the local absolute strain. The direct observation of confinement with subnanometric metal species encapsulated in zeolites provides insights to understand their structural features and catalytic consequences. Zeolite-encapsulated metal nanoparticles have important catalytic properties, but their effect on the zeolite local structure has been difficult to characterize. Here the authors, using DFT calculations and scanning transmission electron microscopy, characterize the local strain due to confinement effects in metal-zeolite catalysts.
Collapse
|
77
|
Cao LM, Zhang J, Zhang XF, He CT. Confinement synthesis in porous molecule-based materials: a new opportunity for ultrafine nanostructures. Chem Sci 2022; 13:1569-1593. [PMID: 35282621 PMCID: PMC8827140 DOI: 10.1039/d1sc05983a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
A balance between activity and stability is greatly challenging in designing efficient metal nanoparticles (MNPs) for heterogeneous catalysis. Generally, reducing the size of MNPs to the atomic scale can provide high atom utilization, abundant active sites, and special electronic/band structures, for vastly enhancing their catalytic activity. Nevertheless, due to the dramatically increased surface free energy, such ultrafine nanostructures often suffer from severe aggregation and/or structural degradation during synthesis and catalysis, greatly weakening their reactivities, selectivities and stabilities. Porous molecule-based materials (PMMs), mainly including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and porous organic polymers (POPs) or cages (POCs), exhibit high specific surface areas, high porosity, and tunable molecular confined space, being promising carriers or precursors to construct ultrafine nanostructures. The confinement effects of their nano/sub-nanopores or specific binding sites can not only effectively limit the agglomeration and growth of MNPs during reduction or pyrolysis processes, but also stabilize the resultant ultrafine nanostructures and modulate their electronic structures and stereochemistry in catalysis. In this review, we highlight the latest advancements in the confinement synthesis in PMMs for constructing atomic-scale nanostructures, such as ultrafine MNPs, nanoclusters, and single atoms. Firstly, we illustrated the typical confinement methods for synthesis. Secondly, we discussed different confinement strategies, including PMM-confinement strategy and PMM-confinement pyrolysis strategy, for synthesizing ultrafine nanostructures. Finally, we put forward the challenges and new opportunities for further applications of confinement synthesis in PMMs.
Collapse
Affiliation(s)
- Li-Ming Cao
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Jia Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Xue-Feng Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Chun-Ting He
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
78
|
Yang J, He Y, He J, Liu Y, Geng H, Chen S, Lin L, Liu M, Chen T, Jiang Q, Weckhuysen BM, Luo W, Wu Z. Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangqian Yang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Ying He
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Shaohua Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Tiehong Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| |
Collapse
|
79
|
Doherty S, Knight JG, Alharbi HY, Paterson R, Wills C, Dixon C, Šiller L, Chamberlain TW, Griffiths A, Collins SM, Wu K, Simmons MD, Bourne RA, Lovelock KRJ, Seymour J. Efficient Hydrolytic Hydrogen Evolution from Sodium Borohydride Catalyzed by Polymer Immobilized Ionic Liquid‐Stabilized Platinum Nanoparticles. ChemCatChem 2022. [DOI: 10.1002/cctc.202101752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Simon Doherty
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Julian G. Knight
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Hussam Y. Alharbi
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Reece Paterson
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Corinne Wills
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Casey Dixon
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Lidija Šiller
- School of Engineering, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Thomas W. Chamberlain
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Anthony Griffiths
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Sean M. Collins
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Kejun Wu
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Matthew D. Simmons
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Richard A. Bourne
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Jake Seymour
- School of Chemistry, Food and Pharmacy University of Reading Reading RG6 6AT UK
| |
Collapse
|
80
|
Zhang B, Li G, Liu S, Qin Y, Song L, Wang L, Zhang X, Liu G. Boosting Propane Dehydrogenation over PtZn Encapsulated in an Epitaxial High-Crystallized Zeolite with a Low Surface Barrier. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, People’s Republic of China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
81
|
