51
|
Strauss KA, Williams KB, Carson VJ, Poskitt L, Bowser LE, Young M, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Hailey J, Chopko S, Puffenberger EG, Brigatti KW, Miller F, Morton DH. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020; 131:325-340. [PMID: 33069577 DOI: 10.1016/j.ymgme.2020.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/metabolism
- Brain/pathology
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/epidemiology
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Carnitine/metabolism
- Child
- Child, Preschool
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Diet
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Lysine/metabolism
- Male
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | | | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Laura Poskitt
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | | | - Freeman Miller
- Department of Orthopedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
52
|
Mütze U, Garbade SF, Gramer G, Lindner M, Freisinger P, Grünert SC, Hennermann J, Ensenauer R, Thimm E, Zirnbauer J, Leichsenring M, Gleich F, Hörster F, Grohmann-Held K, Boy N, Fang-Hoffmann J, Burgard P, Walter M, Hoffmann GF, Kölker S. Long-term Outcomes of Individuals With Metabolic Diseases Identified Through Newborn Screening. Pediatrics 2020; 146:peds.2020-0444. [PMID: 33051224 DOI: 10.1542/peds.2020-0444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although extended newborn screening (NBS) programs have been introduced more than 20 years ago, their impact on the long-term clinical outcome of individuals with inherited metabolic diseases (IMDs) is still rarely investigated. METHODS We studied the clinical outcomes of individuals with IMDs identified by NBS between 1999 and 2016 in a prospective multicenter observational study. RESULTS In total, 306 screened individuals with IMDs (115 with phenylketonuria and 191 with other IMDs with a lifelong risk for metabolic decompensation) were followed for a median time of 6.2 years. Although the risk for metabolic decompensation was disease-specific and NBS could not prevent decompensations in every individual at risk (n = 49), the majority did not develop permanent disease-specific signs (75.9%), showed normal development (95.6%) and normal cognitive outcome (87.7%; mean IQ: 100.4), and mostly attended regular kindergarten (95.2%) and primary school (95.2%). This demonstrates that not only individuals with phenylketonuria, serving as a benchmark, but also those with lifelong risk for metabolic decompensation had a favorable long-term outcome. High NBS process quality is the prerequisite of this favorable outcome. This is supported by 28 individuals presenting with first symptoms at a median age of 3.5 days before NBS results were available, by the absence of neonatal decompensations after the report of NBS results, and by the challenge of keeping relevant process parameters at a constantly high level. CONCLUSIONS NBS for IMDs, although not completely preventing clinical presentations in all individuals, can be considered a highly successful program of secondary prevention.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany;
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Julia Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Child Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Judith Zirnbauer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Michael Leichsenring
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karina Grohmann-Held
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Walter
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
53
|
Inconsistencies in the Nutrition Management of Glutaric Aciduria Type 1: An International Survey. Nutrients 2020; 12:nu12103162. [PMID: 33081139 PMCID: PMC7602866 DOI: 10.3390/nu12103162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Glutaric aciduria type 1 (GA-1) is a cerebral organic aciduria characterized by striatal injury and progressive movement disorder. Nutrition management shifted from a general restriction of intact protein to targeted restriction of lysine and tryptophan. Recent guidelines advocate for a low-lysine diet using lysine-free, tryptophan-reduced medical foods. GA-1 guideline recommendations for dietary management of patients over the age of six are unclear, ranging from avoiding excessive intake of intact protein to counting milligrams of lysine intake. A 22–question survey on the nutrition management of GA-1 was developed with the goal of understanding approaches to diet management for patients identified by newborn screening under age six years compared to management after diet liberalization, as well as to gain insight into how clinicians define diet liberalization. Seventy-six responses (25% of possible responses) to the survey were received. Nutrition management with GA-1 is divergent among surveyed clinicians. There was congruency among survey responses to the guidelines, but there is still uncertainty about how to counsel patients on diet optimization and when diet liberalization should occur. Ongoing clinical research and better understanding of the natural history of this disease will help establish stronger recommendations from which clinicians can best counsel families.
