51
|
Maddahi Y, Zareinia K, Tomanek B, Sutherland GR. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training. Proc Inst Mech Eng H 2018; 232:954411918806934. [PMID: 30355029 DOI: 10.1177/0954411918806934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A haptic device is an actuated human-machine interface utilized by an operator to dynamically interact with a remote environment. This interaction could be virtual (virtual reality) or physical such as using a robotic arm. To date, different mechanisms have been considered to actuate the haptic device to reflect force feedback from the remote environment. In a low-force environment or limited working envelope, the control of some actuation mechanisms such as hydraulic and pneumatic may be problematic. In the development of a haptic device, challenges include limited space, high accuracy or resolution, limitations in kinematic and dynamic solutions, points of singularity, dexterity as well as control system development/design. Furthermore, the haptic interface designed to operate in a magnetic resonance imaging environment adds additional challenges related to electromagnetic interference, static/variable magnetic fields, and the use of magnetic resonance-compatible materials. Such a device would allow functional magnetic resonance imaging to obtain information on the subject's brain activity while performing a task. When used for surgical trainees, functional magnetic resonance imaging could provide an assessment of surgical skills. In this application, the trainee, located supine within the magnet bore while observing the task environment on a graphical user interface, uses a low-force magnetic resonance-compatible haptic device to perform virtual surgical tasks in a limited space. In the quest to develop such a device, this review reports the multiple challenges faced and their potential solutions. The review also investigates efforts toward prototyping such devices and classifies the main components of a magnetic resonance-compatible device including actuation and sensory systems and materials used.
Collapse
Affiliation(s)
- Yaser Maddahi
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kourosh Zareinia
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- 2 Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Boguslaw Tomanek
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- 3 Division of Medical Physics, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Garnette R Sutherland
- 1 Project NeuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
52
|
Mattay RR, Davtyan K, Bilello M, Mamourian AC. Do All Patients with Multiple Sclerosis Benefit from the Use of Contrast on Serial Follow-Up MR Imaging? A Retrospective Analysis. AJNR Am J Neuroradiol 2018; 39:2001-2006. [PMID: 30287455 DOI: 10.3174/ajnr.a5828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/26/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Patients with multiple sclerosis routinely have MR imaging with contrast every 6-12 months to assess response to medication. Multiple recent studies provide evidence of tissue deposition of MR imaging contrast agents, questioning the long-term safety of these agents. The goal of this retrospective image-analysis study was to determine whether contrast could be reserved for only those patients who show new MS lesions on follow-up examinations. MATERIALS AND METHODS We retrospectively reviewed brain MRIs of 138 patients. To increase our sensitivity, we used a previously described computerized image-comparison software to evaluate the stability or progression of multiple sclerosis white matter lesions in noncontrast FLAIR sequences. We correlated these findings with evidence of contrast-enhancing lesions on the enhanced T1 sequence from the same scan. RESULTS Thirty-three scans showed an increase in white matter lesion burden. Among those 33 patients, 14 examinations also demonstrated enhancing new lesions. While we found a single example of enhancement of a pre-existing white matter lesion that appeared unchanged in size, that same examination showed an overall increase in lesion burden with enhancement of other, new lesions. Thus, we found that all patients with enhancing lesions had evidence of progression on their noncontrast imaging. CONCLUSIONS Because all enhancing lesions were associated with new lesions on unenhanced imaging and progression was only evident in 24% of patients, in patients with relapsing-remitting MS, it is reasonable to consider reserving contrast for only those patients with evidence of progression on noncontrast MR images.
Collapse
Affiliation(s)
- R R Mattay
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - K Davtyan
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Bilello
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - A C Mamourian
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
53
|
Belova AN, Solovieva VS, Boyko AN. [Anemia and dysregulation of iron metabolism in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:10-17. [PMID: 30160662 DOI: 10.17116/jnevro201811808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anemia is one of the common diseases comorbid with multiple sclerosis (MS). This article reviews the prevalence and types of anemia in MS patients. It has been shown that anemia is often accompanied by a decrease in serum iron level. The authors present the data on iron metabolism in patients with MS and MRI findings concerning deposits of iron in the gray matter of the brain. The causal relationship between abnormalities in iron metabolism and MS remains unclear; this study allows to approach the understanding of the MS pathogenesis and to increase the efficacy of therapy for this disease.
Collapse
Affiliation(s)
- A N Belova
- Privolzskyi Federal Medical Research Center, Nizhny Novgorod, Russia
| | - V S Solovieva
- City Clinical Hospital #3, Regional Center fo Multiple Sclerosis, Nizhny Novgorod, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Center for Demyelination Diseases 'Neuroclinic', Moscow, Russia
| |
Collapse
|
54
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
55
|
Yan F, He N, Lin H, Li R. Iron deposition quantification: Applications in the brain and liver. J Magn Reson Imaging 2018; 48:301-317. [PMID: 29897645 DOI: 10.1002/jmri.26161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Iron has long been implicated in many neurological and other organ diseases. It is known that over and above the normal increases in iron with age, in certain diseases there is an excessive iron accumulation in the brain and liver. MRI is a noninvasive means by which to image the various structures in the brain in three dimensions and quantify iron over the volume of the object of interest. The quantification of iron can provide information about the severity of iron-related diseases as well as quantify changes in iron for patient follow-up and treatment monitoring. This article provides an overview of current MRI-based methods for iron quantification, specifically for the brain and liver, including: signal intensity ratio, R2 , R2*, R2', phase, susceptibility weighted imaging and quantitative susceptibility mapping (QSM). Although there are numerous approaches to measuring iron, R2 and R2* are currently preferred methods in imaging the liver and QSM has become the preferred approach for imaging iron in the brain. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:301-317.
Collapse
Affiliation(s)
- Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
56
|
Sati P. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:101-109. [PMID: 29705032 PMCID: PMC6022748 DOI: 10.1016/j.jmr.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The long-standing relationship between ultra-high-field (7 T) MRI and multiple sclerosis (MS) has brought new insights to our understanding of lesion evolution and its associated pathology. With the recent FDA approval of a commercially available scanner, 7 T MRI is finally entering the clinic with great expectations about its potential added value. By looking through the prism of MS diagnosis, this perspective article discusses current limitations and prospects of 7 T MRI techniques relevant to helping clinicians diagnose patients encountered in daily practice.
Collapse
Affiliation(s)
- Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC 1400, Building 10 Room 5C103, Bethesda, MD 20852, USA.
| |
Collapse
|
57
|
Absinta M, Sati P, Fechner A, Schindler MK, Nair G, Reich DS. Identification of Chronic Active Multiple Sclerosis Lesions on 3T MRI. AJNR Am J Neuroradiol 2018; 39:1233-1238. [PMID: 29724768 DOI: 10.3174/ajnr.a5660] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE MR imaging-pathologic studies have reported that paramagnetic rims on 7T susceptibility-based MR imaging identify, in vivo, the subset of MS lesions with compartmentalized inflammation at the lesion edge and associated remyelination failure. Here, we assessed the reliability of detecting these rims on high-resolution 3T phase images. MATERIALS AND METHODS High-resolution T2* and phase MR imaging was collected in 20 patients with MS at 3T (3D segmented EPI, 0.65 mm3) and 7T (2D gradient-echo, 0.2 × 0.2 × 1 mm) MR imaging. In each case, 5 discrete chronic (nonenhancing) MS lesions were selected on T2 FLAIR images for rim evaluation. Five raters experienced in MS imaging contributed to the rim assessment, of whom 3 worked independently on 3T data, and 2, on 7T data. Consensus agreement was reached for both 3T and 7T rim evaluations. Discrepancies between 3T and 7T were discussed, and consensus was reached. RESULTS Phase rims were seen in 34 lesions at 7T and in 36 lesions at 3T by consensus. Inter- and intrarater reliability were "substantial/good" both at 3T and 7T analysis (Cohen κ, >0.71). Based on consensus agreement, the reliability of rim visualization at 3T versus 7T was 0.78 (κ) with a pair-wise agreement of 90%. More lesions were judged to be false-positive or false-negative at 3T than at 7T. CONCLUSIONS Nearly all 7T paramagnetic rims can also be seen at 3T. Imaging at 3T opens the possibility of implementing paramagnetic rims as an outcome measure in multicenter, MR imaging-based clinical trials aimed at treating perilesional persistent inflammation and its potential effects on remyelination.
