51
|
How do molecular interactions affect fluorescence behavior of AIEgens in solution and aggregate states? Sci China Chem 2021. [DOI: 10.1007/s11426-021-1083-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Huang T, Wang Q, Xiao S, Zhang D, Zhang Y, Yin C, Yang D, Ma D, Wang Z, Duan L. Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through‐space Charge Transfers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tianyu Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qi Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Shu Xiao
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chen Yin
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
53
|
Liu Y, Hua L, Zhao Z, Ying S, Ren Z, Yan S. High-Efficiency Solution-Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101326. [PMID: 34313017 PMCID: PMC8456236 DOI: 10.1002/advs.202101326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Indexed: 05/29/2023]
Abstract
The state-of-the-art luminescent materials are gained widely by utilizing thermally activated delayed fluorescence (TADF) mechanism. However, the feasible molecular designing strategy of fully exploiting triplet excitons to enhance TADF properties is still in demand. Herein, TADF emitters with multiple conversion channels of triplet excitons are designed by concisely halogenating the electron acceptors containing carbonyl moiety. Compared with the chlorinated and brominated analogues, the fluorinated emitter exhibits distinguishing molecular stacking structures, participating in the formation of trimers through integrating CH···F and C═O···H hydrogen bonds together. It is also demonstrated that the multiple channels can be involved synergistically to accelerate the spin-flip of triplet excitons, and to take charge of the relatively superior reverse intersystem crossing constant rate of 6.20 × 105 s-1 , and thus excellent photoluminescence quantum yields over 90% can easily be achieved. Then the solution-processable organic light emitting diode based on fluorinated emitter can achieve a record-high external quantum efficiency value of 27.13% and relatively low efficiency roll-off with remaining 24.74% at 1000 cd m-2 . This result manifests the significance of enhancing photophysical properties through constructing multiple conversion channels of triplets excitons for high-efficiency TADF emitters and provides a guideline for the future study.
Collapse
Affiliation(s)
- Yuchao Liu
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Lei Hua
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shian Ying
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber‐PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| |
Collapse
|
54
|
Wang X, Hu J, Lv J, Yang Q, Tian H, Shao S, Wang L, Jing X, Wang F. π‐Stacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
55
|
Wang X, Hu J, Lv J, Yang Q, Tian H, Shao S, Wang L, Jing X, Wang F. π-Stacked Donor-Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angew Chem Int Ed Engl 2021; 60:16585-16593. [PMID: 33942454 DOI: 10.1002/anie.202104145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Indexed: 01/14/2023]
Abstract
π-Stacked dendrimers consisting of cofacially aligned donors and acceptors are developed by introducing three dendritic teracridan donors with orthogonal configuration and three triazine acceptors in periphery of hexaphenylbenzene skeleton. The dendritic structure and orthogonal configuration of teracridan not only make their outer acridan segments approaching to acceptor in close distance, but also fix donor and acceptor in face-to-face alignment, leading to through-space charge transfer emission with thermally activated delayed fluorescence (TADF) effect. By regulating charge transfer strength via substituent effect of acceptor, emission color of the dendrimers can be tuned from blue to yellow/red region. Solution-processed two-color white organic light-emitting diodes (OLEDs) based on blue and yellow π-stacked donor-acceptor dendrimers exhibit the maximum external quantum efficiency of 20.6 % and maximum power efficiency of 58.9 lm W-1 , representing the state-of-the-art efficiency for all-TADF white OLEDs by solution process.
Collapse
Affiliation(s)
- Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
56
|
Yu L, Shi M, Wang Z, Xing X, Umair Ali M, He Y, Meng H. Tuning the UV/Vis Absorption Spectra of Electrochromic Small Molecular Radicals Through Bridge Modulation. Chemphyschem 2021; 22:1684-1691. [PMID: 34164904 DOI: 10.1002/cphc.202100369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Indexed: 02/02/2023]
Abstract
Studies on the optical properties of donor-bridge-acceptor (DBA) materials in their radical anion state are rare but important. Such investigations can help to extend the application of DBA materials to opto-electrochemical devices and no longer limit them to optical physics research. In this work, a series of new DBA materials, TACzs, for overcoming this limitation are reported. All TACzs show strong intramolecular charge transfer (ICT) in their photoexcited states, leading to noticeable solvatochromism. Besides, the electronic structures of their radical anions show great variability, displaying different absorption spectra and diverse colors. Moreover, the potential application of TACzs as electrochromic and electro-fluorochromic materials are discussed. This work demonstrates that manipulating the π bridge between the donor and acceptor in the DBA system is an effective pathway not only to tailor the ICT properties of materials in their neutral state, but also to tune the absorption characteristics of their radical anion state, which makes them very promising for applications in electroluminescent and electrochemical devices.
