51
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongni Han
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Bertrand Goudeau
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
| | - Dragan Manojlovic
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
52
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021; 60:7686-7690. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.
Collapse
Affiliation(s)
- Dongni Han
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dragan Manojlovic
- Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
53
|
Zhu H, Jiang D, Zhu JJ. High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chem Sci 2021; 12:4794-4799. [PMID: 34163732 PMCID: PMC8179586 DOI: 10.1039/d0sc06967a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Here, the electrocatalytic activity of a single graphene sheet is mapped using electrochemiluminescence (ECL) microscopy with a nanometer resolution. The achievement of this high-spatial imaging relies on the varied adsorption of hydrogen peroxide at different sites on the graphene surface, leading to unsynchronized ECL emission. By shortening the exposure time to 0.2 ms, scattered ECL spots are observed in the ECL image that are not overlaid with the spots in the consecutive images. Accordingly, after stacking all the images into a graph, the ECL intensity of each pixel could be used to reflect the electrocatalytic features of the graphene surface with a resolution of 400 nm. This novel ECL method efficiently avoids the long-standing problem of classic ECL microscopy regarding the overlap of ECL emissions from adjacent regions and enables the nanometer spatial resolution of ECL microscopy for the first time.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
54
|
Ding J, Zhou P, Guo W, Su B. Confined Electrochemiluminescence Generation at Ultra-High-Density Gold Microwell Electrodes. Front Chem 2021; 8:630246. [PMID: 33575249 PMCID: PMC7870482 DOI: 10.3389/fchem.2020.630246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Electrochemiluminescence (ECL) imaging analysis based on the ultra-high-density microwell electrode array (UMEA) has been successfully used in biosensing and diagnostics, while the studies of ECL generation mechanisms with spatial resolution remain scarce. Herein we fabricate a gold-coated polydimethylsiloxane (PDMS) UMEA using electroless deposition method for the visualization of ECL reaction process at the single microwell level in conjunction with using microscopic ECL imaging technique, demonstrating that the microwell gold walls are indeed capable of enhancing the ECL generation. For the classical ECL system involving tris(2,2′-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA), the ECL image of a single microwell appears as a surface-confined ring, indicating the ECL intensity generated inside the well is much stronger than that on the top surface of UMEA. Moreover, at a low concentration of Ru(bpy)32+, the ECL image remains to be ring-shaped with the increase of exposure time, because of the limited lifetime of TPrA radical cations TPrA+•. In combination with the theoretical simulation, the ring-shaped ECL image is resolved to originate from the superposition effect of the mass diffusion fields at both microwell wall and bottom surfaces.
Collapse
Affiliation(s)
- Jialian Ding
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Ping Zhou
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Weiliang Guo
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Electrochemical development and enhancement of latent fingerprints on stainless steel via electrochromic effect of electrodeposited Co3O4 films. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
56
|
Qin Z, Wen M, Bai J, Cui J, Miao R, Zhang X, Zhang Q, Zhang R, Du X. Silica-coupled carbon nanodots: multicolor fluorescence governed by the surface structure for fingerprint recognition and WLED devices. NEW J CHEM 2021. [DOI: 10.1039/d1nj01742j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study shows a solvent-engineered strategy for the controlled synthesis of N-CNDs/silica with blue and green fluorescence, respectively, and applied to detect latent fingerprints and fabricate LED devices.
