51
|
Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C. Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105727. [PMID: 35182053 PMCID: PMC9036007 DOI: 10.1002/advs.202105727] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that involves excess reactive oxygen species (ROS) and osteochondral defects. Although multiple approaches have been developed for osteochondral regeneration, how to balance the biochemical and physical microenvironment in OA remains a big challenge. In this study, a bioceramic scaffold by 3D printed akermanite (AKT) integrated with hair-derived antioxidative nanoparticles (HNPs)/microparticles (HMPs) for ROS scavenging and osteochondral regeneration has been developed. The prepared bioscaffold with multi-mimetic enzyme effects, which can scavenge a broad spectrum of free radicals in OA, can protect chondrocytes under the ROS microenvironment. Importantly, the bioscaffold can distinctly stimulate the proliferation and maturation of chondrocytes due to the stimulation of the glucose transporter pathway (GLUT) via HNPs/HMPs. Furthermore, it significantly accelerated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo results showed that the bioscaffold can effectively enhance the osteochondral regeneration compared to the unmodified scaffold. The work shows that integration of antioxidant and mechanical properties via the bioscaffold is a promising strategy for osteochondral regeneration in OA treatment.
Collapse
Affiliation(s)
- Cuijun Deng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Quan Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Haotian Chen
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Chang Xu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Qishuai Feng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Feng Yin
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| |
Collapse
|
52
|
Arango-Santander S. Bioinspired Topographic Surface Modification of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2383. [PMID: 35407716 PMCID: PMC8999667 DOI: 10.3390/ma15072383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.
Collapse
|
53
|
Mi X, Su Z, Fu Y, Li S, Mo A. 3D printing of Ti 3C 2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater 2022; 17. [PMID: 35316803 DOI: 10.1088/1748-605x/ac5ffe] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Grafting of bone-substitute biomaterials plays a vital role in the reconstruction of bone defects. However, the design of bioscaffolds with osteoinductive agents and biomimetic structures for regeneration of critical-sized bone defects is difficult. Ti3C2 MXene-belonging to a new class of two-dimensional (2D) nanomaterials-exhibits excellent biocompatibility, and antibacterial properties, and promotes osteogenesis. However, its application in preparing 3D-printed tissue-engineered bone scaffolds for repairing bone defects has not been explored. In this work, Ti3C2 MXene was incorporated into composite scaffolds composed of hydroxyapatite (HA) and sodium alginate (SA) via extrusion-based 3D printing to evaluate its potential in bone regeneration. MXene composite scaffolds were fabricated and characterized by SEM, XPS, mechanical properties and porosity. The biocompatibility and osteoinductivity of MXene composite scaffolds were evaluated by cell adhesion, CCK-8 test, qRT-PCR, ALP activity and ARS tests of BMSCs. A rat calvarial defect model was performed to explore the osteogenic activity of the MXene composite scaffolds in vivo. The results showed the obtained scaffold had a uniform structure, macropore morphology, and high mechanical strength. In vitro experimental results revealed that the scaffold exhibited excellent biocompatibility with bone mesenchymal stem cells, promoted cell proliferation, upregulated osteogenic gene expression, enhanced alkaline phosphatase activity, and promoted mineralized-nodule formation. The experimental results confirmed that the scaffold effectively promoted bone regeneration in a model of critical-sized calvarial- bone-defect in vivo and promoted bone healing to a significantly greater degree than scaffolds without added Ti3C2 MXene did. Conclusively, the Ti3C2 MXene composite 3D-printed scaffolds are promising for clinical bone defect treatment, and the results of this study provide a theoretical basis for the development of practical applications for tissue-engineered bone scaffolds.
Collapse
Affiliation(s)
- Xue Mi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Zhenya Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Shiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China College of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, 610041, CHINA
| |
Collapse
|
54
|
Fabrication of Multiple Parallel Microchannels in a Single Microgroove via the Heating Assisted MIMIC Technique. MICROMACHINES 2022; 13:mi13030364. [PMID: 35334655 PMCID: PMC8952235 DOI: 10.3390/mi13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
For the first time, multiple parallel microchannels in a single microgroove have been fabricated by the heating-assisted micromolding in capillaries technique (HAMIMIC). Microchannel development, cross-sectional shape, and length were all explored in depth. The factors affecting the cross-sectional shape and length of the double-microchannel were also discussed. Finally, a special-shaped PDMS guiding mold was designed to control the cross-sectional shape and length of multiple parallel microchannels for controlled growth. The HAMIMIC technique provides a low-cost, straightforward, and repeatable way to create multiple parallel microchannels in a single microgroove, and will promote the progress of bifurcated vessels and thrombus vessels preparation technology.
Collapse
|
55
|
Huang H, Yang A, Li J, Sun T, Yu S, Lu X, Guo T, Duan K, Zheng P, Weng J. Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regen Biomater 2022; 9:rbac001. [PMID: 35529045 PMCID: PMC9071058 DOI: 10.1093/rb/rbac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Porous hydroxyapatite (HA) scaffolds are often used as bone repair materials, owing to their good biocompatibility, osteoconductivity and low cost. Vascularization and osteoinductivity of porous HA scaffolds were limited in clinical application, and these disadvantages were need to be improved urgently. We used water-in-oil gelation and pore former methods to prepare HA spheres and a porous cylindrical HA container, respectively. The prepared HA spheres were filled in container to assemble into composite scaffold. By adjusting the solid content of the slurry (solid mixture of chitin sol and HA powder) and the sintering temperature, the porosity and crystallinity of the HA spheres could be significantly improved; and mineralization of the HA spheres significantly improved the biological activity of the composite scaffold. The multigradient (porosity, crystallinity and mineralization) scaffold (HA-700) filled with the mineralized HA spheres exhibited a lower compressive strength; however, in vivo results showed that their vascularization ability were higher than those of other groups, and their osteogenic Gini index (Go: an index of bone mass, and inversely proportional to bone mass) showed a continuous decrease with the implantation time. This study provides a new method to improve porous HA scaffolds and meet the demands of bone tissue engineering applications.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Shangke Yu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Ke Duan
- Southwest Medical University, Luzhou, 646000 P.R. China
| | - Pengfei Zheng
- Department of Orthopaedic surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008 P.R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| |
Collapse
|
56
|
Xu Y, Zhang F, Zhai W, Cheng S, Li J, Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers (Basel) 2022; 14:566. [PMID: 35160556 PMCID: PMC8840342 DOI: 10.3390/polym14030566] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of large-area irregular bone defects is one of the complex problems in orthopedic clinical treatment. The bone repair scaffolds currently studied include electrospun membrane, hydrogel, bone cement, 3D printed bone tissue scaffolds, etc., among which 3D printed polymer-based scaffolds Bone scaffolds are the most promising for clinical applications. This is because 3D printing is modeled based on the im-aging results of actual bone defects so that the printed scaffolds can perfectly fit the bone defect, and the printed components can be adjusted to promote Osteogenesis. This review introduces a variety of 3D printing technologies and bone healing processes, reviews previous studies on the characteristics of commonly used natural or synthetic polymers, and clinical applications of 3D printed bone tissue scaffolds, analyzes and elaborates the characteristics of ideal bone tissue scaffolds, from t he progress of 3D printing bone tissue scaffolds were summarized in many aspects. The challenges and potential prospects in this direction were discussed.
