51
|
Song W, Guo X, Sun W, Yin W, He P, Yang X, Zhang X. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR. Anal Biochem 2018; 553:57-61. [DOI: 10.1016/j.ab.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/26/2022]
|
52
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
53
|
Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 2018; 111:1-9. [PMID: 29627731 DOI: 10.1016/j.bios.2018.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed.
Collapse
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
54
|
Zhao Y, Li Z, Kuang Q, Jie G. Signal-on Photoelectrochemical bioassay for DNA based on CdTe quantum dots by endonuclease-aided cycling amplification strategy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
56
|
Mondal B, N B, Ramlal S, Kingston J. Colorimetric DNAzyme Biosensor for Convenience Detection of Enterotoxin B Harboring Staphylococcus aureus from Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1516-1522. [PMID: 29350529 DOI: 10.1021/acs.jafc.7b04820] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, a colorimetric DNAzymes biosensor strategy was devised in combination with immunomagnetic separation for rapid and easy detection of enterotoxin B harboring Staphylococcus aureus from food and clinical samples. The method employs immunocapture of S. aureus and amplification of seb gene by DNAzyme complementary sequence integrated forward primer and with specific reverse primer. The DNAzyme sequence integrated dsDNA PCR products when treated with hemin and TMB (3,3',5,5'-tetramethylbenzidine) in the presence of H2O2 produce colorimetric signal. A linear relationship of optical signal with the initial template of seb was obtained which could be monitored by visually or spectrophotrometrically for qualitative and quantitative detection. The limit of detection for the assay was approximately 102 CFU/mL of seb gene harboring target. This method is convenient compared to gel based and ELISA systems. Further, spiking studies and analysis on natural samples emphasized the robustness and applicability of developed method. Altogether, the established assay could be a reliable alternative, low-cost, viable detection tool for the routine investigation of seb from food and clinical sources.
Collapse
Affiliation(s)
- Bhairab Mondal
- Defence Food Research Laboratory , Microbiology Division, Siddarthanagar, Mysore, Karnataka 570011, India
| | - Bhavanashri N
- Defence Food Research Laboratory , Microbiology Division, Siddarthanagar, Mysore, Karnataka 570011, India
| | - Shylaja Ramlal
- Defence Food Research Laboratory , Microbiology Division, Siddarthanagar, Mysore, Karnataka 570011, India
| | - Joseph Kingston
- Defence Food Research Laboratory , Microbiology Division, Siddarthanagar, Mysore, Karnataka 570011, India
| |
Collapse
|
57
|
Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 2018; 8:2943. [PMID: 29440644 PMCID: PMC5811613 DOI: 10.1038/s41598-018-20229-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
An ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages. At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs). Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface. Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content. The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155. The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine. This method increases loading the target on the polyethylenimine-capped AuNPs' surface. So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azam Sadat Hashemi
- Hematology, Oncology & Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Arastoo
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohammad Behnam Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
58
|
An electrochemical immunosensor based on a 3D carbon system consisting of a suspended mesh and substrate-bound interdigitated array nanoelectrodes for sensitive cardiac biomarker detection. Biosens Bioelectron 2018; 107:10-16. [PMID: 29425858 DOI: 10.1016/j.bios.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023]
Abstract
We developed an electrochemical redox cycling-based immunosensor using a 3D carbon system consisting of a suspended mesh and substrate-bound interdigitated array (IDA) nanoelectrodes. The carbon structures were fabricated using a simple, cost-effective, and reproducible microfabrication technology known as carbon microelectromechanical systems (C-MEMS). We demonstrated that the 3D sub-micrometer-sized mesh architecture and selective modification of the suspended mesh facilitated the efficient production of large quantities of electrochemical redox species. The electrochemically active surfaces and small size of IDA nanoelectrodes with a 1:1 aspect ratio exhibited high signal amplification resulting from efficient redox cycling of electrochemical species (PAP/PQI) by a factor of ~25. The proposed selective surface modification scheme facilitated efficient redox cycling and exhibited a linear detection range of 0.001-100 ng/mL for cardiac myoglobin (cMyo). The specific detection of cMyo was also achieved in the presence of other interfering species. Moreover, the proposed 3D carbon system-based immunosensor successfully detected as low as ~0.4 pg/mL cMyo in phosphate-buffered saline and human serum.