Hang X, Wang S, Pang H, Xu Q. A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles. Chem Sci 2022; 13:461-468. [PMID: 35126978 PMCID: PMC8729796 DOI: 10.1039/d1sc05407d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrafine metal nanoparticles (MNPs) with size <2 nm are of great interest due to their superior catalytic capabilities. Herein, we report the size-controlled synthesis of gold nanoparticles (Au NPs) by using a thiacalixarene-based coordination cage CIAC-108 as a confined host or stabilizer. The Au NPs encapsulated within the cavity of CIAC-108 (Au@CIAC-108) show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108 (Au/CIAC-108). The cage-embedded Au NPs can be used as a homogeneous catalyst in a mixture of methanol and dichloromethane while as a heterogeneous catalyst in methanol. The homogeneous catalyst Au@CIAC-108-homo exhibits significantly enhanced catalytic activities toward nitroarene reduction and organic dye decomposition, as compared with its larger counterpart Au/CIAC-108-homo and its heterogeneous counterpart Au@CIAC-108-hetero. More importantly, the as-prepared Au@CIAC-108-homo possesses remarkable stability and durability. The size-controlled synthesis of Au NPs was achieved by using a coordination cage CIAC-108 as a support. The Au NPs encapsulated within the cavity of CIAC-108 show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108.![]()
Collapse
Affiliation(s)
- Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Shentang Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University Chongqing 400715 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 P. R. China .,Department of Materials Science and Engineering, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech) Shenzhen 518055 P. R. China.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
82
|
Song Y, Zhang T, Bai R, Zhou Y, Li L, Zou Y, Yu J. Catalytically active Rh species stabilized by zirconium and hafnium on zeolites. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported subnanometric metal species and metal nanoparticles, prepared through the impregnation method, are widely used in industrial catalysis, but suffering from the poor stability of the metal species to sintering...
Collapse
|
83
|
Qu Z, Sun Q. Advances in Zeolite-Supported Metal Catalysts for Propane Dehydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propylene is one of the building blocks of the modern industrial mansion, which is the feeding stock for polypropylene, acrylonitrile, and other important chemicals. Propane dehydrogenation (PDH) is one of...
Collapse
|
84
|
Qiu JZ, Wang LF, Shu XG, Li CJ, Yuan Z, Jiang J. A new 2D layered aluminophosphate |Hada|6[Al6(PO4)8](H2O)11 supported highly uniform Ag nanoparticles for 4-nitrophenol reduction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00739d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a new 2D aluminophosphate (ZHKU-1) with inorganic sheets containing a 4,6,12-net in AAAA-stacked sequence. Moreover, small Ag clusters supported on ZHKU-1 exhibit excellent catalytic performance in 4-nitrophenol reduction.
Collapse
Affiliation(s)
- Jiang-Zhen Qiu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Long-Fei Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xu-Gang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Cui-Jin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Zhongke Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
85
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
86
|
Zhang S, Zhang X, Dong L, Zhu S, Yuan Y, Xu L. In situ synthesis of Pt nanoparticles encapsulated in Silicalite-1 zeolite via a steam-assisted dry-gel conversion method. CrystEngComm 2022. [DOI: 10.1039/d1ce01718g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, Pt nanoparticles (NPs) were directly encapsulated into MFI-type zeolite (Pt@S-1) via a steam-assisted dry-gel conversion method. The synthesis process included the disaggregation of Pt immobilized SiO2-SH spheres...
Collapse
|
87
|
Wang W, Sun Q, Wang Q, Li S, Xu J, Deng F. Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parahydrogen-induced polarization (PHIP) on Rh-containing silicalite-1 catalysts is studied using both liquid-state and in situ magic angle spinning NMR techniques and the catalyst structure effect is revealed.
Collapse
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenhui Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
88
|
Xu H, Wu P. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac045. [PMID: 36128460 PMCID: PMC9477205 DOI: 10.1093/nsr/nwac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
The rational design synthesis of zeolite catalysts with effective, environmentally benign and atom-economic routes is a major topic in the field of microporous materials, as it would avoid the high labor cost and inefficiency of traditional trial-and-error methods in developing new structures and dispel environmental concerns regarding the industrial mass production of zeolites. Catalytic applications of zeolite materials have expanded from conventional single functionalities, such as solid acids or selective oxidation catalysts to bi/multifunctionalities through combination with metals or metal oxides. This is a response to new requirements from petrochemical and fine chemical industries, such as precise control of product distribution, conversion of low-carbon resources for chemical production, and solutions to increasingly severe environmental problems related to CO2 and NOx. Thus, based on the systematic knowledge of zeolite chemistry and science that researchers have acquired in the past half-century and the development requirements, remarkable progress has been made in zeolite synthesis and catalysis in the past 10 years. This includes the manipulation of zeolitic monolayers derived from layered zeolites and germanosilicates to construct novel zeolite materials and effective and green zeolite syntheses as well as the synergistic interaction of zeolites and metal/metal oxides with different space distributions in the conversion of low-carbon resources. With many zeolite catalysts and catalytic processes being developed, our understanding of the close relationship between zeolite synthesis, structure and catalytic properties has deepened. Researchers are gradually approaching the goal of rationally designing zeolite catalysts with precisely controlled activity and selectivity for particular applications.