Collapse
Affiliation(s)
- Yuanhang Xu
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Feiyang Zhang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Weijie Zhai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Shujie Cheng
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Jinghua Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Yi Wang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471000, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Chaturvedi I, Jandyal A, Wazir I, Raina A, Ul Haq MI. Biomimetics and 3D printing - Opportunities for design applications. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
58
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
59
|
Fang Z, Chen J, Pan J, Liu G, Zhao C. The Development Tendency of 3D-Printed Bioceramic Scaffolds for Applications Ranging From Bone Tissue Regeneration to Bone Tumor Therapy. Front Bioeng Biotechnol 2021; 9:754266. [PMID: 34988065 PMCID: PMC8721665 DOI: 10.3389/fbioe.2021.754266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional (3D) printing concept has been successfully employed in regenerative medicine to achieve individualized therapy due to its benefit of a rapid, accurate, and predictable production process. Traditional biocomposites scaffolds (SCF) are primarily utilised for bone tissue engineering; nevertheless, over the last few years, there has already been a dramatic shift in the applications of bioceramic (BCR) SCF. As a direct consequence, this study focused on the structural, degeneration, permeation, and physiological activity of 3D-printed BCR (3DP-B) SCF with various conformations and work systems (macros, micros, and nanos ranges), as well as their impacts on the mechanical, degeneration, porosity, and physiological activities. In addition, 3DP-B SCF are highlighted in this study for potential uses applied from bone tissue engineering (BTE) to bone tumor treatment. The study focused on significant advances in practical 3DP-B SCF that can be utilized for tumor treatment as well as bone tissue regeneration (BTR). Given the difficulties in treating bone tumors, these operational BCR SCF offer a lot of promise in mending bone defects caused by surgery and killing any remaining tumor cells to accomplish bone tumor treatment. Furthermore, a quick assessment of future developments in this subject was presented. The study not only summarizes recent advances in BCR engineering, but it also proposes a new therapeutic strategy focused on the extension of conventional ceramics' multifunction to a particular diagnosis.
Collapse
Affiliation(s)
- Zhixiang Fang
- Department of Orthopedics, The Second Hospital of Shaoxing, Shaoxing, China
| | - Jihang Chen
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiangxia Pan
- Nursing Department, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Guoqiang Liu
- Department of Orthopedics, The Second Hospital of Shaoxing, Shaoxing, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
60
|
Li L, Li J, Zou Q, Zuo Y, Lin L, Cai B, Li Y. Lotus root and osteons-inspired channel structural scaffold mediate cell biomineralization and vascularized bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:1178-1191. [PMID: 34905286 DOI: 10.1002/jbm.b.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/05/2022]
Abstract
The interconnectivity of porous scaffold is vital for cell and tissue infiltration, and vascular networks formation, determining the successful bone regeneration in large bone defects. Here, inspired by the lotus-root and Haversian system of natural bone, a nano-hydroxyapatite/polyurethane (n-HA/PU) lotus root-like scaffold inlaid with micro holes on the wall of the adjacent channel was utilized to mediate cell biomineralization and vascularized bone tissue regeneration. Such a particular lotus-type structure remarkably promoted cells to proliferate and infiltrate into the center of the entire scaffold, serving as a clue to account for regulating cell alignment and differentiation physically. In vitro studies suggested that apatite accumulated dramatically on the channel wall in the lotus-type scaffold, probably promoting specific osteogenic differentiation of cells by the orientated channels, even in the absence of osteogenic factors. In vivo creation of critical bone defects (15-mm segments) was done in the radius of rabbits and implanted with the scaffold of different geometry to assess the structural parameters on the efficacy of new bone regeneration. The more extensive positive staining of BMP-2, more considerable amount of infiltrated capillary, more robust new bone formation, particularly the biomechanical strength of lotus-type scaffold group could reach the level of the control group without surgery, indicating that the lotus-type scaffold was more favorable for new bone tissue formation along tube-like channels. These results highlighted the potential of this biomimetic scaffold for cell and tissue infiltration and thus repair large bony defects.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Lili Lin
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Bin Cai
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Wang C, Xu D, Lin L, Li S, Hou W, He Y, Sheng L, Yi C, Zhang X, Li H, Li Y, Zhao W, Yu D. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112499. [PMID: 34857285 DOI: 10.1016/j.msec.2021.112499] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Porous Ti6Al4V scaffolds are characterized by high porosity, low elastic modulus, and good osteogenesis and vascularization, which are expected to facilitate the repair of large-scale bone defects in future clinical applications. Ti6Al4V scaffolds are divided into regular and irregular structures according to the pore structure, but the pore structure more capable of promoting bone regeneration and angiogenesis has not yet been reported. The purpose of this study was to explore the optimal pore structure and pore size of the Ti6Al4V porous scaffold for the repair of large-area bone defects and the promotion of vascularization in the early stage of osteogenesis. 7 groups of porous Ti6Al4V scaffolds, named NP, R8, R9, R10, P8, P9 and P10, were fabricated by Electron-beam-melting (EBM). Live/dead staining, immunofluorescence staining, SEM, CCK8, ALP, and PCR were used to detect the adhesion, proliferation, and differentiation of BMSCs on different groups of scaffolds. Hematoxylin-eosin (HE) staining and Van Gieson (VG) staining were used to detect bone regeneration and angiogenesis in vivo. The research results showed that as the pore size of the scaffold increased, the surface area and volume of the scaffold gradually decreased, and cell proliferation ability and cell viability gradually increased. The ability of cells to vascularize on scaffolds with irregular pore sizes was stronger than that on scaffolds with regular pore sizes. Micro-CT 3D reconstruction images showed that bone regeneration was obvious and new blood vessels were thick on the P10 scaffold. HE and VG staining showed that the proportion of bone area on the scaffolds with irregular pores was higher than that on scaffolds with regular pores. P10 had better mechanical properties and were more conducive to bone tissue ingrowth and blood vessel formation, thereby facilitating the repair of large-area bone defects.