Collapse
|
59
|
Chen Y, Duong HTT, Wen S, Mi C, Zhou Y, Shimoni O, Valenzuela SM, Jin D. Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay. Anal Chem 2017; 90:663-668. [DOI: 10.1021/acs.analchem.7b04240] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yinghui Chen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Hien T. T. Duong
- The Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Chao Mi
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Yingzhu Zhou
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Stella M. Valenzuela
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
60
|
Dai J, He H, Duan Z, Guo Y, Xiao D. Self-Replicating Catalyzed Hairpin Assembly for Rapid Signal Amplification. Anal Chem 2017; 89:11971-11975. [DOI: 10.1021/acs.analchem.7b01946] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianyuan Dai
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongfei He
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhijuan Duan
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yong Guo
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dan Xiao
- College
of Chemistry, Sichuan University, Chengdu 610064, China
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
61
|
Singh R, Feltmeyer A, Saiapina O, Juzwik J, Arenz B, Abbas A. Rapid and PCR-free DNA Detection by Nanoaggregation-Enhanced Chemiluminescence. Sci Rep 2017; 7:14011. [PMID: 29070890 PMCID: PMC5656605 DOI: 10.1038/s41598-017-14580-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023] Open
Abstract
The aggregation of gold nanoparticles (AuNPs) is known to induce an enhancement of localized surface plasmon resonance due to the coupling of plasmonic fields of adjacent nanoparticles. Here we show that AuNPs aggregation also causes a significant enhancement of chemiluminescence in the presence of luminophores. The phenomenon is used to introduce a rapid and sensitive DNA detection method that does not require amplification. DNA probes conjugated to AuNPs were used to detect a DNA target sequence specific to the fungus Ceratocystis fagacearum, causal agent of oak wilt. The hybridization of the DNA target with the DNA probes results in instantaneous aggregation of AuNPs into nanoballs, leading to a significant enhancement of luminol chemiluminescence. The enhancement reveals a linear correlation (R2 = 0.98) to the target DNA concentration, with a limit of detection down to 260 fM (260 × 10-15 M), two orders of magnitude higher than the performance obtained with plasmonic colorimetry and absorption spectrometry of single gold nanoparticles. Furthermore, the detection can be performed within 22 min using only a portable luminometer.
Collapse
Affiliation(s)
- Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN, USA
| | | | - Olga Saiapina
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN, USA
| | - Jennifer Juzwik
- USDA Forest Service, Northern Research Station, St. Paul, MN, 55108, USA
| | - Brett Arenz
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN, USA.
| |
Collapse
|
62
|
Xiong E, Li Z, Zhang X, Zhou J, Yan X, Liu Y, Chen J. Triple-Helix Molecular Switch Electrochemical Ratiometric Biosensor for Ultrasensitive Detection of Nucleic Acids. Anal Chem 2017; 89:8830-8835. [DOI: 10.1021/acs.analchem.7b01251] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Erhu Xiong
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhenzhen Li
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jiawan Zhou
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxia Yan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yunqing Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
63
|
Shevtsov M, Zhao L, Protzer U, van de Klundert MAA. Applicability of Metal Nanoparticles in the Detection and Monitoring of Hepatitis B Virus Infection. Viruses 2017; 9:v9070193. [PMID: 28753992 PMCID: PMC5537685 DOI: 10.3390/v9070193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) can lead to liver failure and can cause liver cirrhosis and hepatocellular carcinoma (HCC). Reliable means for detecting and monitoring HBV infection are essential to identify patients in need of therapy and to prevent HBV transmission. Nanomaterials with defined electrical, optical, and mechanical properties have been developed to detect and quantify viral antigens. In this review, we discuss the challenges in applying nanoparticles to HBV antigen detection and in realizing the bio-analytical potential of such nanoparticles. We discuss recent developments in generating detection platforms based on gold and iron oxide nanoparticles. Such platforms increase biological material detection efficiency by the targeted capture and concentration of HBV antigens, but the unique properties of nanoparticles can also be exploited for direct, sensitive, and specific antigen detection. We discuss several studies that show that nanomaterial-based platforms enable ultrasensitive HBV antigen detection.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum rechts der Isar, Technischen Universität München (TUM), Ismaniger Str. 22, 81675 Munich, Germany.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia.
| | - Lili Zhao
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München-German Center for Environmental Health, Trogerstr. 30, 81675 Munich, Germany.