Collapse
Affiliation(s)
- Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Peng Wu
- Corresponding author. E-mail:
| |
Collapse
|
89
|
A Core‐Shell Cascade of Chloroperoxidase and Gold Nanoclusters for Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2021. [DOI: 10.1002/cctc.202101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
90
|
Liu C, Zhu P, Liu H, Zhang X. Tailoring Locations and Electronic States of Rh Nanoparticles in KL Zeolite by Varying the Reduction Temperature for Selective Phenol Hydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
91
|
|
92
|
Lin Y, Li WH, Wen Y, Wang GE, Ye XL, Xu G. Layer-by-Layer Growth of Preferred-Oriented MOF Thin Film on Nanowire Array for High-Performance Chemiresistive Sensing. Angew Chem Int Ed Engl 2021; 60:25758-25761. [PMID: 34633732 DOI: 10.1002/anie.202111519] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Indexed: 11/06/2022]
Abstract
High-quality MOF thin films with high orientation and controlled thickness are extremely desired for applications. However, they have been only successfully fabricated on flat substrates. Those MOF 2D thin films are limited by low exposed area and slow mass transport. To overcome these issues, MOF 3D thin films with good crystallinity, preferred orientation, and precisely controllable thickness in nanoscale were successfully prepared in a controllable layer-by-layer manner on nanowire array substrate for the first time. The as-prepared Cu-HHTP 3D thin film is superior to corresponding 2D thin films and showed one of the highest sensitivity, lowest LOD, and fastest response among all reported chemiresistive NH3 sensing materials at RT. This work provides a feasible approach to grow preferred-oriented 3D MOF thin film, offering new perspectives for constructing MOF-based heterostructures for advanced applications.
Collapse
Affiliation(s)
- Yuan Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wen-Hua Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Yingyi Wen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Guan-E Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xiao-Liang Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Gang Xu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
93
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
94
|
Lin Y, Li W, Wen Y, Wang G, Ye X, Xu G. Layer‐by‐Layer Growth of Preferred‐Oriented MOF Thin Film on Nanowire Array for High‐Performance Chemiresistive Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) No. 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Wen‐Hua Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Yingyi Wen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) No. 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Guan‐E Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xiao‐Liang Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Gang Xu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) No. 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) No. 19A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
95
|
Photo-induced synthesis of ternary Pt/rGO/COF photocatalyst with Pt nanoparticles precisely anchored on rGO for efficient visible-light-driven H 2 evolution. J Colloid Interface Sci 2021; 608:2613-2622. [PMID: 34772502 DOI: 10.1016/j.jcis.2021.10.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Covalent organic frameworks (COFs) have been recognized as a new type of promising visible-light-driven photocatalysts for H2 evolution, while it still is a key point to facilitate the separation and transfer of photoinduced charges for further enhancing their activities. In this work, we fabricated a new type of ternary Pt/rGO/COF photocatalysts with Pt cocatalyst precisely anchored on rGO serving as electron collector for largely enhanced H2 evolution. A series of ternary hybrid materials were obtained via one-pot photoreduction of Pt4+ and GO under visible-light irradiation in a solution the same as photocatalytic H2 evolution reaction and simultaneous self-assembling of rGO/COF heterostructure. No need isolation, the synthetic system could be further used for photocatalytic H2 evolution reaction and the results show the H2 evolution rate of Pt/rGO(20%)/TpPa-1-COF hybrid material is 19.59 mmol·g-1·h-1, 6.51 times higher than that of Pt/TpPa-1-COF. The essential role of the exclusively distributed Pt nanoparticles on rGO to the high H2 evolution activity was confirmed by various comparisons of activity for the samples with diverse Pt distribution.