Collapse
Affiliation(s)
- Chao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Duoling Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Ling Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China.
| |
Collapse
|
62
|
Murab S, Hawk T, Snyder A, Herold S, Totapally M, Whitlock PW. Tissue Engineering Strategies for Treating Avascular Necrosis of the Femoral Head. Bioengineering (Basel) 2021; 8:200. [PMID: 34940353 PMCID: PMC8699035 DOI: 10.3390/bioengineering8120200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Avascular necrosis (AVN) of the femoral head commonly leads to symptomatic osteoarthritis of the hip. In older patients, hip replacement is a viable option that restores the hip biomechanics and improves pain but in pediatric, adolescent, and young adult patients hip replacements impose significant activity limitations and the need for multiple revision surgeries with increasing risk of complication. Early detection of AVN requires a high level of suspicion as diagnostic techniques such as X-rays are not sensitive in the early stages of the disease. There are multiple etiologies that can lead to this disease. In the pediatric and adolescent population, trauma is a commonly recognized cause of AVN. The understanding of the pathophysiology of the disease is limited, adding to the challenge of devising a clinically effective treatment strategy. Surgical techniques to prevent progression of the disease and avoid total hip replacement include core decompression, vascular grafts, and use of bone-marrow derived stem cells with or without adjuncts, such as bisphosphonates and bone morphogenetic protein (BMP), all of which are partially effective only in the very early stages of the disease. Further, these strategies often only improve pain and range of motion in the short-term in some patients and do not predictably prevent progression of the disease. Tissue engineering strategies with the combined use of biomaterials, stem cells and growth factors offer a potential strategy to avoid metallic implants and surgery. Structural, bioactive biomaterial platforms could help in stabilizing the femoral head while inducing osteogenic differentiation to regenerate bone and provide angiogenic cues to concomitantly recover vasculature in the femoral head. Moreover, injectable systems that can be delivered using a minimal invasive procedure and provide mechanical support the collapsing femoral head could potentially alleviate the need for surgical interventions in the future. The present review describes the limitations of existing surgical methods and the recent advances in tissue engineering that are leading in the direction of a clinically effective, translational solution for AVN in future.
Collapse
Affiliation(s)
- Sumit Murab
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Teresa Hawk
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Alexander Snyder
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Sydney Herold
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Meghana Totapally
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
| | - Patrick W. Whitlock
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.H.); (A.S.); (S.H.); (M.T.)
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
63
|
Liang W, Dong Y, Shen H, Shao R, Wu X, Huang X, Sun B, Zeng B, Zhang S, Xu F. Materials science and design principles of therapeutic materials in orthopedic and bone tissue engineering. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Yongqiang Dong
- Department of Orthopedics Xinchang People's Hospital Shaoxing China
| | - Hailiang Shen
- Department of Orthopedics Affiliated Hospital of Shaoxing University Shaoxing China
| | - Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan China
| |
Collapse
|
64
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
65
|
Lin C, Wang Y, Huang Z, Wu T, Xu W, Wu W, Xu Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int J Bioprint 2021; 7:426. [PMID: 34805599 PMCID: PMC8600304 DOI: 10.18063/ijb.v7i4.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.
Collapse
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Wenming Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
66
|
Wang X, Liu Y, Zhang M, Zhai D, Wang Y, Zhuang H, Ma B, Qu Y, Yu X, Ma J, Ma H, Yao Q, Wu C. 3D Printing of Black Bioceramic Scaffolds with Micro/Nanostructure for Bone Tumor-Induced Tissue Therapy. Adv Healthc Mater 2021; 10:e2101181. [PMID: 34523255 DOI: 10.1002/adhm.202101181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Indexed: 12/18/2022]
Abstract
It is common to improve the relevant performance in the field of energy storage materials or catalytic materials by regulating the number of defects. However, there are few studies on the biomaterials containing defects for tissue engineering. Herein, a new type of defect-rich scaffolds, black akermanite (B-AKT) bioceramic scaffolds with micro/nanostructure, the thickness of which is from 0.14 to 1.94 µm, is fabricated through introducing defects on the surface of bioceramic scaffolds. The B-AKT scaffolds have advantages on the degradation rate and the osteogenic capacity over the AKT (Ca2 MgSi2 O7 ) scaffolds due to the surface defects which stimulate the osteogenic differentiation of rabbit bone mesenchymal stem cells via activating bone morphogenetic protein 2 (BMP2) signaling pathway and further promote bone formation in vivo. In addition, the prepared B-AKT scaffolds, the temperature of which can be over 100 °C under the near infrared (NIR) irradiation (0.66 W cm-2 ), possess excellent performance on photothermal and antitumor effects. The work develops an introducing-defect strategy for regulating the biological performance of bioceramic scaffolds, which is expected to be applied in the next generation of bioceramic scaffolds for regenerative medicine.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Qu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
67
|
3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Acta Biomater 2021; 134:744-759. [PMID: 34358699 DOI: 10.1016/j.actbio.2021.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023]
Abstract
Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. STATEMENT OF SIGNIFICANCE: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading.
Collapse
|
68
|
Yang C, Ma H, Wang Z, Younis MR, Liu C, Wu C, Luo Y, Huang P. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100894. [PMID: 34396718 PMCID: PMC8529444 DOI: 10.1002/advs.202100894] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Various bifunctional scaffolds have recently been developed to address the reconstruction of tumor-initiated bone defects. Such scaffolds are usually composed of a near-infrared (NIR) photothermal conversion agent and a conventional bone scaffold for photothermal therapy (PTT) and long-term bone regeneration. However, the reported photothermal conversion agents are mainly restricted to the first biological window (NIR-I) with intrinsic poor tissue penetration depth. Also, most of these agents are non-bioactive materials, which induced potential systemic side toxicity after implantation. Herein, a NIR-II photothermal conversion agent (Wesselsite [SrCuSi4 O10 ] nanosheets, SC NSs) with tremendous osteogenic and angiogenic bioactivity, is rationally integrated with polycaprolactone (PCL) via 3D printing. The as-designed 3D composite scaffolds not only trigger osteosarcoma ablation through NIR-II light generated extensive hyperthermia, but also promote in vitro cellular proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), respectively, and the ultimate enhancement of vascularized bone regeneration in vivo owing to the controlled and sustained release of bioactive ions (Sr, Cu, and Si). The authors' study provides a new avenue to prepare multifunctional bone scaffolds based on therapeutic bioceramics for repairing tumor-induced bone defects.
Collapse
Affiliation(s)
- Chen Yang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
| | - Zhiyong Wang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Chunyang Liu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
| | - Yongxiang Luo
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| |
Collapse
|
69
|
Aytac Z, Dubey N, Daghrery A, Ferreira JA, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication. INTERNATIONAL MATERIALS REVIEWS 2021; 67:347-384. [PMID: 35754978 PMCID: PMC9216197 DOI: 10.1080/09506608.2021.1946236] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 06/02/2023]
Abstract
From a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.