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München-German Center for Environmental Health, Trogerstr. 30, 81675 Munich, Germany.
| | - Maarten A A van de Klundert
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München-German Center for Environmental Health, Trogerstr. 30, 81675 Munich, Germany.
| |
Collapse
|
64
|
Luo Z, Wang Y, Lu X, Chen J, Wei F, Huang Z, Zhou C, Duan Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal Chim Acta 2017; 984:177-184. [PMID: 28843561 DOI: 10.1016/j.aca.2017.06.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Antibiotic abuse has been bringing serious pollution in water, which is closely related to human health. It is desirable to develop a new strategy for antibiotic detection. To address this problem, a sensitive fluorescent aptasensor for antibiotic detection was developed by utilizing gold nanoparticles modified magnetic bead composites (AuNPs/MBs) and nicking enzyme. AuNPs/MBs were synthesized with the help of polyethylenimine (PEI). The prepared AuNPs/MBs acted as dual-functional scaffolds that owned excellent magnetic separation capacity and strong covalent bio-conjugation. The non-specifically absorbed aptamers in AuNPs/MBs were less than that in MBs. Hence, the fluorescent aptasensor based on AuNPs/MBs show a better signal to background ratio than that based on carboxyl modified magnetic beads (MBs). In this work, ampicillin was employed as a model analyte. In the presence of ampicillin, the specific binding between ampicillin and aptamer induced structure-switching that led to the release of partial complementary DNA (cDNA) of aptamer. Then, the released cDNA initiated the cycle of nicking enzyme assisted signal amplification (NEASA). Therefore, a large amount of taqman probes were cleaved and fluorescence signal was amplified. The prepared fluorescent aptasensor bring sensitive detection in range of 0.1-100 ng mL-1 with the limit of detection of 0.07 ng mL-1. Furthermore, this aptasensor was also successfully applied in real sample detection with acceptable accuracy. The fluorescent aptasensor provides a promising method for efficient, rapid and sensitive antibiotic detection.
Collapse
Affiliation(s)
- Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yimin Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xiaoyong Lu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chen Zhou
- Department of Laboratory Science in Public Health, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
65
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
66
|
McVey C, Huang F, Elliott C, Cao C. Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosens Bioelectron 2017; 92:502-508. [DOI: 10.1016/j.bios.2016.10.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
|
67
|
Liu Y, Chen J, Du M, Wang X, Ji X, He Z. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 2017; 92:68-73. [DOI: 10.1016/j.bios.2017.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022]
|
68
|
Xiong LH, He X, Xia J, Ma H, Yang F, Zhang Q, Huang D, Chen L, Wu C, Zhang X, Zhao Z, Wan C, Zhang R, Cheng J. Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14691-14699. [PMID: 28414215 DOI: 10.1021/acsami.7b02237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation. This colorimetric detection assay, by further orchestrating the efficient magnetic enrichment and the high catalytic activity of enzyme, is managed to realize highly sensitive detection of EV71 virions with the limit of detection (LOD) down to 0.65 ng/mL. Our proposed method showed a much lower LOD value than the commercial ELISA for EV71 virion detection. Comparing to the current clinical gold standard polymerase chain reaction (PCR) method, our strategy provided the same diagnostic outcomes after testing real clinical samples. Besides, this strategy has no need of complicated sample pretreatment or expensive instruments. Our presented naked-eye immunoassay method holds a promising prospect for the early detection of virus-infectious disease especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Xuewen He
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junjie Xia
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Chunli Wu
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Xiaomin Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Chengsong Wan
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| |
Collapse
|
69
|
Cheng C, Oueslati R, Wu J, Chen J, Eda S. Capacitive DNA sensor for rapid and sensitive detection of whole genome human herpesvirus-1 dsDNA in serum. Electrophoresis 2017; 38:1617-1623. [DOI: 10.1002/elps.201700043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Cheng Cheng
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Rania Oueslati
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Jiangang Chen
- Department of Public Health; The University of Tennessee; Knoxville TN USA
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries; The University of Tennessee Institute of Agriculture; Knoxville TN USA
| |
Collapse
|
70
|
Wang Y, Zhang L, Shen L, Ge S, Yu J, Yan M. Electrochemiluminescence DNA biosensor based on the use of gold nanoparticle modified graphite-like carbon nitride. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2234-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
