51
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
52
|
The temporal sequence of improved mitochondrial function on the dynamics of respiration, mobility, and cognition in aged Drosophila. Neurobiol Aging 2018; 70:140-147. [PMID: 30007163 DOI: 10.1016/j.neurobiolaging.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with mitochondrial decline and reduced adenosine triphosphate (ATP) production leading to cellular dysfunction, but this is improved by long-wavelength light absorbed by cytochrome c oxidase, increasing cytochrome c oxidase activity, ATP production and improving metabolism, sensory motor function, and cognition. Yet, the sequence of these events is unknown. We give old flies a single 90-minute 670-nm pulse and measure temporal sequences of changes in respiration, ATP, motor, and cognitive ability. Respiration increased significantly 20 minutes after light initiation and remained elevated for 4 days. Measurable ATP increased at 1 hour, peaking at 3 hours, and then declined rapidly. Respiration improved before ATP increased, which indicates an early ATP sink. Flies explore environments stereotypically, which is lost with aging but is reestablished for 7 hours after light exposure. However, again, there are improvements before there are peaks in ATP production. Improved mobility and cognitive function persist after ATP levels return to normal. Hence, elevated ATP in age may initiate independent signaling mechanisms that result in improvements in aged metabolism and function.
Collapse
|
53
|
Kim B, Mitrofanis J, Stone J, Johnstone DM. Remote tissue conditioning is neuroprotective against MPTP insult in mice. IBRO Rep 2018; 4:14-17. [PMID: 30135947 PMCID: PMC6084900 DOI: 10.1016/j.ibror.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 01/27/2023] Open
Abstract
Remote tissue conditioning is an emerging neuroprotective strategy. Remote ischemic conditioning and remote photobiomodulation were tested in MPTP mice. Both interventions protected the midbrain against MPTP insult. Combining the interventions yielded no added benefit.
Current treatments for Parkinson’s disease (PD) are primarily symptomatic, leaving a need for treatments that mitigate disease progression. One emerging neuroprotective strategy is remote tissue conditioning, in which mild stress in a peripheral tissue (e.g. a limb) induces protection of life-critical organs such as the brain. We evaluated the potential of two remote tissue conditioning interventions – mild ischemia and photobiomodulation – in protecting the brain against the parkinsonian neurotoxin MPTP. Further, we sought to determine whether combining these two interventions provided any added benefit. Male C57BL/6 mice (n = 10/group) were pre-conditioned with either ischemia of the leg (4 × 5 min cycles of ischemia/reperfusion), or irradiation of the dorsum with 670 nm light (50 mW/cm2, 3 min), or both interventions, immediately prior to receiving two MPTP injections 24 hours apart (50 mg/kg total). Mice were sacrificed 6 days later and brains processed for tyrosine hydroxylase immunohistochemistry. Stereological counts of functional dopaminergic neurons in the substantia nigra pars compacta revealed that both remote ischemia and remote photobiomodulation rescued around half of the neurons that were compromised by MPTP (p < 0.001). Combining the two interventions provided no added benefit, rescuing only 40% of vulnerable neurons (p < 0.01). The present results suggest that remote tissue conditioning, whether ischemia of a limb or photobiomodulation of the torso, induces protection of brain centers critical in PD. The lack of additional benefit when combining these two interventions suggests they may share common mechanistic pathways. Further research is needed to identify these pathways and determine the conditioning doses that yield optimal neuroprotection.