Collapse
Affiliation(s)
- M Absinta
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - P Sati
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - A Fechner
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.,Department of Radiology (A.F.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - M K Schindler
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - G Nair
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - D S Reich
- From the Translational Neuroradiology Section (M.A., P.S., A.F., M.K.S., G.N., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
58
|
Miyata M, Kakeda S, Yoneda T, Ide S, Watanabe K, Moriya J, Korogi Y. Signal Change of Acute Cortical and Juxtacortical Microinfarction on Follow-Up MRI. AJNR Am J Neuroradiol 2018; 39:834-840. [PMID: 29599171 DOI: 10.3174/ajnr.a5606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Although the clinical importance of cortical microinfarcts has become well-recognized recently, the evolution of cortical microinfarcts on MR imaging is not fully understood. The aim of this study was to examine the temporal changes in acute cortical microinfarcts using susceptibility-weighted imaging and conventional MR imaging. MATERIALS AND METHODS Patients with acute infarcts located in the cortical and/or juxtacortical region measuring ≤10 mm in axial diameter based on diffusion-weighted imaging who had a follow-up 3T MR imaging were retrospectively included in the study. All lesions did not show hypointensity on initial T2*WI. For cortical and/or juxtacortical microinfarcts detected on initial DWI, 2 neuroradiologists evaluated the follow-up MR imaging (T2WI, FLAIR, T2*WI, and SWI) and assessed lesion signal intensities and locations (cortical microinfarcts or microinfarcts with juxtacortical white matter involvement). RESULTS On initial DWI, 2 radiologists observed 180 cortical and/or juxtacortical microinfarcts in 35 MR imaging examinations in 25 patients; on follow-up, the neuroradiologists identified 29 cortical microinfarcts (16%) on T2WI, 9 (5%) on FLAIR, 4 (2%) on T2*, and 97 (54%) on SWI. All cortical microinfarcts detected with any follow-up MR imaging showed hyperintensity on T2WI/FLAIR and/or hypointensity on T2*WI and SWI. CONCLUSIONS SWI revealed conversion (paramagnetic susceptibility changes) of acute cortical microinfarcts, suggesting that a substantial number of cortical microinfarcts may contain hemorrhagic components.
Collapse
Affiliation(s)
- M Miyata
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - S Kakeda
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - T Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences (T.Y.), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - S Ide
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - K Watanabe
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - J Moriya
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Y Korogi
- From the Department of Radiology (M.M., S.K., S.I., K.W., J.M., Y.K.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
59
|
Zeng C, Du S, Han Y, Fu J, Luo Q, Xiang Y, Chen X, Luo T, Li Y, Zheng Y. Optic radiations are thinner and show signs of iron deposition in patients with long-standing remitting-relapsing multiple sclerosis: an enhanced T 2*-weighted angiography imaging study. Eur Radiol 2018; 28:4447-4454. [PMID: 29713769 PMCID: PMC6132724 DOI: 10.1007/s00330-018-5461-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
Abstract
Objective This study aimed to investigate iron deposition and thickness and signal changes in optic radiation (OR) by enhanced T2*-weighted angiography imaging (ESWAN) in patients with relapsing-remitting multiple sclerosis (RRMS) with unilateral and bilateral lesions or no lesions. Methods Fifty-one RRMS patients (42 patients with a disease duration [DD] ≥ 2 years [group Mor], nine patients with a DD < 2 years [group Les]) and 51 healthy controls (group Con) underwent conventional magnetic resonance imaging (MRI) and ESWAN at 3.0 T. The mean phase value (MPV) of the OR was measured on the phase image, and thickness and signal changes of the OR were observed on the magnitude image. Results The average MPVs for the OR were 1,981.55 ± 7.75 in group Mor, 1,998.45 ± 2.01 in group Les, and 2,000.48 ± 5.53 in group Con. In group Mor, 28 patients with bilateral OR lesions showed bilateral OR thinning with a heterogeneous signal, and 14 patients with unilateral OR lesions showed ipsilateral OR thinning with a heterogeneous signal. In the remaining nine patients without OR lesions and in group Con, the bilateral OR had a normal appearance. In the patients, a negative correlation was found between DD and OR thickness and a positive correlation was found between MPV and OR thickness. Conclusions We confirmed iron deposition in the OR in the RRMS patients, and the OR thickness was lower in the patients than in the controls. Key Points • Enhanced T2*-weighted magnetic resonance angiography (ESWAN) provides new insights into multiple sclerosis (MS). • Focal destruction of the optic radiation (OR) is detectable by ESWAN. • Iron deposition in OR can be measured on ESWAN phase image in MS patients. • OR thickness was lower in the patients than in the controls. • Iron deposition and thickness changes of the OR are associated with disease duration. Electronic supplementary material The online version of this article (10.1007/s00330-018-5461-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jialiang Fu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
60
|
Quantifying iron content in magnetic resonance imaging. Neuroimage 2018; 187:77-92. [PMID: 29702183 DOI: 10.1016/j.neuroimage.2018.04.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023] Open
Abstract
Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.
Collapse
|
61
|
Inglese M, Fleysher L, Oesingmann N, Petracca M. Clinical applications of ultra-high field magnetic resonance imaging in multiple sclerosis. Expert Rev Neurother 2018; 18:221-230. [PMID: 29369733 PMCID: PMC6300152 DOI: 10.1080/14737175.2018.1433033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is of paramount importance for the early diagnosis of multiple sclerosis (MS) and MRI findings are part of the MS diagnostic criteria. There is a growing interest in the use of ultra-high-field strength -7 Tesla- (7T) MRI to investigate, in vivo, the pathological substrate of the disease. Areas covered: An overview of 7T MRI applications in MS focusing on increased sensitivity for lesion detection, specificity of the central vein sign and better understanding of MS pathophysiology. Implications for disease diagnosis, monitoring and treatment planning are discussed. Expert commentary: 7T MRI provides increased signal-to-noise and contrast-to-noise-ratio that allow higher spatial resolution and better detection of anatomical and pathological features. The high spatial resolution reachable at 7T has been a game changer for neuroimaging applications not only in MS but also in epilepsy, brain tumors, dementia, and neuro-psychiatric disorders. Furthermore, the first 7T device has recently been cleared for clinical use by the food and drug administration.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Icahn School of Medicine, Mount
Sinai, New York
- Radiology, Icahn School of Medicine, Mount Sinai, New
York
- Neuroscience, Icahn School of Medicine, Mount Sinai, New
York
| | - Lazar Fleysher
- Radiology, Icahn School of Medicine, Mount Sinai, New
York
| | | | - Maria Petracca
- Department of Neurology, Icahn School of Medicine, Mount
Sinai, New York
- Department of Neuroscience, Federico II University, Naples,
Italy
| |
Collapse
|
62
|
How to choose the right MR sequence for your research question at 7 T and above? Neuroimage 2018; 168:119-140. [DOI: 10.1016/j.neuroimage.2017.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|
63
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
64
|
Trattnig S, Springer E, Bogner W, Hangel G, Strasser B, Dymerska B, Cardoso PL, Robinson SD. Key clinical benefits of neuroimaging at 7T. Neuroimage 2018; 168:477-489. [PMID: 27851995 PMCID: PMC5832016 DOI: 10.1016/j.neuroimage.2016.11.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/06/2016] [Accepted: 11/12/2016] [Indexed: 01/15/2023] Open
Abstract
The growing interest in ultra-high field MRI, with more than 35.000 MR examinations already performed at 7T, is related to improved clinical results with regard to morphological as well as functional and metabolic capabilities. Since the signal-to-noise ratio increases with the field strength of the MR scanner, the most evident application at 7T is to gain higher spatial resolution in the brain compared to 3T. Of specific clinical interest for neuro applications is the cerebral cortex at 7T, for the detection of changes in cortical structure, like the visualization of cortical microinfarcts and cortical plaques in Multiple Sclerosis. In imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology may be visualized with excellent spatial resolution. Using Susceptibility Weighted Imaging, the plaque-vessel relationship and iron accumulations in Multiple Sclerosis can be visualized, which may provide a prognostic factor of disease. Vascular imaging is a highly promising field for 7T which is dealt with in a separate dedicated article in this special issue. The static and dynamic blood oxygenation level-dependent contrast also increases with the field strength, which significantly improves the accuracy of pre-surgical evaluation of vital brain areas before tumor removal. Improvement in acquisition and hardware technology have also resulted in an increasing number of MR spectroscopic imaging studies in patients at 7T. More recent parallel imaging and short-TR acquisition approaches have overcome the limitations of scan time and spatial resolution, thereby allowing imaging matrix sizes of up to 128×128. The benefits of these acquisition approaches for investigation of brain tumors and Multiple Sclerosis have been shown recently. Together, these possibilities demonstrate the feasibility and advantages of conducting routine diagnostic imaging and clinical research at 7T.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