71
|
Ge Y, Zhou Q, Zhao K, Chi Y, Liu B, Min X, Shi Z, Zou B, Cui L. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor. Int J Nanomedicine 2017; 12:2645-2656. [PMID: 28435249 PMCID: PMC5388202 DOI: 10.2147/ijn.s132670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Influenza virus infections represent a worldwide public health and economic problem due to the significant morbidity and mortality caused by seasonal epidemics and pandemics. Sensitive and convenient methodologies for detection of influenza viruses are essential for further disease control. Loop-mediated isothermal amplification (LAMP) is the most commonly used method of nucleic acid isothermal amplification. However, with regard to multiplex LAMP, differentiating the ladder-like LAMP products derived from multiple targets is still challenging today. The requirement of specialized instruments has further hindered the on-site application of multiplex LAMP. We have developed an integrated assay coupling multiplex reverse transcription LAMP with cascade invasive reaction using nanoparticles (mRT-LAMP-CIRN) as a sensor for the detection of three subtypes of influenza viruses: A/H1N1pdm09, A/H3 and influenza B. The analytic sensitivities of the mRT-LAMP-CIRN assay were 101 copies of RNA for both A/H1N1pdm09 and A/H3, and 102 copies of RNA for influenza B. This assay demonstrated highly specific detection of target viruses and could differentiate them from other genetically or clinically related viruses. Clinical specimen analysis showed the mRT-LAMP-CIRN assay had an overall sensitivity and specificity of 98.3% and 100%, respectively. In summary, the mRT-LAMP-CIRN assay is highly sensitive and specific, and can be used as a cost-saving and instrument-free method for the detection of influenza viruses, especially for on-site use.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention
| | - Qiang Zhou
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention
| | - Ying Chi
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention
| | - Bin Liu
- Department of Biomedical Engineering, Nanjing Medical University
| | - Xiaoyan Min
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyang Shi
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention
| |
Collapse
|
72
|
Cao G, Xu F, Wang S, Xu K, Hou X, Wu P. Gold Nanoparticle-Based Colorimetric Assay for Selenium Detection via Hydride Generation. Anal Chem 2017; 89:4695-4700. [DOI: 10.1021/acs.analchem.7b00337] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guoming Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fujian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shanling Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Kailai Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Peng Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry and ‡Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
73
|
Qin A, Fu LT, Wong JKF, Chau LY, Yip SP, Lee TMH. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10472-10480. [PMID: 28276674 DOI: 10.1021/acsami.7b00046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.
Collapse
Affiliation(s)
- Ailin Qin
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| | - Lok Tin Fu
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| | - Jacky K F Wong
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| | - Li Yin Chau
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| | - Shea Ping Yip
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| | - Thomas M H Lee
- Interdisciplinary Division of Biomedical Engineering, ‡Department of Health Technology and Informatics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
74
|
Multiplex Reverse-Transcription Loop-Mediated Isothermal Amplification Coupled with Cascade Invasive Reaction and Nanoparticle Hybridization for Subtyping of Influenza A Virus. Sci Rep 2017; 7:44924. [PMID: 28322309 PMCID: PMC5359610 DOI: 10.1038/srep44924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022] Open
Abstract
Considering the fatal human victims and economic loss caused by influenza virus infection every year, methodologies for rapid and on-site detection of influenza viruses are urgently needed. LAMP is the most commonly used nucleic acid isothermal amplification technology suitable for on-site use. However, for multiplex LAMP, differentiation of the amplicons derived from multiple targets is still challengeable currently. Here we developed a multiplex RT-LAMP assay for simultaneous amplification of three prominent subtypes of influenza viruses (A/H5, A/H7 and 2009A/H1). The amplicons were further identified by cascade invasive reaction and nanoparticle hybridization in separate target-specific detection tubes (referred to as mRT-LAMP-IRNH). The analytic sensitivities of the assay are 10 copies of RNA for all the three HA subtypes, and the specificity reached 100%. Clinical specimen analysis showed this assay had a combined sensitivity and specificity of 98.1% and 100%, respectively. Overall, the mRT-LAMP-IRNH assay can be used as a cost-saving method that utilizes a simple instrument to detect A/H5, A/H7, and 2009A/H1 influenza viruses, especially in resource-limited settings.