Collapse
Key Words
- CPu, caudate-putamen complex
- LED, light emitting diode
- MPTP
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mouse model
- Neuroprotection
- PBM, photobiomodulation
- PD, Parkinson’s disease
- Parkinson’s disease
- Photobiomodulation
- RIC, remote ischemic conditioning
- Remote ischemic conditioning
- SNc, substantia nigra pars compacta
- TH, tyrosine hydroxylase
Collapse
Affiliation(s)
- Boaz Kim
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia.,Melbourne Medical School, University of Melbourne, VIC 3010, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Anatomy & Histology, University of Sydney, NSW 2006, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| |
Collapse
|
54
|
El Massri N, Cullen KM, Stefani S, Moro C, Torres N, Benabid AL, Mitrofanis J. Evidence for encephalopsin immunoreactivity in interneurones and striosomes of the monkey striatum. Exp Brain Res 2018; 236:955-961. [PMID: 29379995 DOI: 10.1007/s00221-018-5191-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry. Our results revealed two populations of striatal interneurones that expressed encephalopsin, one of which was the giant, choline acetyltransferase-containing, cholinergic interneurones. The other population had smaller somata and was not cholinergic. Neither cell group expressed the calcium-binding protein, parvalbumin. There was also rich encephalopsin expression in a set of terminals forming striosome-like patches across the striatum. Finally, we found that neither parkinsonian (MPTP) insult nor photobiomodulation had any effect on encephalopsin expression in the striatum. In summary, our results revealed an extensive network of encephalopsin containing structures throughout the striatum, indicating that external light is in a position to influence a range of striatal activities at both the interneurone and striosome level.
Collapse
Affiliation(s)
- Nabil El Massri
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Karen M Cullen
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Sebastian Stefani
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Cécile Moro
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Napoleon Torres
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Alim-Louis Benabid
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
55
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
56
|
Hamilton C, Hamilton D, Nicklason F, El Massri N, Mitrofanis J. Exploring the use of transcranial photobiomodulation in Parkinson's disease patients. Neural Regen Res 2018; 13:1738-1740. [PMID: 30136687 PMCID: PMC6128061 DOI: 10.4103/1673-5374.238613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - David Hamilton
- Department of Anatomy, University of Sydney, Sydney, Australia
| | - Frank Nicklason
- Department of Geriatric Medicine, Royal Hobart Hospital, Hobart; Department of Anatomy, University of Sydney, Sydney, Australia
| | - Nabil El Massri
- Department of Anatomy, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Sydney, Australia
| |
Collapse
|
57
|
|
58
|
Torres N, Molet J, Moro C, Mitrofanis J, Benabid AL. Neuroprotective Surgical Strategies in Parkinson's Disease: Role of Preclinical Data. Int J Mol Sci 2017; 18:ijms18102190. [PMID: 29053638 PMCID: PMC5666871 DOI: 10.3390/ijms18102190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson's disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies involving invasive surgical approaches (NSI) using neurotoxic models 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which have led to clinical trials. We focus on several NSI approaches, namely deep brain stimulation of the subthalamic nucleus, glial neurotrophic derived factor (GDNF) administration and cell grafting methods. Although most of these interventions have produced positive results in preclinical animal models, either from behavioral or histological studies, they have generally failed to pass randomized clinical trials to validate each approach. We argue that NSI are promising approaches for neurorestoration in PD, but preclinical studies should be planned carefully in order not only to detect benefits but also to detect potential adverse effects. Further, clinical trials should be designed to be able to detect and disentangle neuroprotection from symptomatic effects. In summary, our review study evaluates the pertinence of preclinical models to study NSI for PD and how this affects their efficacy when translated into clinical trials.
Collapse
Affiliation(s)
- Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - Jenny Molet
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - John Mitrofanis
- Department of Anatomy, University of Sydney; Sydney Medical School, Sydney NSW 2006, Australia.
| | - Alim Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| |
Collapse
|
59
|
Remote tissue conditioning - An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Res Rev 2017; 37:69-78. [PMID: 28552720 DOI: 10.1016/j.arr.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
We have long accepted that exercise is 'good for us'; that - put more rigorously - moderate exercise is associated with not just aerobic fitness but also reduced morbidity and reduced mortality from cardiovascular disease and even malignancies. Caloric restriction (moderate hunger) and our exposure to dietary phytochemicals are also emerging as stresses which are 'good for us' in the same sense. This review focuses on an important extension of this concept: that stress localized within the body (e.g. in a limb) can induce resilience in tissues throughout the body. We describe evidence for the efficacy of two 'remote' protective interventions - remote ischemic conditioning and remote photobiomodulation - and discuss the mechanisms underlying their protective actions. While the biological phenomenon of remote tissue conditioning is only partially understood, it holds promise for protecting critical-to-life tissues while mitigating risks and practical barriers to direct conditioning of these tissues.