Collapse
|
96
|
Mei SC, Rui XH, Li L, Huang GX, Pan XQ, Ke MK, Wang ZH, Yu HQ, Yu Y. Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structure-Dependent Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103130. [PMID: 34510574 DOI: 10.1002/adma.202103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Precise synthesis of porous materials is essential for their applications. Self-assembly is a widely used strategy for synthesizing porous materials, but quantitative control of the assembly process still remains a great challenge. Here, a quantitative coassembly approach is developed for synthesizing resin/silica composite and its derived porous spheres. The assembly behaviors of the carbon and silica precursors are regulated without surfactants and the growth kinetics of the composite spheres are quantitatively controlled. This assembly approach enables the precise control of the size and pore structures of the derived carbon spheres. These carbon spheres provide a good platform to explore the structure-performance relationships of porous materials, and demonstrate their pore structure-dependent performance in catalytic water decontamination. This work provides a simple and robust approach for precise synthesis of porous spheres and brings insights into function-oriented design of porous materials.
Collapse
Affiliation(s)
- Shu-Chuan Mei
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xian-Hong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liang Li
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gui-Xiang Huang
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Qiang Pan
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ming-Kun Ke
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhao-Hua Wang
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Han-Qing Yu
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
97
|
Zhang K, Shang H, Li B, Wang Z, Lu Y, Wang X. Structural design of metal catalysts based on ZIFs: From nanoscale to atomic level. NANO SELECT 2021. [DOI: 10.1002/nano.202100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kangjie Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Hailin Shang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Bin Li
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Zhe Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology Tsinghua University, Haidian District Beijing P. R. China
| | - Xiangke Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization College of Environmental Science and Engineering North China Electric Power University Beijing P.R. China
| |
Collapse
|
98
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
99
|
Zhang J, Duan F, Xie Y, Ning P, Zhao H, Shi Y. Encapsulated Ni Nanoparticles within Silicalite-1 Crystals for Upgrading Phenolic Compounds to Arenes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimei Zhang
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Duan
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengge Ning
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchun Shi
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
100
|
Jia Z, Lv X, Hou Y, Wang K, Ren F, Xu D, Wang Q, Fan K, Xie C, Lu X. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact Mater 2021; 6:2676-2687. [PMID: 33665500 PMCID: PMC7895678 DOI: 10.1016/j.bioactmat.2021.01.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Adhesive hydrogels have broad applications ranging from tissue engineering to bioelectronics; however, fabricating adhesive hydrogels with multiple functions remains a challenge. In this study, a mussel-inspired tannic acid chelated-Ag (TA-Ag) nanozyme with peroxidase (POD)-like activity was designed by the in situ reduction of ultrasmall Ag nanoparticles (NPs) with TA. The ultrasmall TA-Ag nanozyme exhibited high catalytic activity to induce hydrogel self-setting without external aid. The nanozyme retained abundant phenolic hydroxyl groups and maintained the dynamic redox balance of phenol-quinone, providing the hydrogels with long-term and repeatable adhesiveness, similar to the adhesion of mussels. The phenolic hydroxyl groups also afforded uniform distribution of the nanozyme in the hydrogel network, thereby improving its mechanical properties and conductivity. Furthermore, the nanozyme endowed the hydrogel with antibacterial activity through synergistic effects of the reactive oxygen species generated via POD-like catalytic reactions and the intrinsic bactericidal activity of Ag. Owing to these advantages, the ultrasmall TA-Ag nanozyme-catalyzed hydrogel could be effectively used as an adhesive, antibacterial, and implantable bioelectrode to detect bio-signals, and as a wound dressing to accelerate tissue regeneration while preventing infection. Therefore, this study provides a promising approach for the fabrication of adhesive hydrogel bioelectronics with multiple functions via mussel-inspired nanozyme catalysis.
Collapse
Affiliation(s)
- Zhanrong Jia
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xuanhan Lv
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yue Hou
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dingguo Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Qun Wang
- College of Life Science and Biotechnology, Mianyang Teachers' College, Mianyang, 621006, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|