Collapse
|
75
|
Hong M, Wang M, Wang J, Xu X, Lin Z. Ultrasensitive and selective electrochemical biosensor for detection of mercury (II) ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification. Biosens Bioelectron 2017; 94:19-23. [PMID: 28237902 DOI: 10.1016/j.bios.2017.02.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
In this paper, a novel and signal-on electrochemical biosensor based on Hg2+- triggered nicking endonuclease-assisted target recycling and hybridization chain reaction (HCR) amplification tactics was developed for sensitive and selective detection of Hg2+. The hairpin-shaped capture probe A (PA) contained a specific sequence which was recognized by nicking endonuclease (NEase). In the presence of Hg2+, probe B (PB) hybridized with PA to form stand-up duplex DNA strands via the Hg2+ mediated thymine-Hg2+-thymine (T-Hg2+-T) structure, which automatically triggered NEase to selectively digest duplex region from the recognition sites, spontaneously dissociating PB and Hg2+ and leaving the remnant initiators. The released PB and Hg2+ could be reused to initiate the next cycle and more initiators were generated. The long nicked double helices were formed through HCR event, which was triggered by the initiators and two hairpin-shaped signal probes labeled with methylene blue, resulting in a significant signal increase. Under optimum conditions, the resultant biosensor showed the high sensitivity and selectivity for the detection of Hg2+ in a linear range from 10 pM to 50nM (R2=0.9990), and a detection limit as low as 1.6 pM (S/N=3). Moreover, the proposed biosensor was successfully applied in the detection of Hg2+ in environment water samples with satisfactory results.
Collapse
Affiliation(s)
- Minqiang Hong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mengyan Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xueqin Xu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
76
|
Haque MH, Islam MN, Islam F, Gopalan V, Nguyen NT, Lam AK, Shiddiky MJA. Electrochemical Detection of FAM134B Mutations in Oesophageal Cancer Based on DNA-Gold Affinity Interactions. ELECTROANAL 2017. [DOI: 10.1002/elan.201700039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Md. Hakimul Haque
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Campus Australia
- School of Natural Sciences; Griffith University; Nathan Campus QLD 4111 Australia
- Queensland Micro and Nanotechnology Centre; Griffith University; Nathan Campus QLD 4111 Australia
| | - Md. Nazmul Islam
- School of Natural Sciences; Griffith University; Nathan Campus QLD 4111 Australia
- Queensland Micro and Nanotechnology Centre; Griffith University; Nathan Campus QLD 4111 Australia
| | - Farhadul Islam
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Campus Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Campus Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre; Griffith University; Nathan Campus QLD 4111 Australia
| | - Alfred K. Lam
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Campus Australia
| | - Muhammad J. A. Shiddiky
- School of Natural Sciences; Griffith University; Nathan Campus QLD 4111 Australia
- Queensland Micro and Nanotechnology Centre; Griffith University; Nathan Campus QLD 4111 Australia
| |
Collapse
|
77
|
Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci 2017; 18:E120. [PMID: 28075405 PMCID: PMC5297754 DOI: 10.3390/ijms18010120] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Mohammed Kawser Hossain
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
78
|
Chen Z, Miao L, Liu Y, Dong T, Ma X, Guan X, Zhou G, Zou B. A universal genotyping–microarray constructed by ligating a universal fluorescence-probe with SNP-encoded flaps cleaved from multiplex invasive reactions. Chem Commun (Camb) 2017; 53:12922-12925. [PMID: 29152636 DOI: 10.1039/c7cc06649j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The universal chip and fluorescence probe enable genotyping multiple SNPs more labor-saving and cost-saving.
Collapse
Affiliation(s)
- Zhiyao Chen
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Liyan Miao
- Department of Clinical Pharmacology Research Lab
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Yunlong Liu
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Tianhui Dong
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Xueping Ma
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Xiaoxiang Guan
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Guohua Zhou
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Bingjie Zou
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| |
Collapse
|
79
|
Wang J, Wang X, Wu S, Che R, Luo P, Meng C. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples. Biosens Bioelectron 2017; 87:984-990. [DOI: 10.1016/j.bios.2016.09.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023]
|
80
|
Xu J, Wu ZS, Chen Y, Zheng T, Le J, Jia L. Collapse of chain anadiplosis-structured DNA nanowires for highly sensitive colorimetric assay of nucleic acids. Analyst 2017; 142:613-620. [DOI: 10.1039/c6an02526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we have proposed a chain anadiplosis-structured DNA nanowire by using two well-defined assembly strands (AS1 and AS2).