Collapse
Affiliation(s)
- Zeynep Aytac
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Jessica A. Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Isaac J. de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
70
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
71
|
Nulty J, Burdis R, Kelly DJ. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:661989. [PMID: 34169064 PMCID: PMC8218548 DOI: 10.3389/fbioe.2021.661989] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering (TE) has the potential to transform the treatment of challenging musculoskeletal pathologies. To date, clinical translation of many traditional TE strategies has been impaired by poor vascularisation of the implant. Addressing such challenges has motivated research into developmentally inspired TE strategies, whereby implants mimicking earlier stages of a tissue's development are engineered in vitro and then implanted in vivo to fully mature into the adult tissue. The goal of this study was to engineer in vitro tissues mimicking the immediate developmental precursor to long bones, specifically a vascularised hypertrophic cartilage template, and to then assess the capacity of such a construct to support endochondral bone formation in vivo. To this end, we first developed a method for the generation of large numbers of hypertrophic cartilage microtissues using a microwell system, and encapsulated these microtissues into a fibrin-based hydrogel capable of supporting vasculogenesis by human umbilical vein endothelial cells (HUVECs). The microwells supported the formation of bone marrow derived stem/stromal cell (BMSC) aggregates and their differentiation toward a hypertrophic cartilage phenotype over 5 weeks of cultivation, as evident by the development of a matrix rich in sulphated glycosaminoglycan (sGAG), collagen types I, II, and X, and calcium. Prevascularisation of these microtissues, undertaken in vitro 1 week prior to implantation, enhanced their capacity to mineralise, with significantly higher levels of mineralised tissue observed within such implants after 4 weeks in vivo within an ectopic murine model for bone formation. It is also possible to integrate such microtissues into 3D bioprinting systems, thereby enabling the bioprinting of scaled-up, patient-specific prevascularised implants. Taken together, these results demonstrate the development of an effective strategy for prevascularising a tissue engineered construct comprised of multiple individual microtissue "building blocks," which could potentially be used in the treatment of challenging bone defects.
Collapse
Affiliation(s)
- Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
72
|
Wang Q, Ye W, Ma Z, Xie W, Zhong L, Wang Y, Rong Q. 3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112197. [PMID: 34225850 DOI: 10.1016/j.msec.2021.112197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. However, on traditional 3D printed bone tissue engineering scaffolds, cells can only grow on the fiber surface and form bone. We designed a scaffold with a cross-scale structure of PCL/β-TCP, which contains thick fibers with a diameter of 500 μm printed by FDM. And in the pores of the coarse fiber, the ultra-high precision fine fiber grid with a diameter of about 10 μm is filled by MEW mode. In cell experiments, cells can not only grow on the thick fiber surface of the cross-scale scaffold. At the same time, the mesh structure of fine fibers provides a bridge for cell growth, allowing cells to pass through the pores of thick fibers and grow in the pores and gradually cover the pores of the scaffold. In the osteoinduction experiment, β-TCP in the PCL/β-TCP composite provides Ca2+ and PO43- to the scaffold, which effectively promotes the osteogenic differentiation of cells on the scaffold. Compared with traditional scaffolds, the osteogenic performance of cross-scale scaffolds is greatly improved. Not only did bone form on the surface of the scaffold, but also obvious ALP expression and effective calcium precipitation appeared in the pores of the scaffold. This can effectively speed up the repair of bone defects. We believe that the 3D printed PCL/β-TCP cross-scale scaffold with high-precision fibers has great application prospects in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Qifan Wang
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Wenjie Ye
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, PR China
| | - Zhiyong Ma
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China.
| | - Wenjia Xie
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Linna Zhong
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Ying Wang
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Qiong Rong
- Department of Stomatology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
73
|
Hwangbo H, Kim W, Kim GH. Lotus-Root-Like Microchanneled Collagen Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12656-12667. [PMID: 33263976 DOI: 10.1021/acsami.0c14670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the human body, there are numerous microtubular tissue structures, such as muscles, vessels, nerves, and tendons. Tissue engineering scaffolds have been regarded as a high-potential candidate for providing such aligned instructive niches to facilitate cell-recruitment and differentiation, and eventually, successful tissue regeneration. Moreover, scaffolds derived from the extracellular matrix (ECM) can provide excellent biocompatibility. However, the fabrication of such microtubular hierarchical scaffolds using ECM has proven to be difficult, and thus, innovative fabrication approaches are required. Herein, we have developed a biofabrication system involving a sequential removal of supporting materials (polycaprolactone (PCL) and poly(vinyl alcohol) (PVA)) to fabricate a uniaxially aligned microtubular collagen scaffold, a lotus-like structure. To generate the unique morphological structures of the scaffold, we manipulated various material-related and processing factors, such as the molecular weight of PVA and the weight fraction of collagen coating. Physical and biological activities of the aligned hierarchical microtubular collagen scaffolds were compared with those of the controls (conventional collagen struts and microtubular collagen scaffolds void of a uniaxial topographical cue). In conclusion, the instructive niche on the aligned hierarchical microtubular collagen structure induced high degrees of myoblast alignment and efficient myogenic differentiation.
Collapse
Affiliation(s)
- Hanjun Hwangbo
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - WonJin Kim
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
74
|
Ma L, Wang X, Zhou Y, Ji X, Cheng S, Bian D, Fan L, Zhou L, Ning C, Zhang Y. Biomimetic Ti-6Al-4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioact Mater 2021; 6:3437-3448. [PMID: 33817419 PMCID: PMC7988351 DOI: 10.1016/j.bioactmat.2021.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Titanium-based scaffolds are widely used implant materials for bone defect treatment. However, the unmatched biomechanics and poor bioactivities of conventional titanium-based implants usually lead to insufficient bone integration. To tackle these challenges, it is critical to develop novel titanium-based scaffolds that meet the bioadaptive requirements for load-bearing critical bone defects. Herein, inspired by the microstructure and mechanical properties of natural bone tissue, we developed a Ti–6Al–4V alloy (TC4)/gelatin methacrylate (GelMA) hybrid scaffold with dual bionic features (GMPT) for bone defect repair. GMPT is composed of a hard 3D-printed porous TC4 metal scaffold (PT) backbone, which mimics the microstructure and mechanical properties of natural cancellous bone, and a soft GelMA hydrogel matrix infiltrated into the pores of PT that mimics the microenvironment of the extracellular matrix. Ascribed to the unique dual bionic design, the resultant GMPT demonstrates better osteogenic and angiogenic capabilities than PT, as confirmed by the in vitro and rabbit radius bone defect experimental results. Moreover, controlling the concentration of GelMA (10%) in GMPT can further improve the osteogenesis and angiogenesis of GMPT. The fundamental mechanisms were revealed by RNA-Seq analysis, which showed that the concentration of GelMA significantly influenced the expression of osteogenesis- and angiogenesis-related genes via the Pi3K/Akt/mTOR pathway. The results of this work indicate that our dual bionic implant design represents a promising strategy for the restoration of large bone defects. A novel TC4/GelMA hybrid scaffold (GMPT) was designed to mimic natural bone microstructure and mechanical property. The GMPT with 10 wt% of GelMA showed best capability for promoting osteogenesis and angiogenesis. A bioactive soft surface with suitable stiffness can activate focal adhesion pathway and the downstream PI3K/AKT pathway.
