51
|
Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent 2020; 102:103477. [PMID: 32950630 DOI: 10.1016/j.jdent.2020.103477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of a zinc-based particle with ionic liquid as filler for an experimental adhesive resin. METHODS The ionic liquid 1-n-butyl-3-methylimidazolium chloride (BMI.Cl) and zinc chloride (ZnCl2) were used to synthesize 1-n-butyl-3-methylimidazolium trichlorozincate (BMI.ZnCl3), which was hydrolyzed under basic conditions to produce the simonkolleite (SKT) particles. SKT was analyzed by scanning electron microscopy and transmission electron microscopy. An experimental adhesive resin was formulated and SKT was incorporated at 1, 2.5, or 5 wt.% in the adhesive. One group without SKT was a control group. The antibacterial activity against Streptococcus mutans, cytotoxicity, degree of conversion (DC), ultimate tensile strength (UTS), softening in solvent, and microtensile bond strength (μ-TBS) were investigated. RESULTS SKT prepared from the ionic liquid BMI.ZnCl3 presented a hexagonal shape in the micrometer scale. SKT addition provided antibacterial activity against biofilm formation of S.mutans and planktonic bacteria (p < 0.05). There were no differences in pulp cells' viability (p > 0.05). The DC ranged from 62.18 (±0.83)% for control group to 64.44 (±1.55)% for 2.5 wt.% (p > 0.05). There was no statistically significant difference among groups for UTS (p > 0.05), softening in solvent (p > 0.05), and 24 h or 6 months μ-TBS (p > 0.05). CONCLUSIONS The physicochemical properties of adhesives were not affected by SKT incorporation, and the filler provided antibacterial activity against S. mutans without changes in the pulp cells' viability. This hybrid zinc-based particle with ionic liquid coating may be a promising filler to improve dental restorations. CLINICAL RELEVANCE A filler based on a zinc-derived material coated with ionic liquid was synthesized and added in dental adhesives, showing antibacterial activity and maintaining the other properties analyzed. SKT may be a promising filler to decrease the biofilm formation around resin-based restorative materials.
Collapse
|
52
|
Biodegradable Films from Phytosynthesized TiO2 Nanoparticles and Nanofungal Chitosan as Probable Nanofertilizers. INT J POLYM SCI 2020. [DOI: 10.1155/2020/6727132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have great importance for plant nutrition and growth, at little concentrations. The bioactive polymer chitosan and its NPs provide outstanding characteristics for capping and enhancements of nanometals. The phytosynthesis of TiO2-NPswas promisingly achieved using an extract of pomegranate rind, whereas the fungal chitosan (FCt) was produced from Aspergillus brasiliensis biomass and was transformed to nanoform. The phytosynthesis of TiO2-NPs generated homogenous spherical particles with 13 to 64 nm range and 37 nm mean size. The extracted FCt had 92% deacetylation degree and a molecular weight of 28,400 Da. The infrared spectral analysis of TiO2-NPs, FCt-NPs, and their nanocomposite indicated their functional groups and biochemical interactions. The released amounts of TiO2-NPs from their nanocomposite with FCt–NPs were 31% and 50% after the first and third hour, respectively. The nanocomposite film had a faster hydrodegradability rate which resulted from TiO2-NP addition. Therefore, the fabricated nanocomposite from FCt/TiO2-NPs could have elevated potentiality for application as liquid spray for foliar feeding or as powder for soil amendment.