Collapse
|
60
|
Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. Photomed Laser Surg 2017; 35:432-441. [PMID: 28186867 PMCID: PMC5568598 DOI: 10.1089/pho.2016.4227] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study investigated whether patients with mild to moderately severe dementia or possible Alzheimer's disease (AD) with Mini-Mental State Exam (MMSE) Baseline scores of 10-24 would improve when treated with near-infrared photobiomodulation (PBM) therapy. BACKGROUND Animal studies have presented the potential of PBM for AD. Dysregulation of the brain's default mode network (DMN) has been associated with AD, presenting the DMN as an identifiable target for PBM. MATERIALS AND METHODS The study used 810 nm, 10 Hz pulsed, light-emitting diode devices combining transcranial plus intranasal PBM to treat the cortical nodes of the DMN (bilateral mesial prefrontal cortex, precuneus/posterior cingulate cortex, angular gyrus, and hippocampus). Five patients with mild to moderately severe cognitive impairment were entered into 12 weeks of active treatment as well as a follow-up no-treatment, 4-week period. Patients were assessed with the MMSE and Alzheimer's Disease Assessment Scale (ADAS-cog) tests. The protocol involved weekly, in-clinic use of a transcranial-intranasal PBM device; and daily at-home use of an intranasal-only device. RESULTS There was significant improvement after 12 weeks of PBM (MMSE, p < 0.003; ADAS-cog, p < 0.023). Increased function, better sleep, fewer angry outbursts, less anxiety, and wandering were reported post-PBM. There were no negative side effects. Precipitous declines were observed during the follow-up no-treatment, 4-week period. This is the first completed PBM case series to report significant, cognitive improvement in mild to moderately severe dementia and possible AD cases. CONCLUSIONS Results suggest that larger, controlled studies are warranted. PBM shows potential for home treatment of patients with dementia and AD.
Collapse
Affiliation(s)
| | - Margaret A. Naeser
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Michael R Hamblin
- Harvard Medical School, Boston, Massachusetts
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lew Lim
- Vielight, Inc., Toronto, Ontario, Canada
| |
Collapse
|
61
|
Moro C, Torres N, Arvanitakis K, Cullen K, Chabrol C, Agay D, Darlot F, Benabid AL, Mitrofanis J. No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Exp Brain Res 2017; 235:3081-3092. [PMID: 28744621 DOI: 10.1007/s00221-017-5048-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry. In general, our results showed that longer term intracranial application of photobiomodulation had no adverse effects on the surrounding brain parenchyma or on the nearby dopaminergic cell system. We found no evidence for photobiomodulation generating an inflammatory glial response or neuronal degeneration near the implant site; further, photobiomodulation did not induce an abnormal activation or mitochondrial stress in nearby cells, nor did it cause an abnormal arrangement of the surrounding vasculature (endothelial basement membrane). Finally, because of our interest in Parkinson's disease, we noted that photobiomodulation had no impact on the number of midbrain dopaminergic cells and the density of their terminations in the striatum. In summary, we found no histological basis for any major biosafety concerns associated with photobiomodulation delivered by our intracranial approach and our findings set a key template for progress onto clinical trial on patients with Parkinson's disease.
