51
|
Hong SJ, Bernhardt BC, Caldairou B, Hall JA, Guiot MC, Schrader D, Bernasconi N, Bernasconi A. Multimodal MRI profiling of focal cortical dysplasia type II. Neurology 2017; 88:734-742. [PMID: 28130467 DOI: 10.1212/wnl.0000000000003632] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize in vivo MRI signatures of focal cortical dysplasia (FCD) type IIA and type IIB through combined analysis of morphology, intensity, microstructure, and function. METHODS We carried out a multimodal 3T MRI profiling of 33 histologically proven FCD type IIA (9) and IIB (24) lesions. A multisurface approach operating on manual consensus labels systematically sampled intracortical and subcortical lesional features. Geodesic distance mapping quantified the same features in the lesion perimeter. Logistic regression assessed the relationship between MRI and histology, while supervised pattern learning was used for individualized subtype prediction. RESULTS FCD type IIB was characterized by abnormal morphology, intensity, diffusivity, and function across all surfaces, while type IIA lesions presented only with increased fluid-attenuated inversion recovery signal and reduced diffusion anisotropy close to the gray-white matter interface. Similar to lesional patterns, perilesional anomalies were more marked in type IIB extending up to 16 mm. Structural MRI markers correlated with categorical histologic characteristics. A profile-based classifier predicted FCD subtypes with equal sensitivity of 85%, while maintaining a high specificity of 94% against healthy and disease controls. CONCLUSIONS Image processing applied to widely available MRI contrasts has the ability to dissociate FCD subtypes at a mesoscopic level. Integrating in vivo staging of pathologic traits with automated lesion detection is likely to provide an objective definition of lesional boundary and assist emerging approaches, such as minimally invasive thermal ablation, which do not supply tissue specimen.
Collapse
Affiliation(s)
- Seok-Jun Hong
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Boris C Bernhardt
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Benoit Caldairou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Jeffery A Hall
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Marie C Guiot
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Dewi Schrader
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Neda Bernasconi
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada
| | - Andrea Bernasconi
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital (S.-J.H., B.C.B., B.C., J.A.H., M.C.G., N.B., A.B.), Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre (S.-J.H., B.C.B., B.C., D.S., N.B., A.B.), and Department of Pathology (M.C.G.), McGill University, Montreal, Canada.
| |
Collapse
|
54
|
Martinoni M, Berti PP, Marucci G, Rubboli G, Volpi L, Riguzzi P, Marliani F, Toni F, Bisulli F, Tinuper P, Michelucci R, Baruzzi A, Giulioni M. Pathology-Based Approach to Seizure Outcome After Surgery for Pharmacoresistant Medial Temporal Lobe Epilepsy. World Neurosurg 2016; 90:448-453. [PMID: 26968448 DOI: 10.1016/j.wneu.2016.02.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is the most common cause of drug-resistant medial temporal lobe epilepsy (MTLE). Structural abnormalities such as HS, granule cell pathology (GCP), and focal cortical dysplasia (FCD) have been classified histopathologically, possibly allowing a more accurate assessment of prognostic seizure and neuropsychologic outcomes. We correlated seizure outcome with comprehensive temporal lobe pathologic findings, identified according to the most recent classification systems of HS, GCP, and FCD. METHODS All the 83 patients who underwent anterior temporal lobectomy (ATL) for drug-resistant MTLE and with a proven diagnosis of HS between April 2001 and May 2014 were collected. Patients were divided in 2 main groups: 1) isolated HS with/without GCP (HS +/- GCP); and 2) HS associated with FCD with/without GCP (HS+FCD +/- GCP). Patients were followed up at least 1 year, and seizure outcome was reported in accordance with Engel classification. RESULTS Group I: HS +/- GCP: Statistical analysis confirmed a better outcome in HS + GCP patients than in HS-no GCP (P < 0.05). Moreover, a better outcome for the patients affected by GCP type I was observed (P < 0.05). Group II: HS+FCD +/- GCP: Patients with HS variant type I presented a better seizure outcome than the patients with HS type II (Engel class IA HS type I vs. type II: 69% vs. 40%). CONCLUSIONS A pathology-based approach to epilepsy surgery might improve the interpretation of the results, could predict which cases will enjoy a better seizure outcome, and could help to the comprehension of the causes of failures.
Collapse
Affiliation(s)
- Matteo Martinoni
- IRCCS Institute of Neurological Science of Bologna, Division of Neurosurgery, Bellaria Hospital, Bologna, Italy.
| | - Pier Paolo Berti
- IRCCS Institute of Neurological Science of Bologna, Division of Neurosurgery, Bellaria Hospital, Bologna, Italy
| | - Gianluca Marucci
- Section of Pathology, "M. Malpighi," Bellaria Hospital, Azienda USL-IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Guido Rubboli
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy; Danish Epilepsy Centre, Dianalund, Denmark
| | - Lilia Volpi
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy
| | - Patrizia Riguzzi
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy
| | - Federica Marliani
- IRCCS Institute of Neurological Science of Bologna, Division of Neuroradiology, Bellaria Hospital, Bologna, Italy
| | - Francesco Toni
- IRCCS Institute of Neurological Science of Bologna, Division of Neuroradiology, Bellaria Hospital, Bologna, Italy
| | - Francesca Bisulli
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Michelucci
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy
| | - Agostino Baruzzi
- IRCCS Institute of Neurological Science of Bologna, Division of Neurology, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Giulioni
- IRCCS Institute of Neurological Science of Bologna, Division of Neurosurgery, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
55
|
Matsushita Y, Sakai Y, Shimmura M, Shigeto H, Nishio M, Akamine S, Sanefuji M, Ishizaki Y, Torisu H, Nakabeppu Y, Suzuki A, Takada H, Hara T. Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice. Sci Rep 2016; 6:22991. [PMID: 26961412 PMCID: PMC4785342 DOI: 10.1038/srep22991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a frequent comorbidity in patients with focal cortical dysplasia (FCD). Recent studies utilizing massive sequencing data identified subsets of genes that are associated with epilepsy and FCD. AKT and mTOR-related signals have been recently implicated in the pathogenic processes of epilepsy and FCD. To clarify the functional roles of the AKT-mTOR pathway in the hippocampal neurons, we generated conditional knockout mice harboring the deletion of Pten (Pten-cKO) in Proopiomelanocortin-expressing neurons. The Pten-cKO mice developed normally until 8 weeks of age, then presented generalized seizures at 8–10 weeks of age. Video-monitored electroencephalograms detected paroxysmal discharges emerging from the cerebral cortex and hippocampus. These mice showed progressive hypertrophy of the dentate gyrus (DG) with increased expressions of excitatory synaptic markers (Psd95, Shank3 and Homer). In contrast, the expression of inhibitory neurons (Gad67) was decreased at 6–8 weeks of age. Immunofluorescence studies revealed the abnormal sprouting of mossy fibers in the DG of the Pten-cKO mice prior to the onset of seizures. The treatment of these mice with an mTOR inhibitor rapamycin successfully prevented the development of seizures and reversed these molecular phenotypes. These data indicate that the mTOR pathway regulates hippocampal excitability in the postnatal brain.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsunori Shimmura
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Shigeto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|