Collapse
Affiliation(s)
- Zhenxing Qin
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Ming Wen
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Jingjing Bai
- Department of Materials Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- People's Republic of China
| | - Junchao Cui
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Runze Miao
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Xuewen Zhang
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Qingmei Zhang
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Rui Zhang
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| | - Xiujuan Du
- Department of Physics
- Taiyuan University of Science and Technology
- Taiyuan 030024
- People's Republic of China
| |
Collapse
|
57
|
Ahmad M, Kumar G, Luxami V, Kaur S, Singh P, Kumar S. Fluorescence imaging of surface-versatile latent fingerprints at the second and third level using double ESIPT-based AIE fluorophore. NEW J CHEM 2021. [DOI: 10.1039/d1nj00678a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nano-aggregates of HPBI on both porous and non-porous surfaces provide fluorescent latent fingerprints with resolution up to the third level, which could be relocated on the tape.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Science
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Prabhpreet Singh
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| | - Subodh Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| |
Collapse
|
58
|
Han D, Goudeau B, Jiang D, Fang D, Sojic N. Electrochemiluminescence Microscopy of Cells: Essential Role of Surface Regeneration. Anal Chem 2020; 93:1652-1657. [DOI: 10.1021/acs.analchem.0c05123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongni Han
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607 Pessac, France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Bertrand Goudeau
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607 Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607 Pessac, France
- Department of Chemistry, South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
59
|
Xiao S, Zhang Y, Xiao D. Latent fingermarks on copperplate paper: facile visualization via electrochromism of 1,1′-bis(3-sulfonatopropyl) viologen. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
60
|
Guo W, Zhou P, Sun L, Ding H, Su B. Microtube Electrodes for Imaging the Electrochemiluminescence Layer and Deciphering the Reaction Mechanism. Angew Chem Int Ed Engl 2020; 60:2089-2093. [DOI: 10.1002/anie.202012340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Ping Zhou
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Lei Sun
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hao Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
61
|
Guo W, Zhou P, Sun L, Ding H, Su B. Microtube Electrodes for Imaging the Electrochemiluminescence Layer and Deciphering the Reaction Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Ping Zhou
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Lei Sun
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hao Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
62
|
Wang N, Gao H, Li Y, Li G, Chen W, Jin Z, Lei J, Wei Q, Ju H. Dual Intramolecular Electron Transfer for In Situ Coreactant‐Embedded Electrochemiluminescence Microimaging of Membrane Protein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276000 China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qin Wei
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
63
|
Wang N, Gao H, Li Y, Li G, Chen W, Jin Z, Lei J, Wei Q, Ju H. Dual Intramolecular Electron Transfer for In Situ Coreactant‐Embedded Electrochemiluminescence Microimaging of Membrane Protein. Angew Chem Int Ed Engl 2020; 60:197-201. [DOI: 10.1002/anie.202011176] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276000 China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qin Wei
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
64
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
65
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020; 59:21858-21863. [DOI: 10.1002/anie.202009544] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
66
|
Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Spatially resolved electrochemiluminescence through a chemical lens. Chem Sci 2020; 11:10496-10500. [PMID: 34123186 PMCID: PMC8162283 DOI: 10.1039/d0sc04210b] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022] Open
Abstract
Electrochemiluminescence (ECL) microscopy is an emerging technique with a wide range of imaging applications and unique properties in terms of high spatial resolution, surface confinement and favourable signal-to-noise ratio. Despite its successful analytical applications, tuning the depth of field (i.e., thickness of the ECL-emitting layer) is a crucial issue. Indeed, the control of the thickness of this ECL region, which can be considered as an "evanescent" reaction layer, limits the development of cell microscopy as well as bioassays. Here we report an original strategy based on chemical lens effects to tune the ECL-emitting layer in the model [Ru(bpy)3]2+/tri-n-propylamine (TPrA) system. It consists of microbeads decorated with [Ru(bpy)3]2+ labels, classically used in bioassays, and TPrA as the sacrificial coreactant. In particular we exploit the buffer capacity of the solution to modify the rate of the reactions involved in the ECL generation. For the first time, a precise control of the ECL light distribution is demonstrated by mapping the luminescence reactivity at the level of single micrometric bead. The resulting ECL image is the luminescent signature of the concentration profiles of diffusing TPrA radicals, which define the ECL layer. Therefore, our findings provide insights into the ECL mechanism and open new avenues for ECL microscopy and bioassays. Indeed, the reported approach based on a chemical lens controls the spatial extension of the "evanescent" ECL-emitting layer and is conceptually similar to evanescent wave microscopy. Thus, it should allow the exploration and imaging of different heights in substrates or in cells.
