51
|
|
52
|
Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 2010; 8:e1000546. [PMID: 21103409 PMCID: PMC2982803 DOI: 10.1371/journal.pbio.1000546] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022] Open
Abstract
Although bacteria are continually acquired over the lifetime of an individual, the phylogenetic relationships of great ape species is mirrored in the compositions of their gut microbial communities. Multiple factors over the lifetime of an individual, including diet, geography, and physiologic state, will influence the microbial communities within the primate gut. To determine the source of variation in the composition of the microbiota within and among species, we investigated the distal gut microbial communities harbored by great apes, as present in fecal samples recovered within their native ranges. We found that the branching order of host-species phylogenies based on the composition of these microbial communities is completely congruent with the known relationships of the hosts. Although the gut is initially and continuously seeded by bacteria that are acquired from external sources, we establish that over evolutionary timescales, the composition of the gut microbiota among great ape species is phylogenetically conserved and has diverged in a manner consistent with vertical inheritance. The microbial communities that inhabit the gastrointestinal tract of humans and other mammals are complex, dynamic, and critical to both health and disease. The composition and constituents of these communities are influenced by multiple factors such as host diet, geography, physiology, and disease state. Given the central role of the gut microbiota in the physiology of the host, it is important to determine whether it is predictable and substantially determined by the host, or variable and largely determined by the external environment (including diet) experienced by the host. A valuable way of determining the relative contributions of such factors is by comparing gut microbial communities in closely related host species. Applying a high-throughput sequencing approach, we profiled the distal gut microbiotae of great ape species sampled in their native ranges and then employed a parsimony-based analysis of phylogenetically informative phylotypes (i.e., bacterial taxa residing in multiple individuals) to determine the relationships among the diverse microbial communities. Our analyses revealed a clear species-specific signature of microbial community structure. Moreover, the pattern of relationships among the five great ape species (Homo sapiens, Pan troglodytes, P. paniscus, Gorilla gorilla, and G. beringei) inferred from their fecal microbial communities was identical to that inferred from host mitochondrial DNA, indicating that host phylogeny shapes the gut microbiota over evolutionary timescales. It seems after all that you are not what you eat.
Collapse
|
53
|
Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS One 2010; 5:e13963. [PMID: 21103066 PMCID: PMC2980488 DOI: 10.1371/journal.pone.0013963] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. METHODOLOGY/PRINCIPAL FINDINGS We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. CONCLUSION/SIGNIFICANCE Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome.
Collapse
Affiliation(s)
- Suleyman Yildirim
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Carl J. Yeoman
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Maksim Sipos
- Department of Physics, University of Illinois, Urbana, Illinois, United States of America
| | - Manolito Torralba
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Brenda A. Wilson
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rebecca M. Stumpf
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Anthropology, University of Illinois, Urbana, Illinois, United States of America
| | - Steven R. Leigh
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Anthropology, University of Illinois, Urbana, Illinois, United States of America
| | - Bryan A. White
- The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Karen E. Nelson
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
54
|
Abstract
The bacterial diversity in fecal samples from the wild pygmy loris was examined with a 16S rDNA clone library and restriction fragment length polymorphism analysis. The clones were classified as Firmicutes (43.1%), Proteobacteria (34.5%), Actinobacteria (5.2%), and Bacteroidetes (17.2%). The 58 different kinds of 16S rDNA sequences were classified into 16 genera and 20 uncultured bacteria. According to phylogenetic analysis, the major genera within the Proteobacteria was Pseudomonas, comprising 13.79% of the analyzed clone sequences. Many of the isolated rDNA sequences did not correspond to known microorganisms, but had high homology to uncultured clones found in human feces.