Collapse
Affiliation(s)
- Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xiaolan Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ye Zhou
- Laboratory of Basic Medicine, General Hospital of Southern Theatre Command of the PLA, Guangzhou, 510010, China
| | - Xiongfa Ji
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Dong Bian
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Lei Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
75
|
Feng C, Ma B, Xu M, Zhai D, Liu Y, Xue J, Chang J, Wu C. Three-Dimensional Printing of Scaffolds with Synergistic Effects of Micro-Nano Surfaces and Hollow Channels for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:872-880. [PMID: 33715371 DOI: 10.1021/acsbiomaterials.9b01824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 3D printing technology with unique strategies for accurate fabrication of biomaterials in regenerative medicine has been widely applied in bone regeneration. However, the traditional 3D printing scaffolds are only stacked by solid struts without any hollow channel structures, which limits the new bone tissue formation. In this study, a special 3D scaffold with hollow channels and a micro-nano surface was prepared by a modified 3D printing strategy combined with the hydrothermal treatment approach. By regulating the reaction solution of hydrothermal treatment, the micro-nano structures formed on the surface of scaffolds can be successfully controlled. Moreover, the scaffolds have the ability to facilitate the attachment and proliferation of BMSCs after culturing for 1, 3, and 7 days in vitro. Interestingly, the in vivo results demonstrated that the hollow channels and the micro-nano surface present synergistic effects on bone regeneration. They both boost the new bone formation in femur defects in rabbits for 12 weeks after operation. The study demonstrates a 3D scaffold with special surface microstructures and hollow struts that can overcome the shortages of most traditional scaffolds and meanwhile improve the bioactivity of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengchi Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Zhang Y, Lei T, Tang C, Chen Y, Liao Y, Ju W, Zhang H, Zhou B, Liang R, Zhang T, Fan C, Chen X, Zhao Y, Xie Y, Ye J, Heng BC, Chen X, Hong Y, Shen W, Yin Z. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials 2021; 271:120722. [PMID: 33676234 DOI: 10.1016/j.biomaterials.2021.120722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Tendon injuries are the leading cause of chronic debilitation to patients. Tendon stem/progenitor cells (TSPCs) are potential seed cells for tendon tissue engineering and regeneration, but TSPCs are prone to lose their distinct phenotype in vitro and specific differentiation into the tenocyte lineage is challenging. Utilizing small molecules in an ex vivo culture system may be a promising solution and can significantly improve the therapeutic applications of these cells. Here, by using an image-based, high-throughput screening platform on small molecule libraries, this study established an effective stepwise culture strategy for TSPCs application. The study formulated a cocktail of small molecules which effected proliferation, tenogenesis initiation and maturation phases, and significantly upregulated expression of various tendon-related genes and proteins in TSPCs, which were demonstrated by high-throughput PCR, ScxGFP reporter assay and immunocytochemistry. Furthermore, by combining small molecule-based culture system with 3D printing technology, we embedded living, chemical-empowered TSPCs within a biocompatible hydrogel to engineer tendon grafts, and verified their enhanced ability in promoting functional tendon repair and regeneration both in vivo and in situ. The stepwise culture system for TSPCs and construction of engineered tendon grafts can not only serve as a platform for further studies of underlying molecular mechanisms of tenogenic differentiation, but also provide a new strategy for tissue engineering and development of novel therapeutics for clinical applications.
Collapse
Affiliation(s)
- Yanjie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingyun Lei
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youguo Liao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Zhou
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjie Liang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunmei Fan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhao Xie
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinchun Ye
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Xiao Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yi Hong
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
77
|
Zhu Y, Joralmon D, Shan W, Chen Y, Rong J, Zhao H, Xiao S, Li X. 3D printing biomimetic materials and structures for biomedical applications. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00117-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Feng C, Xue J, Yu X, Zhai D, Lin R, Zhang M, Xia L, Wang X, Yao Q, Chang J, Wu C. Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomater 2021; 119:419-431. [PMID: 33181360 DOI: 10.1016/j.actbio.2020.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bone. Inspired by nacre and cortical bone, hydroxyapatite-based coil scaffolds were successfully prepared. The scaffolds presented "brick and mortar" multi-layered structure of nacre and multi-layered concentric circular structure of cortical bone. Because of bioactive components and hierarchical structure, the scaffolds possessed good compressive strength (≈95 MPa), flexural strength (≈161 MPa) and toughness (≈1.1 MJ/m3). In addition, they showed improved angiogenesis and osteogenesis in rat and rabbit critical sized bone defect models. By mimicking co-biological systems, this work provided a feasible strategy to optimize the properties of traditional tissue engineering biological materials for vascularized bone regeneration.
Collapse
Affiliation(s)
- Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongcai Lin
- Department of Orthopaedic Surgery, Digital Medicine Institute, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, PR China
| | - Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Digital Medicine Institute, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
79
|
Huang Z, Tian Z, Zhu M, Wu C, Zhu Y. Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ziyan Huang
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang 438000 China
| | - Min Zhu
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
| | - Yufang Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang 438000 China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
80
|
Qian Z, Wang H, Bai Y, Wang Y, Tao L, Wei Y, Fan Y, Guo X, Liu H. Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55659-55674. [PMID: 33327053 DOI: 10.1021/acsami.0c17142] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diabetic skin ulcer is one of the severe complications of diabetes mellitus, which has a high incidence and may cause death or disability. Platelet-rich plasma (PRP) is widely used in the treatment of diabetic wounds due to the effect of growth factors (GFs) derived from it. However, the relatively short half-life of GFs limits their applications in clinics. In addition, the presence of a large amount of proteases in the diabetic wound microenvironment results in the degradation of GFs, which further impedes angiogenesis and diabetic wound healing. In our study, we fabricated a self-healing and injectable hydrogel with a composite of chitosan, silk fibroin, and PRP (CBPGCTS-SF@PRP) for promoting diabetic wound healing. CBPGCTS-SF@PRP could protect PRP from enzymatic hydrolysis, release PRP sustainably, and enhance the chemotaxis of mesenchymal stem cells. The results showed that it could promote the proliferation of repair cells in vitro. Moreover, it could enhance wound healing by expediting collagen deposition, angiogenesis, and nerve repair in a type 2 diabetic rat model and a rat skin defect model. We hope that this study will offer a new treatment for diabetic nonhealing wounds in clinics.
Collapse
Affiliation(s)
- Zhiyong Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, People's Republic of China
| | - Haiping Wang
- Department of Transfusion, 307 Hospital of Chinese PLA, Beijing 100071, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, People's Republic of China
| | - Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, People's Republic of China
| | - Ximin Guo
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, People's Republic of China
| |
Collapse
|
81
|
Abstract
This chapter provides an overview of the growth factors active in bone regeneration and healing. Both normal and impaired bone healing are discussed, with a focus on the spatiotemporal activity of the various growth factors known to be involved in the healing response. The review highlights the activities of most important growth factors impacting bone regeneration, with a particular emphasis on those being pursued for clinical translation or which have already been marketed as components of bone regenerative materials. Current approaches the use of bone grafts in clinical settings of bone repair (including bone grafts) are summarized, and carrier systems (scaffolds) for bone tissue engineering via localized growth factor delivery are reviewed. The chapter concludes with a consideration of how bone repair might be improved in the future.