Collapse
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Dongni Han
- Univ. Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry, South Ural State University Chelyabinsk 454080 Russian Federation
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
67
|
|
68
|
Electrochemiluminescence imaging of latent fingerprints by electropolymerized luminol. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Ma C, Wei HF, Wang MX, Wu S, Chang YC, Zhang J, Jiang LP, Zhu W, Chen Z, Lin Y. Hydrogen Evolution Reaction Monitored by Electrochemiluminescence Blinking at Single-Nanoparticle Level. NANO LETTERS 2020; 20:5008-5016. [PMID: 32515975 DOI: 10.1021/acs.nanolett.0c01129] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monitoring and characterization methods that provide performance tracking of hydrogen evolution reaction (HER) at the single-nanoparticle level can greatly advance our understanding of catalysts' structure and activity relationships. Electrochemiluminescence (ECL) microscopy is implemented for the first time to identify HER activities of single nanocatalysts and to provide a direction for further optimization. Here, we develop a novel ECL blinking technique at the single-nanoparticle level to directly monitor H2 nanobubbles generated from hollow carbon nitride nanospheres (HCNSs). The ECL ON and OFF mechanisms are identified being closely related to the generation, growth, and collapse of H2 nanobubbles. The power-law distributed durations of ON and OFF states demonstrate multiple catalytic sites with stochastic activities on a single HCNS. The power-law coefficients of ECL blinking increase with improved HER activities from modified HCNSs with other active HER catalysts. Besides, ECL blinking phenomenon provides an explanation for the low cathodic ECL efficiency of semiconductor nanomaterials.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hui-Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Min-Xuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yu-Chung Chang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
70
|
Dong XY, Niu XQ, Zhang ZY, Wei JS, Xiong HM. Red Fluorescent Carbon Dot Powder for Accurate Latent Fingerprint Identification using an Artificial Intelligence Program. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29549-29555. [PMID: 32543846 DOI: 10.1021/acsami.0c01972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development and comparison of the latent fingerprints (LFPs) are two major studies in detection and identification of LFPs, respectively. However, integrated research studies on both fluorescent materials for LFP development and digital-processing programs for LFP comparison are scarcely seen in the literature. In this work, highly efficient red-emissive carbon dots (R-CDs) are synthesized in one pot and mixed with starch to form R-CDs/starch phosphors. Such phosphors are comparable with various substrates and suitable for the typical powder dusting method to develop LFPs. The fluorescence images of the developed LFPs are handled with an artificial intelligence program. For the optimal sample, this program presents an excellent matching score of 93%, indicating that the developed sample has very high similarity with the standard control. Our results are significantly better than the benchmark obtained by the traditional method, and thus, both the R-CDs/starch phosphors and the digital processing program fit well for the practical applications.
Collapse
Affiliation(s)
- Xiang-Yang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiao-Qing Niu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zheng-Yong Zhang
- School of Management Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Ji-Shi Wei
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
71
|
Dutta P, Han D, Goudeau B, Jiang D, Fang D, Sojic N. Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays. Biosens Bioelectron 2020; 165:112372. [PMID: 32729504 DOI: 10.1016/j.bios.2020.112372] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
Electrochemiluminescence (ECL) is a powerful (bio)analytical method based on an optical readout. It is successfully applied in the heterogeneous format for immunoassays and imaging using the model and most widely used ECL system, which consists of the immobilized [Ru(bpy)3]2+ label with tripropylamine (TPA) as a coreactant. However, a major drawback is the significant decrease of the ECL intensity over time. Herein, to decipher the process responsible for this progressive loss of ECL signal, we investigated its electrochemical and photophysical properties by mapping the luminescence reactivity at the level of single micrometric beads. Polystyrene beads were functionalized by the [Ru(bpy)3]2+ dye via a sandwich immunoassay or a peptide bond. ECL emission was generated in presence of the very efficient TPA coreactant. Imaging both photoluminescence and ECL reactivities of different regions (located near or far from the electrode surface) of a [Ru(bpy)3]2+-decorated bead allows us to demonstrate the remarkable photophysical stability of the ECL label, even in presence of the very reactive electrogenerated TPA radicals. We show that the ECL vanishing correlates directly with the lower TPA oxidation current. Finally, we propose a simple electrochemical treatment, which allows to regenerate the electrode surface and thus to recover several times the strong initial ECL signal. The reactivity imaging approach provides insights into the ECL mechanism and the main factors governing the stability of the emission, which should find promising ECL applications in bioassays and microscopy.
Collapse
Affiliation(s)
- Priyanka Dutta
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France
| | - Dongni Han
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France; School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France; Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation.