Collapse
Affiliation(s)
- Lirong Yu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ming Shi
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Xing Xing
- Research & Development Institute of Northwestern Polytechnical University (Shenzhen), Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yaowu He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
57
|
Poisson J, Tonge CM, Paisley NR, Sauvé ER, McMillan H, Halldorson SV, Hudson ZM. Exploring the Scope of Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R. Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hayley McMillan
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah V. Halldorson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
58
|
Liu Y, Tong X, Chen X, Wang Y, Ying S, Ren Z, Yan S. Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8997-9005. [PMID: 33570400 DOI: 10.1021/acsami.0c22494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endowed by a thermally activated delayed fluorescence (TADF) sensitizer with a high constant rate of reverse intersystem crossing, the singlet excitons could be accumulated and then delivered to emitting states through favorable Förster resonance energy transfer, bypassing the inefficient intersystem transition processes of emitters. However, the conventional intermolecular sensitization strategies suffer from inherent aggregation-induced quenching and inevitable phase segregation of TADF sensitizers and emitters. In this context, we proposed a novel intramolecular sensitization strategy by covalently incorporating the TADF sensitizer into conjugated polymeric emitters. After rationally regulating the proportions of sensitizer and emitter units in polymers, the intramolecular sensitized conjugated TADF polymers with anticipated photophysical properties and stable device performance were obtained. A superior kRISC value over 106 s-1 accompanied by a suppressed nonradiative transition of the triplet exciton could be gained; therefore, the photoluminescence quantum yield (PLQY) could reach nearly 90%. In accord with the superior PLQY values enhanced by our intramolecular sensitization strategy, the solution-processed organic light-emitting diodes (OLEDs) can achieve a maximum external quantum efficiency (EQE) value of 17.8% while still maintaining 16.0% at 1000 cd/m2 with extremely low efficiency roll-off. These results convincingly manifest the significance of an intramolecular sensitization strategy for designing high-efficiency polymeric TADF emitters.
Collapse
Affiliation(s)
- Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingwen Tong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinrui Chen
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yafei Wang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shian Ying
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
59
|
Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang CK, Fan J. Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. J Phys Chem A 2021; 125:175-186. [PMID: 33373223 DOI: 10.1021/acs.jpca.0c08994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of efficient sky-blue thermally activated delayed fluorescence (TADF) emitters is highly desired. However, the types and amounts of sky-blue TADF are far from meeting the requirements, and effective molecular design strategies are expected. Herein, the photophysical properties and excited-state dynamics of 12 molecules are theoretically studied based on the thermal vibration correlation function method. Distributions of holes and electrons are analyzed by the heat maps. The frontier molecular orbital distribution, adiabatic singlet-triplet energy gap, and reorganization energy are analyzed in detail. Furthermore, the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are studied, and the up-conversion process is illustrated. Our results indicate that different substitution positions and numbers play an important role in the luminescence properties of TADF molecules. The meta-position substitutions restrict the geometry variations, hinder the non-radiative energy consumption process, and promote the radiative process of TADF molecules. Meanwhile, molecules with ortho-position substitutions possess the smallest energy gaps (ΔEst) and the largest RISC rates. Moreover, molecules with the substitutions of one tBCz group and two PO groups have the smallest ΔEst and the largest spin orbital coupling. Thus, a wise molecular design strategy, namely, ortho-position substitutions as well as substitutions with one tBCz group and two PO groups, is proposed to facilitate the RISC process. Based on this rule, new efficient TADF molecules are theoretically designed and proposed. Our work reasonably elucidates the experimental measurements, and the effects of different substitution numbers and positions of secondary acceptors on TADF properties are highlighted, which could provide a theoretical perspective for designing efficient sky-blue TADF molecules.
Collapse
Affiliation(s)
- Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
60
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
61
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021; 60:5213-5219. [DOI: 10.1002/anie.202011384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
62
|
Ye JT, Qiu YQ. The inspiration and challenge for through-space charge transfer architecture: from thermally activated delayed fluorescence to non-linear optical properties. Phys Chem Chem Phys 2021; 23:15881-15898. [PMID: 34296718 DOI: 10.1039/d1cp02565a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Organic molecules consisting of electron donor (D) and electron acceptor (A) subunits linked by π-conjugated bridges are promising building blocks for thermally activated delayed fluorescence (TADF) and non-linear optics (NLO) materials due to their intramolecular charge transfer (CT) processes in response to external stimuli. According to the electron interaction pattern, the CT process in D-π-A architectures can be divided into two categories, through-bond/-space charge transfer (TB/TSCT). To date, research into the TADF properties of TSCT characteristic molecules has since seen significant growth. In fact, TSCT characteristic materials show great advantages in such NLO responses. In this perspective, we first briefly introduced the basic principles of NLO and TADF effects. Successively, we discuss the influence of TBCT and TSCT patterns on NLO and TADF properties, especially for TSCT characteristic. In the final part, we address the diversity and potential advantages of TSCT characteristic molecules as high-performance NLO materials. With these, it is expected that the greater structural flexibility of spatial conjugation can bring more functionality to NLO materials in the future.