Collapse
|
82
|
Li T, Chang J, Zhu Y, Wu C. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Adv Healthc Mater 2020; 9:e2000208. [PMID: 32338464 DOI: 10.1002/adhm.202000208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Biological systems, which possess remarkable functions and excellent properties, are gradually becoming a source of inspiration for the fabrication of advanced tissue regeneration biomaterials due to their hierarchical structures and novel compositions. It would be meaningful to learn and transfer the characteristics of creatures to biomaterials design. However, traditional strategies cannot satisfy the design requirements of the complicated bioinspired materials for tissue regeneration. 3D printing, as a rapidly developing new technology that can accurately achieve multimaterial and multiscale fabrication, is capable of optimizing the fabrication of bioinspired materials with complex composition and structure. This review summarizes the recent developments in 3D-printed bioinspired biomaterials for multiple tissue regeneration, and especially highlights the progresses on i) traditional bioinspired designs for biomaterials fabrication, ii) biological composition inspired designs for the 3D-printed biomaterials, and iii) biological structure inspired designs for the 3D-printed biomaterials. Finally, the challenges and prospects for the development of 3D-printed bioinspired biomaterials are discussed.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
83
|
Chen G, Kong P, Jiang A, Wang X, Sun Y, Yu T, Chi H, Song C, Zhang H, Subedi D, Ravi Kumar P, Bai K, Liu K, Ji Y, Yan J. A modular programmed biphasic dual-delivery system on 3D ceramic scaffolds for osteogenesis in vitro and in vivo. J Mater Chem B 2020; 8:9697-9717. [PMID: 32789334 DOI: 10.1039/c9tb02127b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-factor delivery is the most common characteristic of bone tissue engineering techniques. However, bone regeneration is a complex process requiring multiple factors and specialized release mechanisms. Therefore, the development of a dual-delivery system allowing for programmed release kinetics would be highly desirable. Improvement of the molarity and versatility of the delivery system has rarely been studied. Herein, we report the development of a novel, modular programmed biphasic dual-release system (SCB), carrying a BMP2 and an engineered collagen I-derived recognition motif (Stath-DGEA), with a self-remodification feature on hydroxyapatite (HA)-based materials. The SCB system was loaded onto an additive manufactured (AM) scaffold in order to evaluate its bifactor osteogenic potential and its biphasic release behavior. Further, the biomechanical properties of the scaffold were studied by using the fluid-structure interaction (FSI) method. Section fluorescent labeling revealed that the HA scaffold has a relatively higher density and efficiency. Additionally, the results of the release and inhibition experiment suggested that the SCB system could facilitate the sustained release of therapeutic levels of two factors during the initial stage of implantation, thereby exhibiting a rapid high-dose release pattern at a specific time point during the second stage. The FSI prediction model indicated that the scaffold provides an excellent biomimetic mechanical and fluid dynamic microenvironment to promote osteogenesis. Our results indicated that incorporation of BMP2 with Stath-DGEA in the biphasic SCB system could have a synergetic effect in promoting the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro, under staged stimulations. Further, in vivo studies in both ectopic and orthotopic rat models showed that the SCB system loaded onto an AM scaffold could enhance osteointegration and osteoinduction throughout the osteogenic process. Thus, the novel synthetic SCB system described herein used on an AM scaffold provides a biomimetic extracellular environment that enhances bone regeneration and is a promising multifunctional, dual-release platform.
Collapse
Affiliation(s)
- Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pei X, Wu L, Zhou C, Fan H, Gou M, Li Z, Zhang B, Lei H, Sun H, Liang J, Jiang Q, Fan Y, Zhang X. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication 2020; 13. [PMID: 33045688 DOI: 10.1088/1758-5090/abc060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Biofabrication of personalized titanium scaffold mimicking that of the osteocyte microenvironment is challenging due to its complex geometrical cues. The effect of scaffolds geometrical cues and implantation sites on osteogenesis is still not clear. In this study, personalized titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment were precisely designed and fabricated by selected laser melting method. The effects of different geometric cues, including porosity, pore sizes and interconnection properties, on cellular behavior were investigated. Biomimetic mechanical properties of porous titanium alloy scaffold were predesigned and simulated by finite element analysis. In vitro experiment revealed that homogeneous diamond-like structures mimicking that of the osteocyte microenvironment triggered osteocyte adhesion and migration behavior. Typical implantation sites, including rabbit femur, beagle femur, and beagle skull, were used to study the implantation sites effects on bone regeneration. In vivo experimental results indicated that different implantation sites showed significant differences. This study helps to understand the scaffolds geometrical microenvironment and implantation sites effects on osteogenesis mechanism. And it is beneficial to the development of bone implants with better bone regeneration ability.
Collapse
Affiliation(s)
- Xuan Pei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610064, CHINA
| | - Hongyuan Fan
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, CHINA
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan, CHINA
| | - Zhengyong Li
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, CHINA
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, CHINA
| | - Xingdong Zhang
- Department of Physics, Sichuan University, Chengdu, CHINA
| |
Collapse
|
85
|
Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP, Duan B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication 2020; 12:035020. [PMID: 32369796 PMCID: PMC8059098 DOI: 10.1088/1758-5090/ab906e] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional reconstruction of craniomaxillofacial defects is challenging, especially for the patients who suffer from traumatic injury, cranioplasty, and oncologic surgery. Three-dimensional (3D) printing/bioprinting technologies provide a promising tool to fabricate bone tissue engineering constructs with complex architectures and bioactive components. In this study, we implemented multi-material 3D printing to fabricate 3D printed PCL/hydrogel composite scaffolds loaded with dual bioactive small molecules (i.e. resveratrol and strontium ranelate). The incorporated small molecules are expected to target several types of bone cells. We systematically studied the scaffold morphologies and small molecule release profiles. We then investigated the effects of the released small molecules from the drug loaded scaffolds on the behavior and differentiation of mesenchymal stem cells (MSCs), monocyte-derived osteoclasts, and endothelial cells. The 3D printed scaffolds, with and without small molecules, were further implanted into a rat model with a critical-sized mandibular bone defect. We found that the bone scaffolds containing the dual small molecules had combinational advantages in enhancing angiogenesis and inhibiting osteoclast activities, and they synergistically promoted MSC osteogenic differentiation. The dual drug loaded scaffolds also significantly promoted in vivo mandibular bone formation after 8 week implantation. This work presents a 3D printing strategy to fabricate engineered bone constructs, which can likely be used as off-the-shelf products to promote craniomaxillofacial regeneration.