Collapse
Affiliation(s)
- Cécile Moro
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Napoleon Torres
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | | | - Karen Cullen
- Department of Anatomy F13, University of Sydney, Camperdown, 2006, Australia
| | - Claude Chabrol
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Diane Agay
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Fannie Darlot
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Alim-Louis Benabid
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Camperdown, 2006, Australia.
| |
Collapse
|
62
|
Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 2017; 58:140-150. [PMID: 28735143 DOI: 10.1016/j.neurobiolaging.2017.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm2) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Ahmadian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
63
|
Beirne K, Rozanowska M, Votruba M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion 2017; 36:85-95. [PMID: 28499983 DOI: 10.1016/j.mito.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/15/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Absorption of photon energy by neuronal mitochondria leads to numerous downstream neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less safety concerns than light of shorter wavelengths and they are therefore, the optimal choice for irradiating the retina. Potent neuroprotective effects have been demonstrated in various models of retinal damage, by red/NIR light, with limited data from human studies showing its ability to improve visual function. Improved neuronal mitochondrial function, increased blood flow to neural tissue, upregulation of cell survival mediators and restoration of normal microglial function have all been proposed as potential underlying mechanisms of red/NIR light.
Collapse
Affiliation(s)
- Kathy Beirne
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
64
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
65
|
Reinhart F, Massri NE, Torres N, Chabrol C, Molet J, Johnstone DM, Stone J, Benabid AL, Mitrofanis J, Moro C. The behavioural and neuroprotective outcomes when 670 nm and 810 nm near infrared light are applied together in MPTP-treated mice. Neurosci Res 2017; 117:42-47. [DOI: 10.1016/j.neures.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/13/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023]
|
66
|
El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid AL, Mitrofanis J. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 2017; 235:1861-1874. [DOI: 10.1007/s00221-017-4937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
|
67
|
Dong J, Cui Y, Li S, Le W. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson's Disease. Curr Neuropharmacol 2016; 14:339-55. [PMID: 26585523 PMCID: PMC4876590 DOI: 10.2174/1570159x14666151120123025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
Over the decades, pharmaceutical treatments, particularly dopaminergic (DAergic) drugs have been considered as the main therapy against motor symptoms of Parkinson's disease (PD). It is proposed that DAergic drugs in combination with other medications, such as monoamine oxidase type B inhibitors, catechol-O-methyl transferase inhibitors, anticholinergics and other newly developed non-DAergic drugs can make a better control of motor symptoms or alleviate levodopa-induced motor complications. Moreover, non-motor symptoms of PD, such as cognitive, neuropsychiatric, sleep, autonomic and sensory disturbances caused by intrinsic PD pathology or drug-induced side effects, are gaining increasing attention and urgently need to be taken care of due to their impact on quality of life. Currently, neuroprotective therapies have been investigated extensively in pre-clinical studies, and some of them have been subjected to clinical trials. Furthermore, non-pharmaceutical treatments, including deep brain stimulation (DBS), gene therapy, cell replacement therapy and some complementary managements, such as Tai chi, Yoga, traditional herbs and molecular targeted therapies have also been considered as effective alternative therapies to classical pharmaceutics. This review will provide us updated information regarding the current drugs and non-drugs therapies for PD.
Collapse
Affiliation(s)
| | | | | | - Weidong Le
- Neurology and Director of Center for Translational Research of Neurological Diseases, 1st Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China.
| |
Collapse
|
68
|
Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides. PLoS One 2016; 11:e0166531. [PMID: 27846310 PMCID: PMC5112779 DOI: 10.1371/journal.pone.0166531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.