| | - Elisabeth Springer
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Barbara Dymerska
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Pedro Lima Cardoso
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Simon Daniel Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
65
|
Azevedo CJ, Cen SY, Khadka S, Liu S, Kornak J, Shi Y, Zheng L, Hauser SL, Pelletier D. Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease. Ann Neurol 2018; 83:223-234. [PMID: 29328531 DOI: 10.1002/ana.25150] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Thalamic volume is a candidate magnetic resonance imaging (MRI)-based marker associated with neurodegeneration to hasten development of neuroprotective treatments. Our objective is to describe the longitudinal evolution of thalamic atrophy in MS and normal aging, and to estimate sample sizes for study design. METHODS Six hundred one subjects (2,632 MRI scans) were analyzed. Five hundred twenty subjects with relapse-onset MS (clinically isolated syndrome, n = 90; relapsing-remitting MS, n = 392; secondary progressive MS, n = 38) underwent annual standardized 3T MRI scans for an average of 4.1 years, including a 1mm3 3-dimensional T1-weighted sequence (3DT1; 2,485 MRI scans). Eighty-one healthy controls (HC) were scanned longitudinally on the same scanner using the same protocol (147 MRI scans). 3DT1s were processed using FreeSurfer's longitudinal pipeline after lesion inpainting. Rates of normalized thalamic volume loss in MS and HC were compared in linear mixed effects models. Simulation-based sample size calculations were performed incorporating the rate of atrophy in HC. RESULTS Thalamic volume declined significantly faster in MS subjects compared to HC, with an estimated decline of -0.71% per year (95% confidence interval [CI] = -0.77% to -0.64%) in MS subjects and -0.28% per year (95% CI = -0.58% to 0.02%) in HC (p for difference = 0.007). The rate of decline was consistent throughout the MS disease duration and across MS clinical subtypes. Eighty or 100 subjects per arm (α = 0.1 or 0.05, respectively) would be needed to detect the maximal effect size with 80% power in a 24-month study. INTERPRETATION Thalamic atrophy occurs early and consistently throughout MS. Preliminary sample size calculations appear feasible, adding to its appeal as an MRI marker associated with neurodegeneration. Ann Neurol 2018;83:223-234.
Collapse
Affiliation(s)
| | - Steven Y Cen
- Department of Neurology, University of Southern California, Los Angeles, CA
| | | | - Shuang Liu
- Department of Neurology, Yale University, New Haven, CT
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Yonggang Shi
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Ling Zheng
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA
| |
Collapse
|
66
|
|
67
|
Al-Radaideh A, Athamneh I, Alabadi H, Hbahbih M. Cortical and Subcortical Morphometric and Iron Changes in Relapsing-Remitting Multiple Sclerosis and Their Association with White Matter T2 Lesion Load. Clin Neuroradiol 2018; 29:51-64. [DOI: 10.1007/s00062-017-0654-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023]
|
68
|
Yao Y, Nguyen TD, Pandya S, Zhang Y, Hurtado Rúa S, Kovanlikaya I, Kuceyeski A, Liu Z, Wang Y, Gauthier SA. Combining Quantitative Susceptibility Mapping with Automatic Zero Reference (QSM0) and Myelin Water Fraction Imaging to Quantify Iron-Related Myelin Damage in Chronic Active MS Lesions. AJNR Am J Neuroradiol 2017; 39:303-310. [PMID: 29242359 DOI: 10.3174/ajnr.a5482] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE A hyperintense rim on susceptibility in chronic MS lesions is consistent with iron deposition, and the purpose of this study was to quantify iron-related myelin damage within these lesions as compared with those without rim. MATERIALS AND METHODS Forty-six patients had 2 longitudinal quantitative susceptibility mapping with automatic zero reference scans with a mean interval of 28.9 ± 11.4 months. Myelin water fraction mapping by using fast acquisition with spiral trajectory and T2 prep was obtained at the second time point to measure myelin damage. Mixed-effects models were used to assess lesion quantitative susceptibility mapping and myelin water fraction values. RESULTS Quantitative susceptibility mapping scans were on average 6.8 parts per billion higher in 116 rim-positive lesions compared with 441 rim-negative lesions (P < .001). All rim-positive lesions retained a hyperintense rim over time, with increasing quantitative susceptibility mapping values of both the rim and core regions (P < .001). Quantitative susceptibility mapping scans and myelin water fraction in rim-positive lesions decreased from rim to core, which is consistent with rim iron deposition. Whole lesion myelin water fractions for rim-positive and rim-negative lesions were 0.055 ± 0.07 and 0.066 ± 0.04, respectively. In the mixed-effects model, rim-positive lesions had on average 0.01 lower myelin water fraction compared with rim-negative lesions (P < .001). The volume of the rim at the initial quantitative susceptibility mapping scan was negatively associated with follow-up myelin water fraction (P < .01). CONCLUSIONS Quantitative susceptibility mapping rim-positive lesions maintained a hyperintense rim, increased in susceptibility, and had more myelin damage compared with rim-negative lesions. Our results are consistent with the identification of chronic active MS lesions and may provide a target for therapeutic interventions to reduce myelin damage.
Collapse
Affiliation(s)
- Y Yao
- From the Department of Radiology (Y.Y., Y.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.)
| | - T D Nguyen
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.)
| | - S Pandya
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.)
| | - Y Zhang
- From the Department of Radiology (Y.Y., Y.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - S Hurtado Rúa
- Department of Mathematics (S.H.R.), Cleveland State University, Cleveland, Ohio
| | - I Kovanlikaya
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.)
| | - A Kuceyeski
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.)
| | - Z Liu
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.).,Department of Biomedical Engineering (Z.L., Y.W.), Cornell University, Ithaca, New York
| | - Y Wang
- Departments of Radiology (Y.Y., T.D.N., S.P., I.K., A.K., Z.L., Y.W.).,Department of Biomedical Engineering (Z.L., Y.W.), Cornell University, Ithaca, New York
| | - S A Gauthier
- Neurology (S.A.G.), Weill Cornell Medicine, New York, New York
| |
Collapse
|
69
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
70
|
Neuroimaging Techniques to Assess Inflammation in Multiple Sclerosis. Neuroscience 2017; 403:4-16. [PMID: 28764938 DOI: 10.1016/j.neuroscience.2017.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic neurological disease that represents a leading cause of disability in young adults and is characterized by inflammation and degeneration of both white matter (WM) and gray matter (GM). Defining the presence or absence of inflammation on individual basis is a key point in choosing the therapy and monitoring the treatment response. Magnetic resonance imaging (MRI) represents the most sensitive non-invasive tool to monitor inflammation in the clinical practice. Indeed, in the early phase of inflammation MRI detects new lesions as extrusion of gadolinium contrast agents across the altered blood-brain-barrier (BBB). The occurrence of MRI lesions is used to confirm diagnosis and has been validated as surrogate marker of relapse to monitor response to treatments. However, focal gadolinium-enhancing lesions represent only an aspect of neuroinflammation. Recent studies have suggested the presence of a widespread inflammation of the central nervous system (CNS), which is mainly related to microglial cells activation occurring both at the edge of chronic focal lesions and throughout the normal-appearing brain tissue. New imaging techniques have been developed to study diffuse inflammation taking place outside the focal plaques. The scope of this review is to examine the various neuroimaging techniques and those biophysical quantities that can be non-invasively detected to enlighten the different aspects of neuroinflammation. Some techniques are commonly used in the clinical practice, while others are used in the research field to better understand the pathophysiological mechanisms of the disease and the role of inflammation.