| |
Collapse
|
72
|
Gao H, Han W, Qi H, Gao Q, Zhang C. Electrochemiluminescence Imaging for the Morphological and Quantitative Analysis of Living Cells under External Stimulation. Anal Chem 2020; 92:8278-8284. [PMID: 32458679 DOI: 10.1021/acs.analchem.0c00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a simple electrochemiluminescence (ECL) imaging method based on the cell shield of the ECL emission was developed for the morphological and quantitative analysis of living cells under external stimulation. ECL images of MCF-7 cells cultured on or captured at the glassy carbon electrode (GCE) surface in a solution of tris(2,2'-bipyridyl)ruthenium(II)-tri-n-propylamine were recorded. Important morphological characteristics of living cells, including cell shape, cell area, average cell boundary, and junction distance between two adjacent cells, were directly obtained using the developed negative ECL imaging method. The ECL images revealed gradual morphological changes in cells on the GCE surface. During the course of H2O2 stimulation of cells on the GCE surface, cells shrunk, rounded up, disengaged from surrounding cells, and finally detached from the electrode surface. During the course of electrical stimulation (0.8 V), the cells on the GCE surface exhibited aggregation as demonstrated by increases in the average cell boundary and decreases in the junction distance between two adjacent cells. Additionally, a quantitative method for the sensitive determination of MCF-7 cells with a limit of detection of 29 cells/mL was developed using the negative ECL imaging strategy. This work demonstrates that the proposed negative ECL imaging strategy is a promising approach to assess important morphological characteristics of living cells during the course of external stimulation and to obtain quantitative information on cell concentrations in solution.
Collapse
Affiliation(s)
- Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weijuan Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
73
|
Zanut A, Fiorani A, Canola S, Saito T, Ziebart N, Rapino S, Rebeccani S, Barbon A, Irie T, Josel HP, Negri F, Marcaccio M, Windfuhr M, Imai K, Valenti G, Paolucci F. Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nat Commun 2020; 11:2668. [PMID: 32472057 PMCID: PMC7260178 DOI: 10.1038/s41467-020-16476-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Andrea Fiorani
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Sofia Canola
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Toshiro Saito
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | - Nicole Ziebart
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Stefania Rapino
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Sara Rebeccani
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Takashi Irie
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | | | - Fabrizia Negri
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Massimo Marcaccio
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | | | - Kyoko Imai
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki-ken, 312-8504, Japan
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
74
|
Zhang Q, Zhang X, Ma Q. Recent Advances in Visual Electrochemiluminescence Analysis. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00129-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
75
|
Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. NANOSCALE 2020; 12:8828-8835. [PMID: 32253405 DOI: 10.1039/d0nr01025a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bright and metal-free mass-amplifying electrochemiluminescence film (MAEF) performing in aqueous media was reported for the first time. Systematic studies demonstrated that the film substrates have a remarkable influence on the electrochemiluminescence (ECL) performance. Gold substrates promote ECL reactions and the subsequent radiative decay process simultaneously, affording an unconventional 507-fold ECL enhancement. Such a gold-enhanced MAEF is opposite to ECL systems previously reported, in which the use of gold electrodes normally results in decreased ECL intensity due to passivation of the gold surface by oxide formation. More importantly, the ECL intensity of the MAEF is linearly amplified through facilely regulating luminogen loading. Morphological analysis reveals that the film consists of grass-like nanowires with a diameter of 57 nm, which facilitate electrical communication between the luminogen, electrode, and supporting electrolyte, giving rise to the mass-amplifying ECL. The bright ECL of the solid film in aqueous media can be readily observed by the naked eye, entirely different from visible ECL systems reported in which ruthenium complexes dissolved/dispersed in solution are used as the luminogens. The film is further utilized to detect dopamine (DA), an important biomolecule related to nervous diseases, in aqueous media, with a low detection limit of 3.3 × 10-16 M. Furthermore, a facile method based on grayscale analysis of ECL images (GAEI) of the film was developed for visual and ultrasensitive DA detection in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM and GDHPPC labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | |
Collapse
|
76
|
Fereja TH, Du F, Wang C, Snizhko D, Guan Y, Xu G. Electrochemiluminescence Imaging Techniques for Analysis and Visualizing. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00128-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Guo W, Ding H, Zhou P, Wang Y, Su B. Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Ping Zhou