Collapse
|
69
|
Therapies for Parkinson’s diseases: alternatives to current pharmacological interventions. J Neural Transm (Vienna) 2016; 123:1279-1299. [DOI: 10.1007/s00702-016-1603-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
|
70
|
Moro C, El Massri N, Darlot F, Torres N, Chabrol C, Agay D, Auboiroux V, Johnstone DM, Stone J, Mitrofanis J, Benabid AL. Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson's disease. Brain Res 2016; 1648:19-26. [PMID: 27396907 DOI: 10.1016/j.brainres.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
We have reported previously that intracranial application of near-infrared light (NIr) - when delivered at the lower doses of 25J and 35J - reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether a higher NIr dose (125J) generated beneficial effects in the same MPTP monkey model (n=15). We implanted an NIr (670nm) optical fibre device within a midline region of the midbrain in macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.8-2.1mg/kg) were made over a five day period, during which time the NIr device was turned on and left on continuously throughout the ensuing three week survival period. Monkeys were evaluated clinically and their brains processed for immunohistochemistry and stereology. Our results showed that the higher NIr dose did not have any toxic impact on cells at the midbrain implant site. Further, this NIr dose resulted in a higher number of nigral tyrosine hydroxylase immunoreactive cells when compared to the MPTP group. However, the higher NIr dose monkeys showed little evidence for an increase in mean clinical score, number of nigral Nissl-stained cells and density of striatal tyrosine hydroxylase terminations. In summary, the higher NIr dose of 125J was not as beneficial to MPTP-treated monkeys as compared to the lower doses of 25J and 35J, boding well for strategies of NIr dose delivery and device energy consumption in a future clinical trial.
Collapse
Affiliation(s)
- Cécile Moro
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | | | - Fannie Darlot
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | - Napoleon Torres
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | - Claude Chabrol
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | - Diane Agay
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | - Vincent Auboiroux
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| | | | - Jonathan Stone
- Dept of Physiology F13, University of Sydney, 2006, Australia.
| | | | - Alim-Louis Benabid
- CLINATEC, EJ Safra Centre, CEA, LETI, University of Grenoble, Alpes F38000, France.
| |
Collapse
|
71
|
El Massri N, Moro C, Torres N, Darlot F, Agay D, Chabrol C, Johnstone DM, Stone J, Benabid AL, Mitrofanis J. Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Exp Brain Res 2016; 234:3225-3232. [PMID: 27377070 DOI: 10.1007/s00221-016-4720-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
We have reported previously that intracranial application of near-infrared light (NIr) reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether NIr reduces the gliosis in this animal model. Sections of midbrain (containing the substantia nigra pars compacta; SNc) and striatum were processed for glial fibrillary acidic protein (to label astrocytes; GFAP) and ionised calcium-binding adaptor molecule 1 (to label microglia; IBA1) immunohistochemistry. Cell counts were undertaken using stereology, and cell body sizes were measured using ImageJ. Our results showed that NIr treatment reduced dramatically (~75 %) MPTP-induced astrogliosis in both the SNc and striatum. Among microglia, however, NIr had a more limited impact in both nuclei; although there was a reduction in overall cell size, there were no changes in the number of microglia in the MPTP-treated monkeys after NIr treatment. In summary, we showed that NIr treatment influenced the glial response, particularly that of the astrocytes, in our monkey MPTP model of Parkinson's disease. Our findings raise the possibility of glial cells as a future therapeutic target using NIr.
Collapse
Affiliation(s)
- Nabil El Massri
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Fannie Darlot
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Diane Agay
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Claude Chabrol
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Daniel M Johnstone
- Department of Physiology F13, University of Sydney, Sydney, 2006, Australia
| | - Jonathan Stone
- Department of Physiology F13, University of Sydney, Sydney, 2006, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
72
|
Bezard E. Is near-infrared light neuroprotective? Ann Neurol 2016; 80:310. [PMID: 27273753 DOI: 10.1002/ana.24698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erwan Bezard
- Institute of Neurodegenerative Diseases, University of Bordeaux and National Center for Scientific Research, Bordeaux, France
| |
Collapse
|
73
|
Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Front Neurosci 2016; 9:500. [PMID: 26793049 PMCID: PMC4707222 DOI: 10.3389/fnins.2015.00500] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600-1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients.
Collapse
Affiliation(s)
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - Jonathan Stone
- Department of Physiology, University of Sydney Sydney, NSW, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - John Mitrofanis
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| |
Collapse
|