Collapse
Affiliation(s)
- Jin-Ting Ye
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | | |
Collapse
|
63
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020; 60:2478-2484. [DOI: 10.1002/anie.202012070] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
64
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
65
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:20174-20182. [DOI: 10.1002/anie.202008912] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
66
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
67
|
Teng T, Li K, Cheng G, Wang Y, Wang J, Li J, Zhou C, Liu H, Zou T, Xiong J, Wu C, Zhang HX, Che CM, Yang C. Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorg Chem 2020; 59:12122-12131. [PMID: 32845614 DOI: 10.1021/acs.inorgchem.0c01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent coinage metal complexes have shown promising applications as electroluminescent emitters, photocatalysts/photosensitizers, and bioimaging/theranostic agents, rendering them attractive alternatives to transition metal complexes based on iridium, ruthenium, and platinum that have extremely low earth abundance. In comparison to the widely studied Au(I) and Cu(I) complexes, Ag(I) complexes have seldom been explored in this field because of their inferior emission properties. Herein, we report a novel series of [Ag(N^N)(P^P)]PF6 complexes exhibiting highly efficient thermally activated delayed fluorescence by using easily accessible neutral diamine ligands and commercially available ancillary diphosphine chelates. The photoluminescence quantum yields (PLQYs) of the Ag(I) emitters are ≤0.62 in doped films. The high PLQY with a large delayed fluorescence ratio enabled the fabrication of solution-processed organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 8.76%, among the highest values for Ag(I) emitter-based OLEDs. With superior emission properties and an excited state lifetime in the microsecond regime, together with its potent cytotoxicity, the selected Ag(I) complex has been used for simultaneous cell imaging and anticancer treatment in human liver carcinoma HepG2 cells, revealing the potential of luminescent Ag(I) complexes for biological applications such as theranostics.
Collapse
Affiliation(s)
- Teng Teng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Kai Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jian Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Jiafang Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Changjiang Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - He Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jinfan Xiong
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Chao Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
68
|
Tu Z, Yan Z, Liang X, Chen L, Wu Z, Wang Y, Zheng Y, Zuo J, Pan Y. Axially Chiral Biphenyl Compound-Based Thermally Activated Delayed Fluorescent Materials for High-Performance Circularly Polarized Organic Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000804. [PMID: 32775163 PMCID: PMC7404162 DOI: 10.1002/advs.202000804] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/18/2020] [Indexed: 05/10/2023]
Abstract
To boost intrinsic circularly polarized luminescence (CPL) properties of chiral emitters, an axially chiral biphenyl unit is inlaid in thermally activated delayed fluorescent (TADF) skeleton, urging the participation of chiral source in frontier molecular orbital distributions. A pair of enantiomers, (R)-BPPOACZ and (S)-BPPOACZ, containing the cyano as electron-withdrawing moieties and carbazole and phenoxazine as electron-donating units are synthesized and separated. The circularly polarized TADF enantiomers exhibit both high photoluminescence quantum yield of 86.10% and excellent CPL activities with maximum dissymmetry factor |g PL| values of almost 10-2 in solution and 1.8 × 10-2 in doped film, which are among the best values of previously reported small chiral organic materials. Moreover, the circularly polarized organic light-emitting diodes based on the TADF enantiomers achieve the maximum external quantum efficiency of 16.6% with extremely low efficiency roll-off. Obvious circularly polarized electroluminescence signals with |g EL| values of 4 × 10-3 are also recorded.
Collapse
Affiliation(s)
- Zhen‐Long Tu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Zhi‐Ping Yan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Xiao Liang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Lei Chen
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Zheng‐Guang Wu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced MicrostructuresJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
69
|
Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9750-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
70
|
Kothavale S, Chung WJ, Lee JY. Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18730-18738. [PMID: 32216325 DOI: 10.1021/acsami.9b22826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular design strategies are crucial to develop highly efficient and long-wavelength thermally activated delayed fluorescent (TADF) emitters because the inherent limitation of the energy gap law degrades the efficiency of the red or orange TADF emitters. To resolve the low efficiency issue, we designed and synthesized two TADF emitters, 4,4'-(6-(9,9-dimethylacridin-10(9H)-yl)-7-fluoroquinoxaline-2,3-diyl)dibenzonitrile (FDQCNAc) and 11-(9,9-dimethylacridin-10(9H)-yl)-12-fluorodibenzo[a,c]phenazine-3,6-dicarbonitrile (FBPCNAc), by utilizing fluorine and peripheral cyano-substituted quinoxaline and phenazine acceptors of 4,4'-(6-fluoroquinoxaline-2,3-diyl)dibenzonitrile (FDQCN) and 11-fluorodibenzo[a,c]phenazine-3,6-dicarbonitrile (FBPCN), respectively. A fluorine atom at the ortho position of the acridine donor acts as an auxiliary acceptor to minimize the singlet-triplet energy gap (ΔEST) below 0.1 eV and promotes the reverse intersystem crossing (RISC) process. Organic light-emitting diodes (OLEDs) fabricated with FDQCNAc and FBPCNAc emitters demonstrated high external quantum efficiencies (EQEs) of 27.6 and 23.8% in the yellow-red TADF OLEDs, respectively. In particular, the combination of the F auxiliary acceptor unit and the rigidified FBPCN acceptor unit enabled red-shifted emission by about 58 nm without much sacrifice of the EQE in the red region.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Won Jae Chung
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| |
Collapse
|