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Yafeng Wang
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
78
|
Voci S, Duwald R, Grass S, Hayne DJ, Bouffier L, Francis PS, Lacour J, Sojic N. Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chem Sci 2020; 11:4508-4515. [PMID: 34122909 PMCID: PMC8159437 DOI: 10.1039/d0sc00853b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Controlling electrochemiluminescence (ECL) color(s) is crucial for many applications ranging from multiplexed bioassays to ECL microscopy. This can only be achieved through the fundamental understanding of high-energy electron-transfer processes in complex and competitive reaction schemes. Recently, this field has generated huge interest, but the effective implementation of multicolor ECL is constrained by the limited number of ECL-active organometallic dyes. Herein, the first self-enhanced organic ECL dye, a chiral red-emitting cationic diaza [4]helicene connected to a dimethylamino moiety by a short linker, is reported. This molecular system integrates bifunctional ECL features (i.e. luminophore and coreactant) and each function may be operated either separately or simultaneously. This unique level of control is enabled by integrating but decoupling both molecular functions in a single molecule. Through this dual molecular reactivity, concomitant multicolor ECL emission from red to blue with tunable intensity is readily obtained in aqueous media. This is done through competitive electron-transfer processes between the helicene and a ruthenium or iridium dye. The reported approach provides a general methodology to extend to other coreactant/luminophore systems, opening enticing perspectives for spectrally distinct detection of several analytes, and original analytical and imaging strategies.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Romain Duwald
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stéphane Grass
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - David J Hayne
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Paul S Francis
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Jérôme Lacour
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
79
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
80
|
Li M, Tian T, Zeng Y, Zhu S, Lu J, Yang J, Li C, Yin Y, Li G. Individual Cloud-Based Fingerprint Operation Platform for Latent Fingerprint Identification Using Perovskite Nanocrystals as Eikonogen. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13494-13502. [PMID: 32093476 DOI: 10.1021/acsami.9b22251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fingerprint formed through lifted papillary ridges is considered the best reference for personal identification. However, the currently available latent fingerprint (LFP) images often suffer from poor resolution, have a low degree of information, and require multifarious steps for identification. Herein, an individual Cloud-based fingerprint operation platform has been designed and fabricated to achieve high-definition LFPs analysis by using CsPbBr3 perovskite nanocrystals (NCs) as eikonogen. Moreover, since CsPbBr3 NCs have a special response to some fingerprint-associated amino acids, the proposed platform can be further used to detect metabolites on LFPs. Consequently, in virtue of Cloud computing and artificial intelligence (AI), this study has demonstrated a champion platform to realize the whole LFP identification analysis. In a double-blind simulative crime game, the enhanced LFP images can be easily obtained and used to lock the suspect accurately within one second on a smartphone, which can help investigators track the criminal clue and handle cases efficiently.
Collapse
Affiliation(s)
- Menglu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Tian Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Sha Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jianyang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
81
|
Guo W, Ding H, Zhou P, Wang Y, Su B. Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angew Chem Int Ed Engl 2020; 59:6745-6749. [PMID: 31944544 DOI: 10.1002/anie.201915984] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Here we report the first observation of active waveguide of electrochemiluminescence (ECL) in single crystalline molecular wires self-assembled from cyclometalated iridium(III) complexes, namely tris(1-phenylisoquinoline-C2 , N) (Ir(piq)3 ). Under dark conditions, the molecular wires deposited on the electrode surface can act as both ECL emitters and active waveguides. As revealed by ECL microscopy, they exhibit the typical characteristics of optical waveguides, transmitting ECL and generating much brighter ECL emission at their terminals. Moreover, self-generated ECL can be confined inside the molecular wire and propagates along the longitudinal direction as far as ≈100 μm to the terminal out of touch with the electrode. Therefore, this one-dimensional crystalline molecular wire-based waveguide offers the opportunity to switch the electrochemically generated ECL to remote light emission in non-conductive regions and is promising for contactless electrochemical analysis and study of (bio)chemical systems.
Collapse
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
82
|
Xi D, Xu Y, Xu R, Wang Z, Liu D, Shen Q, Yue L, Dang D, Meng L. A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry 2020; 26:2741-2748. [PMID: 31886910 DOI: 10.1002/chem.201905169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 01/28/2023]
Abstract
To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.