Collapse
|
54
|
Imerci A, Strauss KA, Oleas-Santillan GF, Miller F. Orthopaedic manifestations of glutaric acidemia Type 1. J Child Orthop 2020; 14:473-479. [PMID: 33204356 PMCID: PMC7666789 DOI: 10.1302/1863-2548.14.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Glutaric acidemia type 1 (GA1), a rare hereditary metabolic disease caused by biallelic mutations of GCDH, can result in acute or insidious striatal degeneration within the first few years of life. We reviewed the orthopaedic sequelae and management of 114 neurologically injured patients with a confirmed molecular diagnosis of GA1. METHODS We performed a retrospective chart review spanning 28 years identifying 114 GA1 patients, most from the Old Order Amish population of Lancaster County, Pennsylvania, who were homozygous for a pathogenic founder variant of GCDH (c.1262C>T). We collected demographics, medical comorbidities, muscle tone patterns, Gross Motor Function Classification System level, gastrostomy tube status, seizure history, inpatient events, orthopaedic diagnoses and operative characteristics. RESULTS Over an average follow-up of 4.7 ± 3.4 years, 24 (21%) of 114 patients had musculoskeletal problems requiring orthopaedic consultation. Scoliosis (n = 14), hip dislocation (n = 8/15 hips), hip subluxation (n = 2/three hips), and windswept hip deformity (n = 2) in the spine and hip joint were most common. In total, 35 orthopaedic surgeries were performed in 17 (71%) patients. The most common primary operations were one-stage procedures with proximal femoral varus derotation osteotomy and/or pelvic osteotomy (n = 8/14 hips) for subluxation or dislocation. In all, 11 patients had posterior spinal fusion for severe scoliosis. With the recommended metabolic management, there were no disease-specific complications in this cohort. CONCLUSIONS Children with GA1 who have static striatal lesions are at risk for musculoskeletal complications, especially scoliosis and hip dislocation, and appropriate operative management requires consultation with a metabolic specialist with specific considerations for fluid management and nutrition. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ahmet Imerci
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | | | | | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA,Correspondence should be sent to Freeman Miller, Department of Orthopaedics, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA. E-mail:
| |
Collapse
|
55
|
Bouchereau J, Schiff M. Inherited Disorders of Lysine Metabolism: A Review. J Nutr 2020; 150:2556S-2560S. [PMID: 33000154 DOI: 10.1093/jn/nxaa112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.
Collapse
Affiliation(s)
- Juliette Bouchereau
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, Assistance-Publique Hôpitaux de Paris, University of Paris, Medical School Paris-Descartes, Paris, France
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, Assistance-Publique Hôpitaux de Paris, University of Paris, Medical School Paris-Descartes, Paris, France.,Imagine Institute, INSERM (National Institute for Health and Medical Research) U1163, Paris, France
| |
Collapse
|
56
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
57
|
Gürbüz BB, Yılmaz DY, Coşkun T, Tokatlı A, Dursun A, Sivri HS. Glutaric aciduria type 1: Genetic and phenotypic spectrum in 53 patients. Eur J Med Genet 2020; 63:104032. [PMID: 32777384 DOI: 10.1016/j.ejmg.2020.104032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/20/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Glutaric aciduria type 1 (GA1) is a rare and inherited autosomal-recessive metabolic disorder that occurs in the deficiency of glutaryl-co-enzyme A dehydrogenase (GCDH) enzyme encoded by GCDH gene. In this study, we aim to retrospectively investigate the clinical, biochemical, and neuroradiological parameters and examine the spectrum of GCDH gene variants in Turkish patients with glutaric aciduria type 1. METHODS This is a descriptive cross-sectional study. The study was conducted in fifty-three patients from 39 unrelated Turkish families who were diagnosed with GA1 based on their clinical presentation, neuroimaging, and biochemical measurements, at the department of pediatric metabolism of a university hospital between June 1998 and August 2019. Pathogenic variants screening of GCDH gene was performed by direct DNA sequence analysis in forty-six patients with GA1. Pathogenicity of the novel variants was predicted via computational programs. RESULTS A total of 53 patients were diagnosed with GA1. Of those, 32 (60.3%) had encephalopathic crisis and 33 (62.3%) had macrocephaly. Twenty different pathogenic variants were detected, 7 of which are novel (p.Glu57Lys, p.Ser145Profs*79, p.Ser246Glyfs*96 p.Ala293Val, p.His348Gln, p.His417Tyr, p.Asp418Val). The p.Arg402Trp, p.Pro248Leu and p.Leu340Phe variants were the most common in Turkish patients, with a frequency of 21.2%, 18.2% and 12.1% respectively. CONCLUSION This study is the first comprehensive research from Turkey that provides information about disease-causing variants in the GCDH gene. The identification of common variants and hot spot regions of the GCDH gene is important for genetic counselling and the prenatal diagnosis of Turkish patients with GA1.
Collapse
Affiliation(s)
- Berrak Bilginer Gürbüz
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Didem Yücel Yılmaz
- Hacettepe University Institute of Child Health, Division of Genetics, Ankara, Turkey.