Collapse
Affiliation(s)
- Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Yanru Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Jingqing Le
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| |
Collapse
|
81
|
YANG H, SONG X, DING B, LI Z, ZHANG X. A Label-free and Turn-on Fluorescence Strategy for DNA Detection with a Wide Detection Range Based on Exonuclease III-aided Target Recycling Amplification. ANAL SCI 2017; 33:9-11. [DOI: 10.2116/analsci.33.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hualin YANG
- Edible and Medicinal Fungi Research Center, College of Life Science, Yangtze University
| | - Xiaoda SONG
- School of Life Science and Technology, China Pharmaceutical University
| | - Baomiao DING
- Edible and Medicinal Fungi Research Center, College of Life Science, Yangtze University
| | - Zhenshun LI
- Edible and Medicinal Fungi Research Center, College of Life Science, Yangtze University
| | - Xingping ZHANG
- Edible and Medicinal Fungi Research Center, College of Life Science, Yangtze University
| |
Collapse
|
82
|
Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, Wu ZS. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 2016; 90:314-320. [PMID: 27936442 DOI: 10.1016/j.bios.2016.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023]
Abstract
Highly sensitive detection of K-ras gene is of great significance in biomedical research and clinical diagnosis. Here, we developed a colorimetric biosensing system for the detection of proto-oncogene K-ras based on enhanced amplification effect of DNA molecular machine, where dual isothermal circular strand-displacement amplification (D-SDA) occurs on two arms in one-to-one correspondence. Specifically, we designed a primer-locked hairpin probe (HP) and a primer-contained linear polymerization template (PPT). In the presence of target gene, HP can hybridize with PPT, forming a DNA molecular machine with dual functional arms (called DFA-machine). Each of the two probes in this machine is able to be extended by polymerase on its counterpart species. Moreover, with the help of nicking endonuclease, the dual isothermal polymerization is converted into dual circular strand-displacement amplification, generating a large amount of anti-hemin aptamer-contained products. After binding to hemins, the aptamer/hemin duplex, horseradish peroxidase (HRP)-mimicking DNAzyme, was formed and catalyzed the oxidation of colorless ABTS by H2O2, producing a visible green color. The proposed colorimetric assay exhibits a wide linear range from 0.01 to 150nM with a low detection limit of 10pM. More interestingly, the mutations existing in target gene are easily observed by the naked eye. It should be noted that this colorimetric system was proved by the analysis of K-ras gene of SW620 cell lines. The simple and powerful DFA-machine is expected to provide promising potential in the sensitive detection of biomarkers for cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Huo Xu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Dong Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chen-Qiao Li
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zheng Lu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiao-Yun Liao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jie Huang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
83
|
He H, Dai J, Duan Z, Meng Y, Zhou C, Long Y, Zheng B, Du J, Guo Y, Xiao D. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection. Biosens Bioelectron 2016; 86:985-989. [DOI: 10.1016/j.bios.2016.07.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
|
84
|
Duan R, Lou X, Xia F. The development of nanostructure assisted isothermal amplification in biosensors. Chem Soc Rev 2016; 45:1738-49. [PMID: 26812957 DOI: 10.1039/c5cs00819k] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing simple and inexpensive methods to ultrasensitively detect biomarkers is important for medical diagnosis, food analysis and environmental security. In recent years, isothermal amplifications with sensitivity, high speed, specificity, accuracy, and automation have been designed based on interdisciplinary approaches among chemistry, biology, and materials science. In this article, we summarize the advances in nanostructure assisted isothermal amplification in the past two decades for the detection of commercial biomarkers, or biomarkers extracted from cultured cells or patient samples. This article has been divided into three parts according to the ratio of target-to-signal probe in the detection strategy, namely, the N : N amplification ratio, the 1 : N amplification ratio, and the 1 : N(2) amplification ratio.
Collapse
Affiliation(s)
- Ruixue Duan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
85
|
Label-free electrochemical detection of RNA based on “Y” junction structure and restriction endonuclease-aided target recycling strategy. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
86
|
A novel ultrasensitive competition strategy for electrochemical and colorimetric cytosensing of acute leukemia cells. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Ansari MH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron 2016; 85:247-260. [DOI: 10.1016/j.bios.2016.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
88
|
Meng F, Xu H, Yao X, Qin X, Jiang T, Gao S, Zhang Y, Yang D, Liu X. Mercury detection based on label-free and isothermal enzyme-free amplified fluorescence platform. Talanta 2016; 162:368-373. [PMID: 27837842 DOI: 10.1016/j.talanta.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 10/02/2016] [Indexed: 11/29/2022]
Abstract
A novel and convenient biosensor for Mercury (II) detection was developed based on toehold-mediated strand displacement isothermal enzyme-free amplification (EFA) technology and label-free fluorescence platform using Sybr Green Ι (SG) and graphene oxide (GO). The method is highly sensitive and selective, and the logarithmically related Hg2+ linearity range is from 0.1 to 50nM with a detection limit 0.091nM. Moreover, our strategy is simple, enzyme-free, and inexpensive and can be applied to detect spiked Hg2+ in environmental water samples with good recovery and accuracy, which demonstrates that the biosensor has a good potential in the environment surveys in the future.