Collapse
Affiliation(s)
- Wenhai Zhang
- First Hip Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - St Patrick Reid
- College of Medicine, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical and Materials Engineering, University of Nebraska- Lincoln, Lincoln, NE, USA
| |
Collapse
|
86
|
Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020; 5:584-601. [PMID: 32405574 PMCID: PMC7210379 DOI: 10.1016/j.bioactmat.2020.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice. Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis. The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed. Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management. The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Corresponding author.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
87
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
88
|
Zhang M, Lin R, Wang X, Xue J, Deng C, Feng C, Zhuang H, Ma J, Qin C, Wan L, Chang J, Wu C. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. SCIENCE ADVANCES 2020; 6:eaaz6725. [PMID: 32219170 PMCID: PMC7083611 DOI: 10.1126/sciadv.aaz6725] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/21/2023]
Abstract
The integration of structure and function for tissue engineering scaffolds is of great importance in mimicking native bone tissue. However, the complexity of hierarchical structures, the requirement for mechanical properties, and the diversity of bone resident cells are the major challenges in constructing biomimetic bone tissue engineering scaffolds. Herein, a Haversian bone-mimicking scaffold with integrated hierarchical Haversian bone structure was successfully prepared via digital laser processing (DLP)-based 3D printing. The compressive strength and porosity of scaffolds could be well controlled by altering the parameters of the Haversian bone-mimicking structure. The Haversian bone-mimicking scaffolds showed great potential for multicellular delivery by inducing osteogenic, angiogenic, and neurogenic differentiation in vitro and accelerated the ingrowth of blood vessels and new bone formation in vivo. The work offers a new strategy for designing structured and functionalized biomaterials through mimicking native complex bone tissue for tissue regeneration.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rongcai Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cuijun Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Wan
- Beijing Ten Dimensions Technology Co., Ltd., Beijing 100084, P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author.
| |
Collapse
|
89
|
Tang F, Manz XD, Bongers A, Odell RA, Joukhdar H, Whitelock JM, Lord MS, Rnjak-Kovacina J. Microchannels Are an Architectural Cue That Promotes Integration and Vascularization of Silk Biomaterials in Vivo. ACS Biomater Sci Eng 2020; 6:1476-1486. [DOI: 10.1021/acsbiomaterials.9b01624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xue D. Manz
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam 1081 HV, The Netherlands
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ross A. Odell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
90
|
Gao Q, Xie C, Wang P, Xie M, Li H, Sun A, Fu J, He Y. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110269. [DOI: 10.1016/j.msec.2019.110269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/08/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023]
|
91
|
Li T, Ma B, Xue J, Zhai D, Zhao P, Chang J, Wu C. Bioinspired Biomaterials with a Brick-and-Mortar Microstructure Combining Mechanical and Biological Performance. Adv Healthc Mater 2020; 9:e1901211. [PMID: 31944597 DOI: 10.1002/adhm.201901211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Indexed: 01/30/2023]
Abstract
The fabrication of bone regeneration biomaterials, which simultaneously possess superior mechanical performances and excellent bioactivity, remains challenging because these properties are usually mutually exclusive. Herein, inspired by the brick-and-mortar architecture of nacre, lamellar silicate-based bioceramic composites are successfully prepared by constructing orderly layered bioceramics infiltrated with a biomedical resin interlayer via the bidirectional freezing technique. The lamellar composites possess high strength and proper Young's moduli, which match with human cortical bone. Furthermore, the lamellar composites can release bioactive ions with a controlled profile, which significantly enhance the cell proliferation of both rabbit bone mesenchymal stem cells and periodontal ligament cells in vitro. Moreover, with the degradation of silicate bioceramics in vivo, newly formed bone tissue can grow into the materials to present the bioceramic/new bone/resin sandwich-like lamellar microstructure. The silicate-based bioceramic composites with brick-and-mortar architecture represent an excellent biomaterial in combination of superior mechanical performances matching that of human cortical bone, and excellent bioactivity for potential load-bearing bone regeneration.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences No,19(A) Yuquan Road Beijing 100049 P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences No,19(A) Yuquan Road Beijing 100049 P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences No,19(A) Yuquan Road Beijing 100049 P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences No,19(A) Yuquan Road Beijing 100049 P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences No.1295 Dingxi Road Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences No,19(A) Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
92
|
Shen J, Wu R, Shen M, Wei Y, Lei L, Chen L, Yang X, Jin Z, Xu S, Gou Z. Effect of Foreign Ion Substitution and Micropore Tuning in Robocasting Single-Phase Bioceramic Scaffolds on the Physicochemical Property and Vascularization. ACS APPLIED BIO MATERIALS 2020; 3:292-301. [PMID: 35019445 DOI: 10.1021/acsabm.9b00817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inorganic powder slurry extrusion printing technique known as robocasting is an interesting method to fabricate complex porous architectures whereby feedstocks containing organic binders and powders are printed and the resulting scaffolds are subjected to sintering. A major limiting factor of this technique is the simultaneous tailoring of vascularization efficacy and osteogenic activity, usually done by adding the secondary phase in the organic slurry before the writing step. Mechanical mixing of biphasic powders is required to avoid compromising the biological performance and physical defects caused by significantly different physicochemical properties. This study addresses this issue by developing a selective ion doping and microstructure tuning for the production of bioceramic scaffolds with a binozzle robocasting process. Different metal ions (Sr2+, Mg2+) were doped into wollastonite (CaSiO3; CSi) powders considering the mechanical stability and bioactive enhancement of the bioceramic scaffolds. Subsequently, the Mg-doped CSi slurries were used as shell-nozzle feedstocks added with 5, 10, and 15 μm diameter polystyrene microbeads that allowed shell-layer micropore production in pore struts during sintering. Finally, the most promising pore-strut microstructures and mechanical evolution of scaffolds were evaluated, and especially the enhanced fibrovascularization potential was confirmed in dorsal muscle embedding model in rabbits. This study may open an avenue to designing multiproperty-tuned macro- and microporous bioceramics for bone regenerative medicine, especially in challenging bone defect conditions.
Collapse
Affiliation(s)
- Jianhua Shen
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronghuan Wu
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yingming Wei
- Department of Oral Medicine, the Second Affiliated hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Lihong Lei
- Department of Oral Medicine, the Second Affiliated hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Lili Chen
- Department of Oral Medicine, the Second Affiliated hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhouwen Jin
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
93
|
Customized Scaffold Design Based on Natural Peripheral Nerve Fascicle Characteristics for Biofabrication in Tissue Regeneration. BIOMED RESEARCH INTERNATIONAL 2020; 2019:3845780. [PMID: 31915690 PMCID: PMC6935460 DOI: 10.1155/2019/3845780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022]
Abstract
Objective The use of a biofabrication nerve scaffold, which mimics the nerve microstructure, as an alternative for autologous nerve transplantation is a promising strategy for treating peripheral nerve defects. This study aimed to design a customized biofabrication scaffold model with the characteristics of human peripheral nerve fascicles. Methods We used Micro-MRI technique to obtain different nerve fascicles. A full-length 28 cm tibial nerve specimen was obtained and was divided into 14 two-centimetre nerve segments. 3D models of the nerve fascicles were obtained by three-dimensional reconstruction after image segmentation. The central line of the nerve fascicles was fitted, and the aggregation of nerve fascicles was analysed quantitatively. The nerve scaffold was designed by simulating the clinical nerve defect and extracting information from the acquired nerve fascicle data; the scaffold design was displayed by 3D printing to verify the accuracy of the model. Result The microstructure of the sciatic nerve, tibial nerve, and common peroneal nerve in the nerve fascicles could be obtained by three-dimensional reconstruction. The number of cross fusions of tibial nerve fascicles from proximal end to distal end decreased gradually. By designing the nerve graft in accordance with the microstructure of the nerve fascicles, the 3D printed model demonstrated that the two ends of the nerve defect can be well matched. Conclusion The microstructure of the nerve fascicles is complicated and changeable, and the spatial position of each nerve fascicle and the long segment of the nerve fascicle aggregation show great changes at different levels. Under the premise of the stability of the existing imaging techniques, a large number of scanning nerve samples can be used to set up a three-dimensional database of the peripheral nerve fascicle microstructure, integrating the gross imaging information, and provide a template for the design of the downstream nerve graft model.