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Ali Dursun
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - H Serap Sivri
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| |
Collapse
|
58
|
Seltene Erkrankungen in der Pädiatrie – von der Diagnostik und Behandlung einzelner Erkrankungen zum Aufbau von Netzwerkstrukturen. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungDie Versorgung von Menschen mit seltenen Erkrankungen (SE) stellt das Gesundheitssystem vor große Aufgaben. Dieses betrifft in besonderem Maße die Kinder- und Jugendmedizin, denn mehr als 80 % aller SE werden im Verlauf des Kindesalters symptomatisch. Oft fehlten und fehlen trotz rascher diagnostischer und therapeutischer Fortschritte belastbare Behandlungs- und Betreuungskonzepte mit ausreichender personeller Kontinuität und Expertise im ambulanten wie auch stationären Bereich.Derzeit leben in Deutschland ca. 4 Mio. Patienten mit einer SE, und jeder Kinder- und Jugendmediziner, ob in der Praxis oder in der Spezialambulanz im Universitätsklinikum, wird immer wieder mit diesen Patienten beschäftigt sein. In den letzten Jahren konnten die diagnostischen und jetzt zunehmend auch ursächlich therapeutischen Möglichkeiten entscheidend verbessert werden. Dieser Prozess ist äußerst dynamisch, wie die aktuellen Entwicklungen und Diskussionen um die ursächlichen genetischen Therapien der spinalen Muskelatrophie zeigen. Zur erfolgreichen Umsetzung der medizinischen Fortschritte in unser Gesundheitssystem wurde unter entscheidender Einbeziehung der Selbsthilfe, die für die Betroffenen von SE und ihre Angehörigen essenzielle Arbeiten leistet, 2013 ein Nationaler Aktionsplan für Menschen mit Seltenen Erkrankungen erarbeitet und verabschiedet. Dieser sieht sektorenübergreifende Versorgungsstrukturen und die Strukturierung von Zentren für seltene Erkrankungen vor. Innovationsfondprojekte haben inzwischen konkrete Verbesserungen der Versorgung von Patienten mit SE erfolgreich erprobt, und die Deutsche Gesellschaft für Kinder- und Jugendmedizin (DGKJ) hat eine neue Kommission für SE unter Einbeziehung der Patientenvertretung Allianz Chronischer Seltener Erkrankungen (ACHSE) e. V. und der Deutschen Gesellschaft für Humangenetik eingerichtet. Diese soll sich dieser speziellen Thematik widmen sowie diese positiven Entwicklungen beratend unterstützen. Mit diesem Artikel nehmen wir eine aktuelle Standortbestimmung vor und geben Anregungen für Diskussionen.
Collapse
|
59
|
Adult-onset glutaric aciduria type I: rare presentation of a treatable disorder. Neurogenetics 2020; 21:179-186. [PMID: 32306145 DOI: 10.1007/s10048-020-00610-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Glutaric aciduria type I (GA1; OMIM #231670) is an autosomal recessively inherited and treatable disorder characterized by the accumulation and irregular excretion of glutaric acid due to a defect in the glutaryl-CoA dehydrogenase enzyme involved in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. Glutaryl-CoA dehydrogenase is encoded by the GCDH gene (OMIM #608801), and several mutations in this gene are known to result in GA1. GA1 usually presents in the first 18-36 months of life with mild or severe acute encephalopathy, movement disorders, and striatal degeneration. Few cases of adult-onset GA1 have been described so far in the literature, often with non-specific and sometimes longstanding neurological symptoms. Since a preventive metabolic treatment is available, neurologists must be aware of this rare but likely underdiagnosed presentation, especially when typical neuroimaging features are identified. Here, we describe 35-year-old presenting with headache and subjective memory problems. There was no history of dystonic movement disorders. Neurological examination and neurocognitive tests were normal. Brain MRI scan revealed white matter abnormalities associated with subependymal nodules and mild frontotemporal hypoplasia suggestive of glutaric aciduria type 1 (GA1). Genetic testing confirmed the presence of homozygous c.1204C > T (p.R402W) variant in the GCDH gene, inherited from heterozygous parents.