Collapse
Affiliation(s)
- Fanbin Meng
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xue Yao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xuan Qin
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Shanmin Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yahui Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Di Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xia Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
89
|
Accurate and visual discrimination of single-base mismatch by utilization of binary DNA probes in gold nanoparticles-based biosensing strategy. Talanta 2016; 161:528-534. [PMID: 27769442 DOI: 10.1016/j.talanta.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/20/2016] [Accepted: 09/03/2016] [Indexed: 11/20/2022]
Abstract
Herein we report a colorimetric biosensing strategy to discriminate single-nucleotide mutation in DNA with high selectivity using unmodified gold nanoparticles (AuNPs) as indicators. In the AuNPs-based colorimetric strategy, binary DNA probes were produced by splitting a long DNA probe in the middle for sensitive differentiation of single-base mismatch. The detection limit of this method toward target DNA was 5nM. The developed system has superior advantages of utilization of inexpensive materials, simplicity and visualization. Moreover, binary DNA probes not only can distinguish single-base mutation in the target DNA very well, as compared to long DNA probe, but also can construct "AND" logic gate using two distinct target DNAs as inputs, which holds great potential for increasing the accuracy of disease diagnosis in clinical applications.
Collapse
|
90
|
He H, Dai J, Duan Z, Zheng B, Meng Y, Guo Y, Dan Xiao. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. Sci Rep 2016; 6:30878. [PMID: 27477392 PMCID: PMC4967886 DOI: 10.1038/srep30878] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
It is known that the adsorption of short single-stranded DNA (ssDNA) on unmodified gold nanoparticles (AuNPs) is much faster than that for long ssDNA, and thus leads to length-dependent AuNPs aggregation after addition of salt, the color of the solutions sequentially changed from red to blue in accordance with the increase of ssDNA length. However, we found herein that the ssDNA sticky end of hairpin DNA exhibited a completely different adsorption behavior compared to ssDNA, an inverse blue-to-red color variation was observed in the colloid solution with the increase of sticky end length when the length is within a certain range. This unusual sequence length-dependent AuNPs aggregation might be ascribed to the effect of the stem of hairpin DNA. On the basis of this unique phenomenon and catalytic hairpin assembly (CHA) based signal amplification, a novel AuNPs-based colorimetric DNA assay with picomolar sensitivity and specificity was developed. This unusual sequence length-dependent AuNPs aggregation of the ssDNA sticky end introduces a new direction for the AuNPs-based colorimetric assays.
Collapse
Affiliation(s)
- Hongfei He
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhijuan Duan
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yan Meng
- College of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| | - Yong Guo
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Dan Xiao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- College of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| |
Collapse
|
91
|
Reverte M, Vasseur JJ, Smietana M. Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection. Org Biomol Chem 2016; 13:10604-8. [PMID: 26441029 DOI: 10.1039/c5ob01815c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5'-End boronic acid-modified oligonucleotides were evaluated against various nucleases at single and double stranded levels. The results show that these modifications induce a high resistance to degradation by calf-spleen and snake venom phosphodiesterases. More importantly, this eventually led to the development of a new label-free enzyme-assisted fluorescence-based method for single mismatch detection.
Collapse
Affiliation(s)
- Maëva Reverte
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| |
Collapse
|
92
|
Xie H, Wang Q, Chai Y, Yuan Y, Yuan R. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.). Biosens Bioelectron 2016; 86:630-635. [PMID: 27471153 DOI: 10.1016/j.bios.2016.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
In this work, a label-free electrochemical biosensor was developed for sensitive and selective detection of mercury (II) ions (Hg(2+)) based on in-situ deposition of silver nanoparticles (AgNPs) on terminal deoxynucleotidyl transferase (TdT) extended ssDNA for signal output and nicking endonuclease for cycling amplification. In the presence of target Hg(2+), the T-rich DNA (HP1) could partly fold into duplex-like structure (termed as output DNA) via T-Hg(2+)-T base pairs and thus exposed its sticky end. The sticky end of output DNA could then hybridize with 3'-PO4 terminated capture DNA (HP2) on electrode surface to form output DNA-HP2 hybridization complex with the sequence 5'-CCTCAGC-3'/3'-GGAGTCG-5' (the sequence could be recognized by nicking endonuclease Nt. BbvCI). With the introduction of Nt. BbvCI, output DNA existed in hybridization complex was released from electrode and participated in the next hybridization process, accompanying with the cleave of HP2 to expose substantial 3'-OH group, which could be extended into a long ssDNA nanotail with the aid of TdT and deoxyadenosine triphosphate (dATP). Since the long negatively charged ssDNA nanotail absorbed the positively charged silver ions on the DNA skeleton, the metallic silver could be in-situ deposited on electrode surface for electrochemical signal output upon addition of reduction regent sodium borohydride. Under optimal conditions, the developed electrochemical biosensor presented a good response to Hg(2+) with a detection limit of 3 pM (S/N=3). Furthermore, the biosensor exhibited good reproducibility and high selectivity towards other interfering ions. The proposed sensing system also showed a promising potential application in real sample analysis.