Collapse
|
55
|
Szekely BA, Singh J, Marsh TL, Hagedorn C, Werre SR, Kaur T. Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. Am J Primatol 2010; 72:566-74. [PMID: 20146237 DOI: 10.1002/ajp.20809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the intestinal flora of chimpanzees has not been studied, insight into this dynamic environment can be obtained through studies on their feces. We analyzed fecal samples from human-habituated, wild chimpanzees at Mahale Mountains National Park, Tanzania, and compared microbial community profiles to determine if members of the same social group were similar. Between July and December 2007, we collected fresh fecal samples from 12 individuals: four juveniles, four adolescents, and four adults, including three parent-offspring pairs. Each sample was analyzed using Terminal-Restriction Fragment Length Polymorphism of amplified 16S rRNA genes. Twelve different profiles were generated, having between 1 and 15 Terminal-Restriction Fragments (T-RFs). Overall, a total of 23 different T-RFs were produced. Putative assignments of T-RFs corresponded to the phyla Firmicutes (Clostridia, Bacilli, and Lactobacilli), Bacteroidetes, Tenericutes (Mollicutes Class), Actinobacteria, and Proteobacteria, as well as to uncultured or unidentified organisms. Firmicutes and Bacteroidetes phyla and Mollicutes Class were the most commonly assigned in 11, 8, and 8 of the samples, respectively, with this being the first report of Mollicutes in wild chimpanzees. Principal Components Analysis (PCA) revealed clustering of nine samples, and 80.5% of the diversity was accounted for by three samples. Morisita indices of community similarity ranged between 0.00 and 0.89, with dissimiliarity (<0.5) between most samples when compared two at a time. Our findings suggest that, although phylotypes are common among individuals, profiles among members of the same social group are host-specific. We conclude that factors other than social group, such as kinship and age, may influence fecal bacterial profiles of wild chimpanzees, and recommend that additional studies be conducted.
Collapse
Affiliation(s)
- Brian A Szekely
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 1880 Pratt Drive, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
56
|
Ushida K, Uwatoko Y, Adachi Y, Soumah AG, Matsuzawa T. Isolation of Bifidobacteria from feces of chimpanzees in the wild. J GEN APPL MICROBIOL 2010; 56:57-60. [PMID: 20339221 DOI: 10.2323/jgam.56.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazunari Ushida
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
57
|
Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Gänzle M. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Can J Microbiol 2010; 55:1335-46. [PMID: 20029525 DOI: 10.1139/w09-083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.
Collapse
Affiliation(s)
- Clarissa Schwab
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
58
|
Kisidayová S, Váradyová Z, Pristas P, Piknová M, Nigutová K, Petrzelková KJ, Profousová I, Schovancová K, Kamler J, Modrý D. Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 2009; 71:548-57. [PMID: 19367605 DOI: 10.1002/ajp.20687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We examined fiber fermentation capacity of captive chimpanzee fecal microflora from animals (n = 2) eating low-fiber diets (LFDs; 14% neutral detergent fiber (NDF) and 5% of cellulose) and high-fiber diets (HFDs; 26% NDF and 15% of cellulose), using barley grain, meadow hay, wheat straw, and amorphous cellulose as substrates for in vitro gas production of feces. We also examined the effects of LFD or HFD on populations of eubacteria and archaea in chimpanzee feces. Fecal inoculum fermentation from the LFD animals resulted in a higher in vitro dry matter digestibility (IVDMD) and gas production than from the HFD animals. However, there was an interaction between different inocula and substrates on IVDMD, gas and methane production, and hydrogen recovery (P <0.001). On the other hand, HFD inoculum increased the production of total short-chain fatty acids (SCFAs), acetate, and propionate with all tested substrates. The effect of the interaction between the inoculum and substrate on total SCFAs was not observed. Changes in fermentation activities were associated with changes in bacterial populations. DGGE of bacterial DNA revealed shift in population of both archaeal and eubacterial communities. However, a much more complex eubacterial population structure represented by many bands was observed compared with the less variable archaeal population in both diets. Some archaeal bands were related to the uncultured archaea from gastrointestinal tracts of homeothermic animals. Genomic DNA in the dominant eubacterial band in the HFD inoculum was confirmed to be closely related to DNA from Eubacterium biforme. Interestingly, the predominant band in the LFD inoculum represented DNA of probably new or yet-to-be-sequenced species belonging to mycoplasms. Collectively, our results indicated that fecal microbial populations of the captive chimpanzees are not capable of extensive fiber fermentation; however, there was a positive effect of fiber content on SCFA production.
Collapse
Affiliation(s)
- Svetlana Kisidayová
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
The microbial communities of humans are characteristic and complex mixtures of microorganisms that have co-evolved with their human hosts. The species that make up these communities vary between hosts as a result of restricted migration of microorganisms between hosts and strong ecological interactions within hosts, as well as host variability in terms of diet, genotype and colonization history. The shared evolutionary fate of humans and their symbiotic bacteria has selected for mutualistic interactions that are essential for human health, and ecological or genetic changes that uncouple this shared fate can result in disease. In this way, looking to ecological and evolutionary principles might provide new strategies for restoring and maintaining human health.
Collapse
|