Collapse
|
71
|
Burgetova A, Dusek P, Vaneckova M, Horakova D, Langkammer C, Krasensky J, Sobisek L, Matras P, Masek M, Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1079-1086. [PMID: 28450431 DOI: 10.3174/ajnr.a5166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Potential differences between primary progressive and relapsing remitting multiple sclerosis are the subject of ongoing controversial discussions. The aim of this work was to determine whether and how primary-progressive and relapsing-remitting multiple sclerosis subtypes differ regarding conventional MR imaging parameters, cerebral iron deposits, and their association with clinical status. MATERIALS AND METHODS We analyzed 24 patients with primary-progressive MS, 80 with relapsing-remitting MS, and 20 healthy controls with 1.5T MR imaging for assessment of the conventional quantitative parameters: T2 lesion load, T1 lesion load, brain parenchymal fraction, and corpus callosum volume. Quantitative susceptibility mapping was performed to estimate iron concentration in the deep gray matter. RESULTS Decreased susceptibility within the thalamus in relapsing-remitting MS compared with primary-progressive MS was the only significant MR imaging difference between these MS subtypes. In the relapsing-remitting MS subgroup, the Expanded Disability Status Scale score was positively associated with conventional parameters reflecting white matter lesions and brain atrophy and with iron in the putamen and caudate nucleus. A positive association with putaminal iron and the Expanded Disability Status Scale score was found in primary-progressive MS. CONCLUSIONS Susceptibility in the thalamus might provide additional support for the differentiation between primary-progressive and relapsing-remitting MS. That the Expanded Disability Status Scale score was associated with conventional MR imaging parameters and iron concentrations in several deep gray matter regions in relapsing-remitting MS, while only a weak association with putaminal iron was observed in primary-progressive MS suggests different driving forces of disability in these MS subtypes.
Collapse
Affiliation(s)
- A Burgetova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - P Dusek
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Neuroradiology (P.D.), University Medicine Göttingen, Göttingen, Germany
| | - M Vaneckova
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - D Horakova
- Neurology (P.D., D.H.), Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Langkammer
- Department of Neurology (C.L.), Medical University of Graz, Graz, Austria
| | - J Krasensky
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - L Sobisek
- Department of Statistics and Probability (L.S.), University of Economics, Prague, Czech Republic
| | - P Matras
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - M Masek
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| | - Z Seidl
- From the Departments of Radiology (A.B., M.V., J.K., P.M., M.M., Z.S.)
| |
Collapse
|
72
|
Castellaro M, Magliozzi R, Palombit A, Pitteri M, Silvestri E, Camera V, Montemezzi S, Pizzini FB, Bertoldo A, Reynolds R, Monaco S, Calabrese M. Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1087-1095. [PMID: 28408633 DOI: 10.3174/ajnr.a5150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/21/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping has been used to characterize iron and myelin content in the deep gray matter of patients with multiple sclerosis. Our aim was to characterize the susceptibility mapping of cortical lesions in patients with MS and compare it with neuropathologic observations. MATERIALS AND METHODS The pattern of microglial activation was studied in postmortem brain tissues from 16 patients with secondary-progressive MS and 5 age-matched controls. Thirty-six patients with MS underwent 3T MR imaging, including 3D double inversion recovery and 3D-echo-planar SWI. RESULTS Neuropathologic analysis revealed the presence of an intense band of microglia activation close to the pial membrane in subpial cortical lesions or to the WM border of leukocortical cortical lesions. The quantitative susceptibility mapping analysis revealed 131 cortical lesions classified as hyperintense; 33, as isointense; and 84, as hypointense. Quantitative susceptibility mapping hyperintensity edge found in the proximity of the pial surface or at the white matter/gray matter interface in some of the quantitative susceptibility mapping-hyperintense cortical lesions accurately mirrors the microglia activation observed in the neuropathology analysis. CONCLUSIONS Cortical lesion susceptibility maps are highly heterogeneous, even at individual levels. Quantitative susceptibility mapping hyperintensity edge found in proximity to the pial surface might be due to the subpial gradient of microglial activation.
Collapse
Affiliation(s)
- M Castellaro
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - R Magliozzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - A Palombit
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Pitteri
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - E Silvestri
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - V Camera
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - S Montemezzi
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - F B Pizzini
- Neuroradiology and Radiology Units (S.M., F.B.P.), Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - A Bertoldo
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - R Reynolds
- Division of Brain Sciences (R.M., R.R.), Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - S Monaco
- From the Department of Information Engineering (M. Castellaro, A.P., E.S., A.B.), University of Padova, Padova, Italy
| | - M Calabrese
- Neurology B (M. Castellaro, R.M., M.P., V.C., S.M., M. Calabrese), Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
73
|
Newton BD, Wright K, Winkler MD, Bovis F, Takahashi M, Dimitrov IE, Sormani MP, Pinho MC, Okuda DT. Three-Dimensional Shape and Surface Features Distinguish Multiple Sclerosis Lesions from Nonspecific White Matter Disease. J Neuroimaging 2017; 27:613-619. [DOI: 10.1111/jon.12449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022] Open
Affiliation(s)
- Braeden D. Newton
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program; Clinical Center for Multiple Sclerosis; Dallas TX
| | - Katy Wright
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program; Clinical Center for Multiple Sclerosis; Dallas TX
| | - Mandy D. Winkler
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program; Clinical Center for Multiple Sclerosis; Dallas TX
| | - Francesca Bovis
- University of Genoa; Department of Health Sciences (DISSAL); Genoa Italy
| | - Masaya Takahashi
- Advanced Imaging Research Center; UT Southwestern Medical Center; Dallas TX
| | - Ivan E. Dimitrov
- Advanced Imaging Research Center; UT Southwestern Medical Center; Dallas TX
- Philips Medical Systems; Cleveland OH
| | - Maria Pia Sormani
- University of Genoa; Department of Health Sciences (DISSAL); Genoa Italy
| | - Marco C. Pinho
- UT Southwestern Medical Center; Department of Radiology; Dallas TX
| | - Darin T. Okuda
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program; Clinical Center for Multiple Sclerosis; Dallas TX
| |
Collapse
|
74
|
Yablonskiy DA, Sukstanskii AL. Effects of biological tissue structural anisotropy and anisotropy of magnetic susceptibility on the gradient echo MRI signal phase: theoretical background. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3655. [PMID: 27862452 PMCID: PMC6375105 DOI: 10.1002/nbm.3655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 05/11/2023]
Abstract
Quantitative susceptibility mapping is a potentially powerful technique for mapping tissue magnetic susceptibility from gradient recalled echo (GRE) MRI signal phase. In this review, we present up-to-date theoretical developments in analyzing the relationships between GRE signal phase and the underlying tissue microstructure and magnetic susceptibility at the cellular level. Two important phenomena contributing to the GRE signal phase are at the focus of this review - tissue structural anisotropy (e.g. cylindrical axonal bundles in white matter) and magnetic susceptibility anisotropy. One of the most intriguing and challenging problems in this field is calculating the so-called Lorentzian contribution to the phase shift induced by the local environment - magnetized tissue structures that have dimensions smaller than the imaging voxel (e.g. cells, cellular components, blood capillaries). In this review, we briefly discuss a "standard" approach to this problem, based on introduction of an imaginary Lorentzian cavity, as well as a more recent method - the generalized Lorentzian tensor approach (GLTA) - that is based on a statistical approach and a direct solution of the magnetostatic Maxwell equations. The latter adequately accounts for both types of anisotropy: the anisotropy of magnetic susceptibility and the structural tissue anisotropy. In the GLTA the frequency shift due to the local environment is characterized by the Lorentzian tensor L^, which has a substantially different structure than the susceptibility tensor χ^. While the components of χ^ are compartmental susceptibilities "weighted" by their volume fractions, the components of L^ are weighted by specific numerical factors depending on tissue geometrical microsymmetry. In multi-compartment structures, the components of the Lorentzian tensor also depend on the compartmental relaxation properties, hence the MR pulse sequence settings. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Correspondence to: D.A. Yablonskiy, Mallinckrodt Institute of Radiology, St Louis, MO, USA.