Collapse
Affiliation(s)
- Hua Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Qin Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| |
Collapse
|
93
|
Li J, Zhao Q, Tang Y. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets. SENSORS (BASEL, SWITZERLAND) 2016; 16:E865. [PMID: 27304956 PMCID: PMC4934291 DOI: 10.3390/s16060865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 12/24/2022]
Abstract
We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.
Collapse
Affiliation(s)
- Junting Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Qi Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
94
|
Kim M, Ko SM, Nam JM. Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles. NANOSCALE 2016; 8:11707-11717. [PMID: 27221241 DOI: 10.1039/c6nr01321j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts.
Collapse
Affiliation(s)
- Minho Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | - Sung Min Ko
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
95
|
Kim Y, Ko SM, Nam JM. Protein-Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation. Chem Asian J 2016; 11:1869-77. [DOI: 10.1002/asia.201600236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yuna Kim
- Seoul National University; Department of Chemistry; Seoul 151-742 South Korea
| | - Sung Min Ko
- Seoul National University; Department of Chemistry; Seoul 151-742 South Korea
| | - Jwa-Min Nam
- Seoul National University; Department of Chemistry; Seoul 151-742 South Korea
| |
Collapse
|
96
|
Zhou X, Liang Y, Xu Y, Lin X, Chen J, Ma Y, Zhang L, Chen D, Song F, Dai Z, Zou X. Triple cascade reactions: An ultrasensitive and specific single tube strategy enabling isothermal analysis of microRNA at sub-attomole level. Biosens Bioelectron 2016; 80:378-384. [DOI: 10.1016/j.bios.2016.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/04/2023]
|
97
|
Lin X, Sun X, Luo S, Liu B, Yang C. Development of DNA-based signal amplification and microfluidic technology for protein assay: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
98
|
Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang HH. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification. Anal Chem 2016; 88:5097-103. [DOI: 10.1021/acs.analchem.5b04521] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Linlin Yang
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yingzhou Tao
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Guiyin Yue
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ruibao Li
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huang-Hao Yang
- Ministry
of Education Key
Laboratory of Analysis and Detection for Food Safety, Fujian Provincial
Key Laboratory of Analysis and Detection for Food Safety, Department
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
99
|
Wang Q, Li RD, Yin BC, Ye BC. Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification. Analyst 2016; 140:6306-12. [PMID: 26258182 DOI: 10.1039/c5an01350j] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing simple and rapid methods for sequence-specific microRNA (miRNA) analysis is imperative to the miRNA study and use in clinical diagnosis. We have developed a colorimetric method for miRNA detection based on duplex-specific nuclease (DSN)-assisted signal amplification coupled to the aggregation of gold nanoparticles (AuNPs). The proposed method involves two processes: target-mediated probe digestion by a DSN enzyme and probe-triggered AuNP aggregation as a switch for signal output. The reaction system consists of a rationally designed probe complex formed by two partly complementary DNA probes, and two sets of different oligonucleotide-modified AuNPs with sequences complementary to a DNA probe in the probe complex. In the presence of target miRNA, the probe complex is invaded, resulting in the formation of a miRNA-probe heteroduplex as the substrate of the DSN enzyme, and releasing the other probe to link to the AuNPs. The proposed method allows quantitative detection of miR-122 in the range of 20 pM to 1 nM with a detection limit of ∼16 pM, and shows an excellent ability to discriminate single-base differences. Moreover, the detection assay can be applied to accurately quantify miR-122 in cancerous cell lysates which is in excellent agreement with the results from a commercial miRNA detection kit. This method is simple, cost-effective, highly selective, and free of dye label and separation procedures.
Collapse
Affiliation(s)
- Qian Wang
- Lab of Biosystem and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | | | | | | |
Collapse
|
100
|
Unmodified and positively charged gold nanoparticles for sensitive colorimetric detection of folate receptor via terminal protection of small molecule-linked ssDNA. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5589-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|