Collapse
Affiliation(s)
- Duo Xi
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Daomeng Liu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Qifei Shen
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ling Yue
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.,Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| |
Collapse
|
83
|
Cui L, Yu S, Gao W, Zhang X, Deng S, Zhang CY. Tetraphenylenthene-Based Conjugated Microporous Polymer for Aggregation-Induced Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7966-7973. [PMID: 31984727 DOI: 10.1021/acsami.9b21943] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the aggregation-induced electrochemiluminescence (AIECL) generated by 1,1,2,2-tetrakis(4-bromophenyl)ethane (TBPE)-based conjugated microporous polymers (TBPE-CMPs) and its biosensing application. We synthesized three TBPE-CMPs (i.e., TBPE-CMP-1, -2, -3) using three different molecules including tris(4-ethynylphenyl)amine (TEPA), 4,4'-diethynylbiphenyl (DEP), and 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine (TEPT). The TBPE-CMPs can act as electrochemiluminescence (ECL) emitters to generate AIECL. Among them, TBPE-CMP-1 exhibits the highest ECL efficiency (1.72%) due to the improved electron-hole recombination efficiency and efficient suppression of nonradiative transition. Moreover, the ECL properties of TBPE-CMPs can be tuned by the introduction of different conjugated molecules that can decrease the energy gap to facilitate the injection of an electron into the conjugated polymer backbone. Importantly, TBPE-CMP-1 can be used to construct an ECL sensor for the detection of dopamine, whose electro-oxidation products (e.g., leucodopaminechrome (LDC), dopaminechrome (DC), 5,6-dihydroxyindole (DHI), and 5,6-indolequinone (IDQ)) may function as energy acceptors to quench the ECL emission of TBPE-CMP-1. This ECL sensor exhibits high sensitivity and good anti-interference capability against ascorbic acid and uric acid.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Shilong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Wenqiang Gao
- School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Shengyuan Deng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
84
|
Wang Y, Guo W, Yang Q, Su B. Electrochemiluminescence Self-Interference Spectroscopy with Vertical Nanoscale Resolution. J Am Chem Soc 2020; 142:1222-1226. [DOI: 10.1021/jacs.9b12833] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qian Yang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
85
|
Abstract
This Feature simply introduces the history and mechanism of classical electrogenerated chemiluminescence (ECL) systems for the detection of biomolecules, highlights new advances and emerging fields of the ECL biosensing with recent illustrative examples, and presents the challenges and perspectives of ECL biosensing.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
86
|
Chen L, Hayne DJ, Doeven EH, Agugiaro J, Wilson DJD, Henderson LC, Connell TU, Nai YH, Alexander R, Carrara S, Hogan CF, Donnelly PS, Francis PS. A conceptual framework for the development of iridium(iii) complex-based electrogenerated chemiluminescence labels. Chem Sci 2019; 10:8654-8667. [PMID: 31803440 PMCID: PMC6849491 DOI: 10.1039/c9sc01391a] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 01/29/2023] Open
Abstract
Translation of the highly promising electrogenerated chemiluminescence (ECL) properties of Ir(iii) complexes (with tri-n-propylamine (TPrA) as a co-reactant) into a new generation of ECL labels for ligand binding assays necessitates the introduction of functionality suitable for bioconjugation. Modification of the ligands, however, can affect not only the photophysical and electrochemical properties of the complex, but also the reaction pathways available to generate light. Through a combined theoretical and experimental study, we reveal the limitations of conventional approaches to the design of electrochemiluminophores and introduce a new class of ECL label, [Ir(C^N)2(pt-TOxT-Sq)]+ (where C^N is a range of possible cyclometalating ligands, and pt-TOxT-Sq is a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester), which outperformed commercial Ir(iii) complex labels in two commonly used assay formats. Predicted limits on the redox potentials and emission wavelengths of Ir(iii) complexes capable of generating ECL via the dominant pathway applicable in microbead supported ECL assays were experimentally verified by measuring the ECL intensities of the parent luminophores at different applied potentials, and comparing the ECL responses for the corresponding labels under assay conditions. This study provides a framework to tailor ECL labels for specific assay conditions and a fundamental understanding of the ECL pathways that will underpin exploration of new luminophores and co-reactants.