| | | |
Collapse
|
75
|
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3569. [PMID: 27434134 DOI: 10.1002/nbm.3569] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
- MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
76
|
Schindler MK, Sati P, Reich DS. Insights from Ultrahigh Field Imaging in Multiple Sclerosis. Neuroimaging Clin N Am 2017; 27:357-366. [PMID: 28391792 DOI: 10.1016/j.nic.2016.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ultrahigh-field (≥7 T) magnetic resonance (MR) imaging is being used at many leading academic medical centers to study neurologic disorders. The improved spatial resolution and anatomic detail are due to the increase in signal-to-noise and contrast-to-noise ratio at higher magnetic field strengths. Ultrahigh-field MR imaging improves multiple sclerosis (MS) lesion detection, with particular sensitivity to detect cortical lesions. The increase in magnetic susceptibility effects inherent to ultrahigh field can be used to detect pathologic features of MS lesions, including a central vein, potentially useful for diagnostic considerations, and heterogeneity among MS lesions, potentially useful in determining lesion outcomes.
Collapse
Affiliation(s)
- Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Medical Center Boulevard, 10 Center Drive, MSC 1400, Bethesda, MD 20892, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Medical Center Boulevard, 10 Center Drive, MSC 1400, Bethesda, MD 20892, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Medical Center Boulevard, 10 Center Drive, MSC 1400, Bethesda, MD 20892, USA.
| |
Collapse
|
77
|
Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Höftberger R, Berger T, Auff E, Leutmezer F, Trattnig S, Lassmann H, Bagnato F, Hametner S. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol 2017; 133:25-42. [PMID: 27796537 PMCID: PMC5209400 DOI: 10.1007/s00401-016-1636-z] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
In multiple sclerosis (MS), iron accumulates inside activated microglia/macrophages at edges of some chronic demyelinated lesions, forming rims. In susceptibility-based magnetic resonance imaging at 7 T, iron-laden microglia/macrophages induce a rim of decreased signal at lesion edges and have been associated with slowly expanding lesions. We aimed to determine (1) what lesion types and stages are associated with iron accumulation at their edges, (2) what cells at the lesion edges accumulate iron and what is their activation status, (3) how reliably can iron accumulation at the lesion edge be detected by 7 T magnetic resonance imaging (MRI), and (4) if lesions with rims enlarge over time in vivo, when compared to lesions without rims. Double-hemispheric brain sections of 28 MS cases were stained for iron, myelin, and microglia/macrophages. Prior to histology, 4 of these 28 cases were imaged at 7 T using post-mortem susceptibility-weighted imaging. In vivo, seven MS patients underwent annual neurological examinations and 7 T MRI for 3.5 years, using a fluid attenuated inversion recovery/susceptibility-weighted imaging fusion sequence. Pathologically, we found iron rims around slowly expanding and some inactive lesions but hardly around remyelinated shadow plaques. Iron in rims was mainly present in microglia/macrophages with a pro-inflammatory activation status, but only very rarely in astrocytes. Histological validation of post-mortem susceptibility-weighted imaging revealed a quantitative threshold of iron-laden microglia when a rim was visible. Slowly expanding lesions significantly exceeded this threshold, when compared with inactive lesions (p = 0.003). We show for the first time that rim lesions significantly expanded in vivo after 3.5 years, compared to lesions without rims (p = 0.003). Thus, slow expansion of MS lesions with rims, which reflects chronic lesion activity, may, in the future, become an MRI marker for disease activity in MS.
Collapse
|
78
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
79
|
Sati P, Oh J, Constable RT, Evangelou N, Guttmann CRG, Henry RG, Klawiter EC, Mainero C, Massacesi L, McFarland H, Nelson F, Ontaneda D, Rauscher A, Rooney WD, Samaraweera APR, Shinohara RT, Sobel RA, Solomon AJ, Treaba CA, Wuerfel J, Zivadinov R, Sicotte NL, Pelletier D, Reich DS. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016; 12:714-722. [DOI: 10.1038/nrneurol.2016.166] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
80
|
Abstract
AbstractFrom the earliest pathological studies the perivenular localization of the demyelination in multiple sclerosis (MS) has been observed. It has recently been suggested that obstructions to venous flow or inadequate venous valves in the great veins in the neck, thorax and abdomen can cause damaging backflow into the cerebral and spinal cord circulations. Paolo Zamboni and colleagues have demonstrated abnormal venous circulation in some multiple sclerosis patients using non-invasive sonography and invasive venography. Furthermore, they have obtained apparent clinical improvement or stabilization by endovascular ballooning of points of obstruction in the great veins in some, at least temporarily. If non-invasive observations by others validate their initial observations of a significantly increased prevalence of venous obstructions in MS then trials of angioplasty/stenting would be justified in selected cases in view of the biological plausibility of the concept.
Collapse
|
81
|
Al-Radaideh AM, Rababah EM. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review. Clin Imaging 2016; 40:987-96. [DOI: 10.1016/j.clinimag.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
|
82
|
Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, Meani A, Filippi M, Jacobson S, Cortese ICM, Reich DS. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 2016; 126:2597-609. [PMID: 27270171 DOI: 10.1172/jci86198] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/12/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In some active multiple sclerosis (MS) lesions, a strong immune reaction at the lesion edge may contain growth and thereby isolate the lesion from the surrounding parenchyma. Our previous studies suggest that this process involves opening of the blood-brain barrier in capillaries at the lesion edge, seen on MRI as centripetal contrast enhancement and a colocalized phase rim. We hypothesized that using these features to characterize early lesion evolution will allow in vivo tracking of tissue degeneration and/or repair, thus improving the evaluation of potential therapies for chronic active lesions. METHODS Centripetally and centrifugally enhancing lesions were studied in 17 patients with MS using 7-tesla MRI. High-resolution, susceptibility-weighted, T1-weighted (before/after gadolinium), and dynamic contrast-enhanced scans were acquired at baseline and months 1, 3, 6, and 12. For each lesion, time evolution of the phase rim, lesion volume, and T1 hypointensity were assessed. In autopsies of 3 progressive MS cases, the histopathology of the phase rim was determined. RESULTS In centripetal lesions, a phase rim colocalized with initial contrast enhancement. In 12 of 22, this phase rim persisted after enhancement resolved. Compared with centripetal lesions with transient rim, those with persistent rim had less volume shrinkage and became more T1 hypointense between months 3 and 12. No centrifugal lesions developed phase rims at any time point. Pathologically, persistent rims corresponded to an iron-laden inflammatory myeloid cell population at the edge of chronic demyelinated lesions. CONCLUSION In early lesion evolution, a persistent phase rim in lesions that shrink least and become more T1 hypointense over time suggests that the rim might mark failure of early lesion repair and/or irreversible tissue damage. In later stages of MS, phase rim lesions continue to smolder, exerting detrimental effects on affected brain tissue. TRIAL REGISTRATION NCT00001248. FUNDING The Intramural Research Program of NINDS supported this study.