Collapse
|
60
|
Galosi S, Nardecchia F, Leuzzi V. Treatable Inherited Movement Disorders in Children: Spotlight on Clinical and Biochemical Features. Mov Disord Clin Pract 2020; 7:154-166. [PMID: 32071932 DOI: 10.1002/mdc3.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. Methods and Findings A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. Conclusions To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
61
|
Shaik M, T P KV, Kamate M, A B V. Is Expanded Newborn Screening Adequate to Detect Indian Biochemical Low Excretor Phenotype Patients of Glutaric Aciduria Type I? Indian J Pediatr 2019; 86:995-1001. [PMID: 31302874 DOI: 10.1007/s12098-019-03017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate if expanded newborn screening using tandem mass spectroscopy (TMS) is adequate to detect low excretor phenotype in Indian Glutaric aciduria type I (GA-I) patients. METHODS Ten GA-I patients were investigated for blood glutaryl carnitine (C5DC) levels on dried blood spot (DBS) by tandem mass spectroscopy and urine glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) by gas chromatography-mass spectroscopy. The student's T test and Pearson's correlation were applied to draw a relationship between various biochemical parameters. Further confirmation of low excretors by DNA mutation analysis in the glutaryl CoA dehydrogenase (GCDH) gene was performed by polymerase chain reaction and Sangers sequencing. RESULTS Among 10 GA-I patients, 7 patients were found to have high excretor, and 3 were found to have low excretor phenotype. The low excretors were found to have GCDH gene mutations. The mean C5DC levels in high and low excretors were 2.61 ± 2.02 μmol/L and 2.31 ± 1.00 μmol/L, respectively. In high excretors, C5DC levels correlated with GA (r = 0.95). In low excretors, C5DC levels correlated with 3-OH-GA (r = 0.99). No significant difference was found between C5DC levels of high and low excretors (p = 0.82). CONCLUSIONS The MS/MS, C5DC screening is a sensitive technique and detected 10 GA-I patients. Irrespective of the urine organic acid levels, Indian GA-I patients including low excretors seem to have a significantly elevated C5DC level and well above the stipulated cut-off values and therefore, expanded newborn screening is probably adequate to diagnose them.
Collapse
Affiliation(s)
- Muntaj Shaik
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Kruthika-Vinod T P
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Mahesh Kamate
- Department of Pediatrics, Jawaharlal Nehru Medical College, KLE University, Belgaum, Karnataka, India
| | - Vedamurthy A B
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India.
| |
Collapse
|
62
|
Guerreiro G, Amaral AU, Ribeiro RT, Faverzani J, Groehs AC, Sitta A, Deon M, Wajner M, Vargas CR. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2420-2427. [PMID: 31181292 DOI: 10.1016/j.bbadis.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
The deficiency of the enzyme glutaryl-CoA dehydrogenase leads to predominant accumulation of glutaric acid (GA) in the organism and is known as glutaric acidemia type I (GA1). Despite the mechanisms of brain damage involved in GA1 are not fully understood, oxidative stress may be involved in this process. Treatment is based on protein/lysine (Lys) restriction and l-carnitine (L-car) supplementation. L-car was recently shown to have an important antioxidant role. A knockout mice model (Gcdh-/-) submitted to a dietary overload of Lys was developed to better understand the GA1 pathogenesis. In this study, we evaluated L-car and glutarylcarnitine levels, the lipid and protein damage, reactive oxygen species (ROS) production and antioxidant enzymes activities in striatum of Gcdh-/- and wild-type (WT) mice. We also determined the effect of the L-car treatment on these parameters. Thirty-day-old Gcdh-/- and WT mice were fed a normal chow (0.9% Lys) or submitted to a high Lys diet (4.7%) for 72 h. Additionally, these animals were administered with three intraperitoneal injections of saline or L-car in different times. Gcdh-/- mice were deficient in L-car and presented a higher glutarylcarnitine levels. They also presented lipid and protein damage, an increased ROS production and altered antioxidant enzymes compared to WT mice. Additionally, mice exposed to Lys overload presented higher alterations in these parameters than mice under normal diet, which were significantly decreased or normalized in those receiving L-car. Thus, we demonstrated a new beneficial effect of the L-car treatment attenuating or abolishing the oxidative stress process in Gcdh-/- mice.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil.
| | - Alexandre U Amaral
- Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Carolina Groehs
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Marion Deon
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
63
|
|
64
|
Serrano Russi A, Donoghue S, Boneh A, Manara R, Burlina AB, Burlina AP. Malignant brain tumors in patients with glutaric aciduria type I. Mol Genet Metab 2018; 125:276-280. [PMID: 30217722 DOI: 10.1016/j.ymgme.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Three young patients with glutaric aciduria type I (age 6-23 years) of different ethnic origins, treated for their metabolic disease since early childhood, presented with malignant central nervous system tumors. We recommend continuing clinical follow-up, including monitoring of neurological manifestations and neuroradiological findings, in all patients with glutaric aciduria type I beyond early childhood, especially if adherence to diet is poor or the treatment was not started neonatally.
Collapse
Affiliation(s)
- A Serrano Russi
- Division of Medical Genetics, Division of Medical Genetics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, USA
| | - S Donoghue
- Royal Children's Hospital, Melbourne, Murdoch Children's Research Institute, Australia
| | - A Boneh
- Royal Children's Hospital, Melbourne, Murdoch Children's Research Institute, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - R Manara
- Neuroradiology, Department of Medicine and Surgery, University of Salerno, Italy
| | - A B Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padua, Padua, Italy
| | - A P Burlina
- Neurological Unit, St. Bassiano Hospital, Bassano del Grappa, Italy.
| |
Collapse
|