Collapse
|
94
|
Zhong L, Chen J, Ma Z, Feng H, Chen S, Cai H, Xue Y, Pei X, Wang J, Wan Q. 3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. NANOSCALE 2020; 12:24437-24449. [PMID: 33305769 DOI: 10.1039/d0nr06297a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A nanoZIF-8 modified porous composite scaffold was fabricated via extrusion-based 3D printing technology, which could promote osteogenesis in vitro and accelerate bone regeneration in vivo.
Collapse
|
95
|
Bagheri A, Engel KE, Bainbridge CWA, Xu J, Boyer C, Jin J. 3D printing of polymeric materials based on photo-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01419e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time, we report 3D printing of RAFT-based formulations to fabricate functional objects in a layer-by-layer fashion.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Kyle Edward Engel
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
| | | | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney NSW 2052
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney NSW 2052
- Australia
| | - Jianyong Jin
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| |
Collapse
|
96
|
Lim KS, Baptista M, Moon S, Woodfield TB, Rnjak-Kovacina J. Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine. Trends Biotechnol 2019; 37:1189-1201. [DOI: 10.1016/j.tibtech.2019.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
|
97
|
Li T, Zhai D, Ma B, Xue J, Zhao P, Chang J, Gelinsky M, Wu C. 3D Printing of Hot Dog-Like Biomaterials with Hierarchical Architecture and Distinct Bioactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901146. [PMID: 31592134 PMCID: PMC6774059 DOI: 10.1002/advs.201901146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/16/2019] [Indexed: 05/04/2023]
Abstract
Hierarchical structure has exhibited an important influence in the fields of supercapacitors, catalytic applications, and tissue engineering. The hot dog, a popular food, is composed of bread and sausage with special structures. In this study, inspired by the structure of a hot dog, the strategy of combining direct ink writing 3D printing with bidirectional freezing is devised to prepare hot dog-like scaffolds with hierarchical structure. The scaffolds are composed of hollow bioceramic tubes (mimicking the "bread" in hot dogs, pore size: ≈1 mm) embedded by bioceramic rods (mimicking the "sausage" in hot dogs, diameter: ≈500 µm) and the sausage-like bioceramic rods possess uniformly aligned lamellar micropores (lamellar pore size: ≈30 µm). By mimicking the functions of hierarchical structure of bone tissues for transporting and storing nutrients, the prepared hot dog-like scaffolds show excellent properties for loading and releasing drugs and proteins as well as for improving the delivery and differentiation of tissue cells. The in vivo study further demonstrates that both the hierarchical structure itself and the controlled drug delivery in hot dog-like scaffolds significantly contribute to the improved bone-forming bioactivity. This study suggests that the prepared hot dog-like scaffolds are a promising biomaterial for drug delivery, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
98
|
Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019; 11:042001. [PMID: 31315105 DOI: 10.1088/1758-5090/ab331e] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dawn of 3D printing in medicine has given the field the hope of vitality in many patients fighting a multitude of diseases. Also entitled bioprinting, this appertains to its sequential printing of precursor ink, embodying cells and polymer/composite in a predetermined trajectory. The precursor ink, in addition to cells, is predominantly constituted of hydrogels due to its biodegradability and ability to mimic the body's anatomy and mechanical features, e.g. bones, etc. This review paper is devoted to explicating the bioprinting (3D/4D) of alginate hydrogels, which are extracts from brown algae, through extrusion additive manufacturing. Alginates are salt derivatives of alginic acid and constitute long chains of polysaccharides, which provides pliability and gelling adeptness to their structure. Alginate hydrogel (employed for extrusion) can be pristine or composite relying on the requisite properties (target application controlled or in vivo environment), e.g. alginate-natural (gelatin/agarose/collagen/hyaluronic acid/etc) and alginate-synthetic (polyethylene glycol (PEG)/pluronic F-127/etc). Extrusion additive manufacturing of alginate is preponderate among others with its uncomplicated processing, material efficiency (cut down on wastage), and outspread adaptability for viscosities (0.03-6 * 104 Pa.s), but the procedure is limited by resolution (200 μm) in addition to accuracy. However, 3D-fabricated biostructures display rigidness (unvarying with conditions) i.e. lacks a smart response, which is reassured by accounting time feature as a noteworthy accessory to printing, interpreted as 4D bioprinting. This review propounds the specific processing itinerary for alginate (meanwhile traversing across its composites/blends with natural and synthetic consideration) in extrusion along with its pre-/during/post-processing parameters intrinsic to the process. Furthermore, propensity is also presented in its (alginate extrusion processing) application for tissue engineering, i.e. bones, cartilage (joints), brain (neural), ear, heart (cardiac), eyes (corneal), etc, due to a worldwide quandary over accessibility to natural organs for diverse types of diseases. Additionally, the review contemplates recently invented advance printing, i.e. 4D printing for biotic species, with its challenges and future opportunities.
Collapse
Affiliation(s)
- Prasansha Rastogi
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune- 411025, India
| | | |
Collapse
|
99
|
Motealleh A, Çelebi-Saltik B, Ermis N, Nowak S, Khademhosseini A, Kehr NS. 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication 2019; 11:045015. [DOI: 10.1088/1758-5090/ab3582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
100
|
Liu Y, Yu Q, Chang J, Wu C. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. NANOSCALE 2019; 11:13678-13708. [PMID: 31292580 DOI: 10.1039/c9nr02955a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanobiomaterials have attracted tremendous attention in the biomedical field. Especially in the past few years, a large number of low dimensional nanobiomaterials, including 0D nanostructures, 1D nanotubes and 2D nanosheets, were employed for tumor therapy due to their optically triggered tumor therapy effects and drug loading capacities. However, these low dimensional nanobiomaterials cannot support cell adhesion and possess poor tissue regeneration ability, thus they are not suitable for application in regenerative medicine. Three dimensional (3D) nanofiber scaffolds have attracted extensive attention in tissue regeneration, including bone, skin, nerve and cardiac tissues, due to their similar extracellular matrix structures. Additionally, many 3D scaffolds displayed bone and cartilage regeneration abilities. Therefore, to obtain materials with both tumor therapy and tissue regeneration abilities, it is meaningful and necessary to develop 3D nanobiomaterials with multifunctions. In this review, we systematically review the research progress of nanobiomaterials with varied dimensional structures including 0D, 1D, 2D and 3D, as well as evolutional functions from single tumor therapy to simultaneous tumor therapy and tissue regeneration. This review may pave the way for developing an interdisciplinary research of nanobiomaterials in combination of tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yaqin Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|