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW Neurologists are frequently asked to consult on patients with incidentally observed anomalies on brain MRI that may be suggestive of multiple sclerosis (MS). The identification of such findings has important clinical management implications. This review provides an overview and practical clinical approach options for clinicians. RECENT FINDINGS An increase in the number of brain MRI studies performed annually is expected to result in detection of a corresponding greater number of unanticipated anomalies. A disproportionate number of patients referred to neurologists for this reason have punctate subcortical T2 hyperintensities that appear nonspecific in origin rather than having imaging features concerning for MS. However, in some instances, the MRI characteristics appear to be typical for demyelination. When these features are observed, efforts should be pursued to identify an accurate explanation for the preclinical findings through rigorous clinical evaluation, paraclinical testing, and utilization of longitudinal imaging. SUMMARY The identification of subjects with incidental T2 hyperintensities highly suggestive of MS is important for patient counseling and management. Continued neurologic evaluations and reassessment of the original clinical impression are recommended to ensure accurate interpretation of the available data.
Collapse
|
84
|
Zhang Y, Gauthier SA, Gupta A, Chen W, Comunale J, Chiang GCY, Zhou D, Askin G, Zhu W, Pitt D, Wang Y. Quantitative Susceptibility Mapping and R2* Measured Changes during White Matter Lesion Development in Multiple Sclerosis: Myelin Breakdown, Myelin Debris Degradation and Removal, and Iron Accumulation. AJNR Am J Neuroradiol 2016; 37:1629-35. [PMID: 27256856 DOI: 10.3174/ajnr.a4825] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping and R2* are sensitive to myelin and iron changes in multiple sclerosis lesions. This study was designed to characterize lesion changes on quantitative susceptibility mapping and R2* at various gadolinium-enhancement stages. MATERIALS AND METHODS This study included 64 patients with MS with different enhancing patterns in white matter lesions: nodular, shell-like, nonenhancing < 1 year old, and nonenhancing 1-3 years old. These represent acute, late acute, early chronic, and late chronic lesions, respectively. Susceptibility values measured on quantitative susceptibility mapping and R2* values were compared among the 4 lesion types. Their differences were assessed with a generalized estimating equation, controlling for Expanded Disability Status Scale score, age, and disease duration. RESULTS We analyzed 203 lesions: 80 were nodular-enhancing, of which 77 (96.2%) were isointense on quantitative susceptibility mapping; 33 were shell-enhancing, of which 30 (90.9%) were hyperintense on quantitative susceptibility mapping; and 49 were nonenhancing lesions < 1 year old and 41 were nonenhancing lesions 1-3 years old, all of which were hyperintense on quantitative susceptibility mapping. Their relative susceptibility/R2* values were 0.5 ± 4.4 parts per billion/-5.6 ± 2.9 Hz, 10.2 ± 5.4 parts per billion/-8.0 ± 2.6 Hz, 20.2 ± 7.8 parts per billion/-3.1 ± 2.3 Hz, and 33.2 ± 8.2 parts per billion/-2.0 ± 2.6 Hz, respectively, and were significantly different (P < .005). CONCLUSIONS Early active MS lesions with nodular enhancement show R2* decrease but no quantitative susceptibility mapping change, reflecting myelin breakdown; late active lesions with peripheral enhancement show R2* decrease and quantitative susceptibility mapping increase in the lesion center, reflecting further degradation and removal of myelin debris; and early or late chronic nonenhancing lesions show both quantitative susceptibility mapping and R2* increase, reflecting iron accumulation.
Collapse
Affiliation(s)
- Y Zhang
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | | | - A Gupta
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - W Chen
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Comunale
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - G C-Y Chiang
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - D Zhou
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.)
| | - G Askin
- Healthcare Policy and Research (G.A.), Weill Cornell Medical College, New York, New York
| | - W Zhu
- From the Department of Radiology (Y.Z., W.C., W.Z.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Pitt
- Department of Neurology (D.P.), School of Medicine, Yale University, New Haven, Connecticut
| | - Y Wang
- Departments of Radiology (Y.Z., A.G., J.C., G.C.-Y.C., D.Z., Y.W.) Department of Biomedical Engineering (Y.W.), Cornell University, Ithaca, New York.
| |
Collapse
|
85
|
Li X, Allen RP, Earley CJ, Liu H, Cruz TE, Edden RAE, Barker PB, van Zijl PCM. Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla. Sleep Med 2016; 22:75-82. [PMID: 27544840 PMCID: PMC4992945 DOI: 10.1016/j.sleep.2016.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 05/07/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Altered brain iron homeostasis with regional iron deficiency has been previously reported in several studies of restless legs syndrome (RLS) patients. Inconsistencies still exist, however, in the reported iron changes in different brain regions and different RLS phenotypes. The purpose of this study was to assess differences in brain iron concentrations between RLS patients and healthy controls and their relation to severity of disease and periodic limb movement during sleep (PLMS). METHODS Assessment of brain iron was done using quantitative magnetic susceptibility measurement, which has been shown to correlate well with the tissue iron content in brain's gray matter. Thirty-nine RLS patients and 29 age-matched healthy controls were scanned at 7 T. Magnetic susceptibilities in substantia nigra (SN), thalamus, striatum, and several iron-rich gray matter regions were quantified and compared with related clinical measures. RESULTS Compared with healthy controls, RLS patients showed significantly decreased magnetic susceptibility in the thalamus and dentate nucleus. No significant difference was found in the SN between RLS patients and healthy controls, but a significant correlation was observed between magnetic susceptibility in SN and the PLMS measure. CONCLUSIONS Using quantitative magnetic susceptibility as an in vivo indicator of brain iron content, the present study supports the general hypothesis of brain iron deficiency in RLS and indicates its possible link to PLMS.
Collapse
Affiliation(s)
- Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Richard P Allen
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Earley
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongjun Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Tiana E Cruz
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
86
|
Abstract
Over the past few decades, MRI-based visualization of demyelinated CNS lesions has become pivotal to the diagnosis and monitoring of multiple sclerosis (MS). In this Review, we outline current efforts to correlate imaging findings with the pathology of lesion development in MS, and the pitfalls that are being encountered in this research. Multimodal imaging at high and ultra-high magnetic field strengths is yielding biologically relevant insights into the pathophysiology of blood-brain barrier dynamics and both active and chronic inflammation, as well as mechanisms of lesion healing and remyelination. Here, we parallel the results in humans with advances in imaging of a primate model of MS - experimental autoimmune encephalomyelitis (EAE) in the common marmoset - in which demyelinated lesions resemble their human counterparts far more closely than do EAE lesions in the rodent. This approach holds promise for the identification of innovative biological markers, and for next-generation clinical trials that will focus more on tissue protection and repair.
Collapse
|
87
|
Cronin MJ, Wharton S, Al-Radaideh A, Constantinescu C, Evangelou N, Bowtell R, Gowland PA. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:543-57. [PMID: 27112155 PMCID: PMC4891374 DOI: 10.1007/s10334-016-0560-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition. MATERIALS AND METHODS Thirty-nine Subjects were scanned at 7 T, using 3D T 2*-weighted and T 1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susceptibility maps were generated using a thresholded k-space division method. Lesions were compared visually and using a 1D profiling algorithm. RESULTS Lesions displaying peripheral rings in the phase images were identified in 10 of the 39 subjects. Dipolar projections were apparent in the phase images outside of the extent of several of these lesions; however, QSM images showed peripheral rings without such projections. These projections appeared ring-like in a small number of phase images where no ring was observed in QSM. 1D profiles of six well-isolated example lesions showed that QSM contrast corresponds more closely to the magnitude images than phase contrast. CONCLUSIONS Phase images contain dipolar projections, which confounds their use in the investigation of tissue composition in MS lesions. Quantitative susceptibility maps correct these projections, providing insight into the composition of MS lesions showing peripheral rings.