Collapse
Affiliation(s)
- Lifen Chen
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - David J Hayne
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Egan H Doeven
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Johnny Agugiaro
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - David J D Wilson
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Luke C Henderson
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Timothy U Connell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Yi Heng Nai
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Richard Alexander
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Serena Carrara
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Conor F Hogan
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Paul S Donnelly
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Victoria 3010 , Australia
| | - Paul S Francis
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| |
Collapse
|
87
|
Optical methods for studying local electrochemical reactions with spatial resolution: A critical review. Anal Chim Acta 2019; 1074:1-15. [DOI: 10.1016/j.aca.2019.02.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
|
88
|
Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
89
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
90
|
Ju Y, Park HJ, Shin IS, Chung YK, Kim J. Highly efficient low-oxidation-potential electrochemiluminescence of ruthenium(II) complex containing selone moiety. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
91
|
Fu L, Zhang B, Long X, Fu K, Gao X, Zou G. Promising Electrochemiluminescence from CuInS2/ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Anal Chem 2019; 91:10221-10226. [DOI: 10.1021/acs.analchem.9b02320] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Long
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Kena Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
92
|
ZHOU YY, DU YM, BIAN XJ, YAN J. Preparation of Aptamer-functionalized Au@pNTP@SiO2 Core-Shell Surface-enhanced Raman Scattering Probes for Raman Imaging Study of Adhesive Tape Transferred-Latent Fingerprints. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61171-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
93
|
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:275-295. [PMID: 30939032 DOI: 10.1146/annurev-anchem-061318-115226] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| | - Stéphane Arbault
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| |
Collapse
|
94
|
Wang Z, Zhang P, Liu H, Zhao Z, Xiong L, He W, Kwok RTK, Lam JWY, Ye R, Tang BZ. Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17306-17312. [PMID: 31020832 DOI: 10.1021/acsami.9b04269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bloodstains provide admissible information for crime scene investigators. The ability to resolve latent bloodstains that are commonly found in real scenarios is therefore pivotal to public security. Here, we report a facile approach for invisible bloodstain visualization based on the click reaction between serum albumin and tetraphenylethene maleimide (TPE-MI), an aggregation-induced emission luminogen (AIEgen). Compared to the widely adopted methods based on the harsh catalytic oxidation activity of hemoglobin, this working principle benefits from the specificity of the mild catalyst-free thiol-ene click reaction that improves the reliability and resolution. In addition, the mild conditions preserve DNA information and bloodstain patterns, and the excellent photophysical properties of the AIEgen afford high sensitivity and stability (>1 yr). Such an excellent performance cannot be achieved by conventional AIEgens and aggregation-caused quenching luminogens with similar structures. TPE-MI outperforms the benchmark luminol-based technique in visualizing latent bloodstains as showcased in two mock crime scenes: spattered blood track and transfer blood fingerprint. This disclosed method is an advancement in forensic science that could inspire future development of technology for bloodstain visualization.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
| | - Pengfei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
| | - Haixiang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 China
| | - Linghong Xiong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 China
| | - Ruquan Ye
- Department of Chemistry , City University of Hong Kong , Kowloon 99077 , Hong Kong , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience . The Hong Kong University of Science and Technology , Kowloon 999077 , Hong Kong , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 China
- Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 China
| |
Collapse
|
95
|
|
96
|
Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem 2019; 411:4375-4382. [PMID: 31020369 DOI: 10.1007/s00216-019-01761-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 10/26/2022]
Abstract
The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences. Graphical abstract.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Sara Rebeccani
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Sagar Kesarkar
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
97
|
Red-emissive conjugated oligomer/silica hybrid nanoparticles with high affinity and application for latent fingerprint detection. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Cui C, Chen Y, Jiang D, Chen HY, Zhang J, Zhu JJ. Steady-State Electrochemiluminescence at Single Semiconductive Titanium Dioxide Nanoparticles for Local Sensing of Single Cells. Anal Chem 2018; 91:1121-1125. [DOI: 10.1021/acs.analchem.8b04778] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chen Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ying Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
99
|
Qiu Z, Hao B, Gu X, Wang Z, Xie N, Lam JWY, Hao H, Tang BZ. A general powder dusting method for latent fingerprint development based on AIEgens. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9280-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
100
|
Hai J, Li T, Su J, Liu W, Ju Y, Wang B, Hou Y. Reversible Response of Luminescent Terbium(III)-Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angew Chem Int Ed Engl 2018; 57:6786-6790. [PMID: 29660210 DOI: 10.1002/anie.201800119] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 01/18/2023]
Abstract
Fingerprint fluorescence imaging has become one of the most prominent technologies in the field of forensic medicine, but it seldom considers the security protection of detection information, which is of great importance in modern society. Herein we demonstrate that luminescent TbIII -carboxymethyl cellulose (CMC) complex binding aptamer hydrogels that are reversibly responsive to ClO- /SCN- can be used for the selective detection, protection, and storage of fingerprint information. The imaging information of the fingerprint can be quenched and recovered by ClO- /SCN- regulation, respectively, resulting in reversible on/off conversion of the luminescence signals for the encryption and decryption of multiple levels of information. The present study opens new avenues for multilevel imaging, data recording, and security protection of fingerprint information with tunable fluorescent hydrogels.
Collapse
Affiliation(s)
- Jun Hai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Junxia Su
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|