Collapse
|
53
|
Heydari Sheikh Hossein H, Jabbari I, Zarepour A, Zarrabi A, Ashrafizadeh M, Taherian A, Makvandi P. Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics. Molecules 2020; 25:E4053. [PMID: 32899812 PMCID: PMC7570917 DOI: 10.3390/molecules25184053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, the intrinsic magnetic properties of magnetic nanoparticles (MNPs) have made them one of the most promising candidates for magnetic resonance imaging (MRI). This study aims to evaluate the effect of different coating agents (with and without targeting agents) on the magnetic property of MNPs. In detail, iron oxide nanoparticles (IONPs) were prepared by the polyol method. The nanoparticles were then divided into two groups, one of which was coated with silica (SiO2) and hyperbranched polyglycerol (HPG) (SPION@SiO2@HPG); the other was covered by HPG alone (SPION@HPG). In the following section, folic acid (FA), as a targeting agent, was attached on the surface of nanoparticles. Physicochemical properties of nanostructures were characterized using Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). TEM results showed that SPION@HPG was monodispersed with the average size of about 20 nm, while SPION@SiO2@HPG had a size of about 25 nm. Moreover, HPG coated nanoparticles had much lower magnetic saturation than the silica coated ones. The MR signal intensity of the nanostructures showed a relation between increasing the nanoparticle concentrations inside the MCF-7 cells and decreasing the signal related to the T2 relaxation time. The comparison of coating showed that SPION@SiO2@HPG (with/without a targeting agent) had significantly higher r2 value in comparison to Fe3O4@HPG. Based on the results of this study, the Fe3O4@SiO2@HPG-FA nanoparticles have shown the best magnetic properties, and can be considered promising contrast agents for magnetic resonance imaging applications.
Collapse
Affiliation(s)
- Hamid Heydari Sheikh Hossein
- Department of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran; (H.H.S.H.); (A.Z.)
| | - Iraj Jabbari
- Faculty of Physics, University of Isfahan, Isfahan 81746-73441, Iran; (I.J.); (A.T.)
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran; (H.H.S.H.); (A.Z.)
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran; (H.H.S.H.); (A.Z.)
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Afrooz Taherian
- Faculty of Physics, University of Isfahan, Isfahan 81746-73441, Iran; (I.J.); (A.T.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| |
Collapse
|
54
|
Zare EN, Padil VV, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci 2020; 283:102236. [PMID: 32829011 DOI: 10.1016/j.cis.2020.102236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Non-spherical metal-based and carbon-based nanostructures have found applications in every facet of scientific endeavors, including engineering and biomedical fields. These nanostructures attract attention because of their biocompatibility and negligible cytotoxicity. Chemical and physical methods have been used for synthesizing earlier generations of metal-based and carbon-based nanostructures with variable architectures, including nanorods, nanowires, nanodots and nanosheets. However, these synthesis strategies utilize organic passivators which are toxic to the environment and the human body. Biogenic synthesis of nanoparticles is becoming increasing popular because of the necessity to develop eco-friendly and non-toxic strategies. Nanoparticles synthesized by natural compounds have immense potential in the biomedical arena. The present review focuses on plant-mediated synthesis of metal-based and carbon-based non-spherical nanoarchitectures and the role of green synthesis in improving their activities for biomedical applications.
Collapse
|
55
|
Tummino ML, Tolardo V, Malandrino M, Sadraei R, Magnacca G, Laurenti E. A Way to Close the Loop: Physicochemical and Adsorbing Properties of Soybean Hulls Recovered After Soybean Peroxidase Extraction. Front Chem 2020; 8:763. [PMID: 33005610 PMCID: PMC7479214 DOI: 10.3389/fchem.2020.00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Soybean hulls are one of the by-products of soybean crushing and find application mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide range of applications such as bioremediation and wastewater treatment, biocatalysis, diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the SBP extraction, destined to become a putrescible waste, were recovered and employed as adsorbents for water remediation due to their cellulose-based composition. They were studied from a physicochemical point of view using different characterization techniques and applied for the adsorption of five inorganic ions [Fe(III), Al(III), Cr(III), Ni(II), and Mn(II)] in different aqueous matrixes. The behavior of the exhausted soybean hulls was compared to pristine hulls, demonstrating better performances as pollutant adsorbents despite significant changes in their features, especially in terms of surface morphology, charge and composition. Overall, this work evidences that these kinds of double-recovered scraps are an effective and sustainable alternative for metal contaminants removal from water.