Collapse
Affiliation(s)
- Matthew John Cronin
- Brain Imaging and Analysis Centre, Duke University, Durham, NC, 27710, USA
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Samuel Wharton
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ali Al-Radaideh
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Department of Medical Imaging, Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Cris Constantinescu
- Sir Peter Mansfield Imaging Centre, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nikos Evangelou
- Sir Peter Mansfield Imaging Centre, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Penny Anne Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
88
|
Harrison DM, Li X, Liu H, Jones CK, Caffo B, Calabresi PA, van Zijl P. Lesion Heterogeneity on High-Field Susceptibility MRI Is Associated with Multiple Sclerosis Severity. AJNR Am J Neuroradiol 2016; 37:1447-53. [PMID: 26939635 DOI: 10.3174/ajnr.a4726] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Susceptibility MR imaging contrast variations reflect alterations in brain iron and myelin content, making this imaging tool relevant to studies of multiple sclerosis lesion heterogeneity. In this study, we aimed to characterize the relationship of high-field, susceptibility contrasts in multiple sclerosis lesions to clinical outcomes. MATERIALS AND METHODS Twenty-four subjects with multiple sclerosis underwent 7T MR imaging of the brain, disability examinations, and a fatigue inventory. The inverse of T2* relaxation time (R2*), frequency, and relative susceptibility (from quantitative susceptibility mapping) were analyzed in 306 white matter lesions. RESULTS Most lesions were hypointense on R2* (88% without a rim, 5% with). Lesions that were hyperintense on quantitative susceptibility mapping were more frequent in relapsing-remitting than in progressive multiple sclerosis (54% versus 35%, P = .018). Hyperintense lesion rims on quantitative susceptibility maps were more common in progressive multiple sclerosis and patients with higher levels of disability and fatigue. Mean lesion R2* was inversely related to disability and fatigue and significantly reduced in progressive multiple sclerosis. Relative susceptibility was lower in lesions in progressive multiple sclerosis (median, -0.018 ppm; range, -0.070 to 0.022) than in relapsing-remitting MS (median, -0.010 ppm; range, -0.062 to 0.052; P = .003). CONCLUSIONS A progressive clinical phenotype and greater disability and fatigue were associated with lower R2* and relative susceptibility values (suggestive of low iron due to oligodendrocyte loss) and rimmed lesions (suggestive of chronic inflammation) in this multiple sclerosis cohort. Lesion heterogeneity on susceptibility MR imaging may help explain disability in multiple sclerosis and provide a window into the processes of demyelination, oligodendrocyte loss, and chronic lesion inflammation.
Collapse
Affiliation(s)
- D M Harrison
- From the Department of Neurology (D.M.H.), University of Maryland School of Medicine, Baltimore, Maryland Departments of Neurology (D.M.H., P.A.C.)
| | - X Li
- Radiology and Radiological Science (X.L., C.K.J., P.v.Z.) F.M. Kirby Research Center for Functional Brain Imaging (X.L., H.L., C.K.J., P.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
| | - H Liu
- F.M. Kirby Research Center for Functional Brain Imaging (X.L., H.L., C.K.J., P.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland Department of Radiology (H.L.), Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - C K Jones
- Radiology and Radiological Science (X.L., C.K.J., P.v.Z.) F.M. Kirby Research Center for Functional Brain Imaging (X.L., H.L., C.K.J., P.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
| | - B Caffo
- Biostatistics (B.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - P van Zijl
- Radiology and Radiological Science (X.L., C.K.J., P.v.Z.) F.M. Kirby Research Center for Functional Brain Imaging (X.L., H.L., C.K.J., P.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
89
|
Spring cleaning: time to rethink imaging research lines in MS? J Neurol 2016; 263:1893-902. [PMID: 26886204 DOI: 10.1007/s00415-016-8060-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/15/2022]
Abstract
Together with recently advanced MRI technological capability, new needs and updated questions are emerging in imaging research in multiple sclerosis (MS), especially with respect to the identification of novel in vivo biomarkers of MS-relevant pathological processes. Expected benefits will involve approaches to diagnosis and clinical classification. In detail, three main points of discussion are addressed in this review: (1) new imaging biomarkers (centrifugal/centripetal lesion enhancement, central vein, paramagnetic rims at the lesion edge, subpial cortical demyelination); (2) thinking about high-resolution MR from a pathological perspective (from postmortem to in vivo staging); and (3) the clinical utility of quantitative MRI. In this context, research efforts should increasingly be focused on the direct in vivo visualization of "hidden" inflammation, beyond what can be detected with conventional gadolinium-based methods, as well as remyelination and repair, since these are likely to represent critical pathological processes and potential therapeutic targets. Concluding remarks concern the limitations, challenges, and ultimately clinical role of non-conventional MRI techniques.
Collapse
|
90
|
Futatsuya K, Kakeda S, Yoneda T, Ueda I, Watanabe K, Moriya J, Murakami Y, Ide S, Ogasawara A, Ohnari N, Okada K, Adachi H, Korogi Y. Juxtacortical Lesions in Multiple Sclerosis: Assessment of Gray Matter Involvement Using Phase Difference-enhanced Imaging (PADRE). Magn Reson Med Sci 2016; 15:349-354. [PMID: 26841855 PMCID: PMC5608108 DOI: 10.2463/mrms.mp.2015-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: In multiple sclerosis (MS), a juxtacortical lesion at the border between the gray matter (GM) and subcortical white matter (WM) may often involve the GM. A recently developed, phase-weighted magnetic resonance imaging (MRI) technique “phase difference enhanced imaging (PADRE)” can delineate the GM and WM clearly due to the difference in myelin concentration. We evaluated whether PADRE is useful for the detection of GM involvement in the juxtacortical MS lesions. Methods: One neuroradiologist reviewed the conventional MRI in 13 MS patients and selected 48 juxtacortical lesions. At the first reading session with the conventional MRI alone (T2-weighted imaging, and two-dimensional and three-dimensional fluid-attenuated inversion recovery), two other neuroradiologists classified the lesions into three patterns according to their anatomical locations: (a) subcortical WM lesions involving the subcortical WM alone; (b) intracortical (IC) lesions involving the GM alone; (c) mixed GM/subcortical WM (mixed) lesions involving the both subcortical WM and GM. We defined the subcortical WM as a WM within a distance of 10 mm from inner edge of the GM. For the analyses, we excluded the white matter lesions further than 10 mm from inner edge of the GM. At the second reading session MRI and PADRE were available and the radiologists re-evaluated their prior classification. Results: At the first reading session, 27 lesions were classified as (a), 1 as (b), and 20 as (c). Therefore, a total of 21 lesions (44%) were judged to involve the GM. At the second reading session, the classification of 15 (31%) lesions changed; all 15 lesions were judged to involve the GM on the PADRE. Interobserver agreement (kappa value) was 0.84 for the first- and 0.95 for the second reading session. Conclusion: PADRE is useful for detecting GM involvement of the juxtacortical MS lesions.
Collapse
Affiliation(s)
- Koichiro Futatsuya
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 2016; 15:292-303. [PMID: 26822746 PMCID: PMC4760851 DOI: 10.1016/s1474-4422(15)00393-2] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023]
Abstract
In patients presenting with a clinically isolated syndrome, MRI can support and substitute clinical information in the diagnosis of multiple sclerosis by showing disease dissemination in space and time and by helping to exclude disorders that can mimic multiple sclerosis. MRI criteria were first included in the diagnostic work-up for multiple sclerosis in 2001, and since then several modifications to the criteria have been proposed in an attempt to simplify lesion-count models for showing disease dissemination in space, change the timing of MRI scanning to show dissemination in time, and increase the value of spinal cord imaging. Since the last update of these criteria, new data on the use of MRI to establish dissemination in space and time have become available, and MRI technology has improved. State-of-the-art MRI findings in these patients were discussed in a MAGNIMS workshop, the goal of which was to provide an evidence-based and expert-opinion consensus on proposed modifications to MRI criteria for the diagnosis of multiple sclerosis.