Collapse
Affiliation(s)
| | | | | | - Razieh Sadraei
- Department of Chemistry, Università di Torino, Turin, Italy
| | - Giuliana Magnacca
- Department of Chemistry, Università di Torino, Turin, Italy.,Centre for Nanostructured Interfaces and Surfaces (NIS) and INSTM Reference Centre, Turin, Italy
| | - Enzo Laurenti
- Department of Chemistry, Università di Torino, Turin, Italy
| |
Collapse
|
56
|
Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers (Basel) 2020; 12:polym12091926. [PMID: 32858972 PMCID: PMC7564498 DOI: 10.3390/polym12091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, sponges with the antibiotic tetracycline hydrochloride (TCH) loaded into alginate incorporated with gelatin (G/SA) were fabricated. The G/SA sponges were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) analysis. G/SA sponges show a three-dimensional network structure with high porosity. An excellent swelling behavior and a controlled TCH release performance are observed from G/SA sponges. Moreover, they exhibit good antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
|
57
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
58
|
Zein/Bioactive Glass Coatings with Controlled Degradation of Magnesium under Physiological Conditions: Designed for Orthopedic Implants. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2030018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium and its alloys are widely considered as temporary bio-implants owing to their mechanical properties and biocompatibility. However, the high corrosion rates and degradation in the physiological environment restrict the practical application of Mg as a biomedical device. Therefore, in this study, Zein/45S5 bioactive glass (BG) coatings were deposited via electrophoretic deposition (EPD) on pretreated pure magnesium (Mg) substrates, which controls the rapid degradation of magnesium. The set of EPD parameters was first optimized on stainless steel (SS) and then the optimum EPD parameters were applied to obtain zein/BG composite coatings on Mg substrates. The morphology of the obtained coatings was studied by scanning electron microscopy (SEM). SEM results showed that both zein and BG were successfully deposited on the surface of the Mg substrate. Electrochemical measurements consisting of open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization confirmed that the corrosion resistance of Mg improved after the deposition of zein/BG coatings. The in-vitro bioactivity study was carried out by immersing the zein/BG coatings in simulated body fluid for 3, 7, and 21 days. SEM, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy results elucidated that the hydroxyapatite layer developed after 21 days of immersion in SBF, which confirmed the bone binding ability of the coatings.
Collapse
|
59
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
60
|
Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int J Biol Macromol 2020; 164:963-975. [PMID: 32707282 DOI: 10.1016/j.ijbiomac.2020.07.160] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The development of ideal wound dressing materials with excellent characteristics is currently a major demand in wound therapy. In recent years, carboxymethyl cellulose (CMC)-based wound dressing materials have been of immense attraction due to their noble properties, such as: biocompatibility, biodegradability, tissue resembling, low cost and non-toxic. It is used extensively, in a variety of applications in the biomedical and pharmaceutical fields. The hydrophilic nature of CMC, makes it possible to blend and cross-link with other materials, such as: synthetic polymers, natural polymers and inorganic materials and it enables the preparation of innovative wound dressing biomaterials. Hence, this review, focuses on the intrinsic characteristics of CMC-based wound dressing materials, including hydrogels, films, 3D printing, fibres, gauzes and their recent advancements in chronic wound healing.
Collapse
Affiliation(s)
- Vimala Kanikireddy
- Department of Chemistry, Osmania University, Hyderabad 500 007, Telangana, India.
| | - Kokkarachedu Varaprasad
- Centro de Investigaciòn dePolìmeros Avanzados (CIPA), Edificio de Laboratorios, Avenida Collao 1202, Concepciòn, Chile.
| | - Tippabattini Jayaramudu
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad deTalca, 747, Talca, Chile
| | - Chandrasekaran Karthikeyan
- Centro de Investigaciòn dePolìmeros Avanzados (CIPA), Edificio de Laboratorios, Avenida Collao 1202, Concepciòn, Chile
| | - Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria 1083, South Africa
| |
Collapse
|
61
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
62
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|
63
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|