Collapse
|
92
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016; 17:ijms17010100. [PMID: 26784172 PMCID: PMC4730342 DOI: 10.3390/ijms17010100] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/06/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
93
|
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int J Mol Sci 2016. [PMID: 26784172 DOI: 10.3390/ijmsl17010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS.
Collapse
Affiliation(s)
- Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - David Pitt
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
94
|
Abstract
Due to its sensitivity to the different multiple sclerosis (MS)-related abnormalities, magnetic resonance imaging (MRI) has become an established tool to diagnose MS and to monitor its evolution. MRI has been included in the diagnostic workup of patients with clinically isolated syndromes suggestive of MS, and ad hoc criteria have been proposed and are regularly updated. In patients with definite MS, the ability of conventional MRI techniques to explain patients' clinical status and progression of disability is still suboptimal. Several advanced MRI-based technologies have been applied to estimate overall MS burden in the different phases of the disease. Their use has allowed the heterogeneity of MS pathology in focal lesions, normal-appearing white matter and gray matter to be graded in vivo. Recently, additional features of MS pathology, including macrophage infiltration and abnormal iron deposition, have become quantifiable. All of this, combined with functional imaging techniques, is improving our understanding of the mechanisms associated with MS evolution. In the near future, the use of ultrahigh-field systems is likely to provide additional insight into disease pathophysiology. However, the utility of advanced MRI techniques in clinical trial monitoring and in assessing individual patients' response to treatment still needs to be assessed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
95
|
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system characterised by immune-mediated demyelination, and is a leading cause of neurological disability worldwide. It has a wide spectrum of clinical presentations which overlap with other neurological conditions many times. Further, the radiological array of findings in MS can also be confused for multiple other conditions, leading to the need to look for the more typical findings, and interpret these in close conjunction with the clinical picture including temporal evolution. This review aims to revisit the MRI findings in MS, including recent innovations in imaging, and to help distinguish MS from its mimics.
Collapse
Affiliation(s)
- Aparna Katdare
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| | - Meher Ursekar
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
96
|
Improved Detection of Cortical Gray Matter Involvement in Multiple Sclerosis with Quantitative Susceptibility Mapping. Acad Radiol 2015; 22:1427-32. [PMID: 26342769 DOI: 10.1016/j.acra.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/13/2015] [Accepted: 08/02/2015] [Indexed: 01/21/2023]
Abstract
RATIONALE AND OBJECTIVES Quantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic susceptibility distribution of tissue in vivo from gradient echo magnetic resonance (MR) phase images. Our purpose was to evaluate if there is additional diagnostic value of QSM images in detecting the cortical gray matter involvement in multiple sclerosis (MS) patients. MATERIALS AND METHODS Our institutional review board approved this study. Conventional MR imaging, including T2-weighted imaging and two- or three-dimensional fluid-attenuated inversion recovery images, and QSM imaging examinations were performed in 27 patients (19 male and eight female) with MS. Two radiologists (radiologists 1 and 2) assessed the MS lesions in the following 3 anatomic regions: intracortical, mixed white matter-gray matter (WM-GM), and juxtacortical regions. The numbers of lesions per region category were compared between conventional MR images with and without QSM images. RESULTS For radiologists 1 and 2, QSM images identified 6 (50.0%) and 7 (50.0%) additional lesions that were not seen in the conventional MR images, respectively. In a lesion-by-lesion analysis, the substantial fraction (20 [25.3%] of 79 at radiologist 1, 22 [29.7%] of 74 at radiologist 2) of juxtacortical white matter lesions on the conventional MR images were scored as mixed WM-GM lesions with QSM images. CONCLUSIONS Our preliminary results suggest that the MR imaging with QSM may increase the sensitivity in cortical lesion detection in the MS brain and improved distinction between juxtacortical and mixed WM-GM lesions.
Collapse
|
97
|
Bluemink JJ, Raaijmakers AJE, Koning W, Andreychenko A, Rivera DS, Luijten PR, Klomp DWJ, van den Berg CAT. Dielectric waveguides for ultrahigh field magnetic resonance imaging. Magn Reson Med 2015; 76:1314-24. [DOI: 10.1002/mrm.26007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Johanna J. Bluemink
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Alexander J. E. Raaijmakers
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Wouter Koning
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Anna Andreychenko
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Debra S. Rivera
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Peter R. Luijten
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Dennis W. J. Klomp
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| | - Cornelis A. T. van den Berg
- UMC Utrecht Cancer Center / UMC Utrecht Center for Imaging Sciences, Department of Radiotherapy; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
98
|
Luo J, He X, Yablonskiy DA. Magnetic susceptibility induced white matter MR signal frequency shifts--experimental comparison between Lorentzian sphere and generalized Lorentzian approaches. Magn Reson Med 2015; 71:1251-63. [PMID: 23637001 DOI: 10.1002/mrm.24762] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The nature of the remarkable phase contrast in high-field gradient echo MRI studies of human brain is a subject of intense debates. The generalized Lorentzian approach (He and Yablonskiy, Proc Natl Acad Sci USA 2009;106:13558-13563) provides an explanation for the anisotropy of phase contrast, the near absence of phase contrast between white matter and cerebrospinal fluid, and changes of phase contrast in multiple sclerosis. In this study, we experimentally validate the generalized Lorentzian approach. THEORY AND METHODS The Generalized Lorentzian Approach suggests that the local contribution to frequency shifts in white matter does not depend on the average tissue magnetic susceptibility (as suggested by Lorentzian sphere approximation), but on the distribution and symmetry of magnetic susceptibility inclusions at the cellular level. We use ex vivo rat optic nerve as a model system of highly organized cellular structure containing longitudinally arranged myelin and neurofilaments. The nerve's cylindrical shape allowed accurate measurement of its magnetic susceptibility and local frequency shifts. RESULTS We found that the volume magnetic susceptibility difference between nerve and water is -0.116 ppm, and the magnetic susceptibilities of longitudinal components are -0.043 ppm in fresh nerve, and -0.020 ppm in fixed nerve. CONCLUSION The frequency shift observed in the optic nerve as a representative of white matter is consistent with generalized Lorentzian approach but inconsistent with Lorentzian sphere approximation.
Collapse
Affiliation(s)
- J Luo
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | |
Collapse
|
99
|
van Munster CE, Jonkman LE, Weinstein HC, Uitdehaag BM, Geurts JJ. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience 2015; 303:446-61. [DOI: 10.1016/j.neuroscience.2015.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/12/2023]
|
100
|
Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:569123. [PMID: 26295042 PMCID: PMC4532805 DOI: 10.1155/2015/569123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Local microstructural pathology in multiple sclerosis patients might influence their clinical performance. This study applied multicontrast MRI to quantify inflammation and neurodegeneration in MS lesions. We explored the impact of MRI-based lesion pathology in cognition and disability. METHODS 36 relapsing-remitting MS subjects and 18 healthy controls underwent neurological, cognitive, behavioural examinations and 3 T MRI including (i) fluid attenuated inversion recovery, double inversion recovery, and magnetization-prepared gradient echo for lesion count; (ii) T1, T2, and T2(*) relaxometry and magnetisation transfer imaging for lesion tissue characterization. Lesions were classified according to the extent of inflammation/neurodegeneration. A generalized linear model assessed the contribution of lesion groups to clinical performances. RESULTS Four lesion groups were identified and characterized by (1) absence of significant alterations, (2) prevalent inflammation, (3) concomitant inflammation and microdegeneration, and (4) prevalent tissue loss. Groups 1, 3, 4 correlated with general disability (Adj-R (2) = 0.6; P = 0.0005), executive function (Adj-R (2) = 0.5; P = 0.004), verbal memory (Adj-R (2) = 0.4; P = 0.02), and attention (Adj-R (2) = 0.5; P = 0.002). CONCLUSION Multicontrast MRI provides a new approach to infer in vivo histopathology of plaques. Our results support evidence that neurodegeneration is the major determinant of patients' disability and cognitive dysfunction.
Collapse
|