51
|
Hagen T, Malinowska AL, Lightfoot HL, Bigatti M, Hall J. Site-Specific Fluorophore Labeling of Guanosines in RNA G-Quadruplexes. ACS OMEGA 2019; 4:8472-8479. [PMID: 31459936 PMCID: PMC6648711 DOI: 10.1021/acsomega.9b00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 05/08/2023]
Abstract
RNA G-quadruplexes are RNA secondary structures that are implicated in many cellular processes. Although conventional biophysical techniques are widely used for their in vitro characterization, more advanced methods are needed to study complex equilibria and the kinetics of their folding. We have developed a new Förster resonance energy-transfer-based method to detect the folding of RNA G-quadruplexes, which is enabled by labeling the 2'-positions of participating guanosines with fluorophores. Importantly, this does not interfere with the required anti conformation of the nucleobase in a quadruplex with parallel topology. Sequential click reactions on the solid phase and in solution using a stop-and-go strategy circumvented the issue of unselective cross-labeling. We exemplified the method on a series of sequences under different assay conditions. In contrast to the commonly used end-labeling approach, our internal labeling strategy would also allow the study of G-quadruplex formation in long functional RNAs.
Collapse
|
52
|
Cao Y, Kuang Y, Yang L, Ding P, Pei R. Construction of One- and Two-Dimensional Nanostructures by the Sequential Assembly of Quadruplex DNA Scaffolds. Biomacromolecules 2019; 20:2207-2217. [DOI: 10.1021/acs.biomac.9b00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
53
|
Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS, Sharma TK, Mergny JL, Kumar A. Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 Genes of Mycobacterium tuberculosis as Potential Drug Targets. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:698-706. [PMID: 31128421 PMCID: PMC6531831 DOI: 10.1016/j.omtn.2019.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/31/2023]
Abstract
G-quadruplex structure forming motifs are among the most studied evolutionarily conserved drug targets that are present throughout the genome of different organisms and susceptible to influencing various biological processes. Here we report highly conserved potential G-quadruplex motifs (PGQs) in three essential genes (espK, espB, and cyp51) among 160 strains of the Mycobacterium tuberculosis genome. Products of these genes are involved in pathways that are responsible for virulence determination of bacteria inside the host cell and its survival by maintaining membrane fluidity. The espK and espB genes are essential players that prevent the formation of mature phagolysosome and antigen presentation by host macrophages. The cyp51 is another PGQ-possessing gene involved in sterol biosynthesis pathway and membrane formation. In the present study, we revealed the formation of stable intramolecular parallel G-quadruplex structures by Mycobacterium PGQs using a combination of techniques (NMR, circular dichroism [CD], and gel electrophoresis). Next, isothermal titration calorimetry (ITC) and CD melting analysis demonstrated that a well-known G-quadruplex ligand, TMPyP4, binds to and stabilizes these PGQ motifs. Finally, polymerase inhibition and qRT-PCR assays highlight the biological relevance of PGQ-possessing genes in this pathogen and demonstrate that G-quadruplexes are potential drug targets for the development of effective anti-tuberculosis therapeutics.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tarun Kumar Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Jean-Louis Mergny
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India.
| |
Collapse
|
54
|
Endoh T, Sugimoto N. Conformational Dynamics of the RNA G-Quadruplex and its Effect on Translation Efficiency. Molecules 2019; 24:molecules24081613. [PMID: 31022854 PMCID: PMC6514569 DOI: 10.3390/molecules24081613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
During translation, intracellular mRNA folds co-transcriptionally and must refold following the passage of ribosome. The mRNAs can be entrapped in metastable structures during these folding events. In the present study, we evaluated the conformational dynamics of the kinetically favored, metastable, and hairpin-like structure, which disturbs the thermodynamically favored G-quadruplex structure, and its effect on co-transcriptional translation in prokaryotic cells. We found that nascent mRNA forms a metastable hairpin-like structure during co-transcriptional folding instead of the G-quadruplex structure. When the translation progressed co-transcriptionally before the metastable hairpin-like structure transition to the G-quadruplex, function of the G-quadruplex as a roadblock of the ribosome was sequestered. This suggested that kinetically formed RNA structures had a dominant effect on gene expression in prokaryotes. The results of this study indicate that it is critical to consider the conformational dynamics of RNA-folding to understand the contributions of the mRNA structures in controlling gene expression.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
55
|
Teng Y, Tateishi-Karimata H, Sugimoto N. C-Rich Sequence in a Non-Template DNA Strand Regulates Structure Change of G-Quadruplex in a Template Strand during Transcription. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ye Teng
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
56
|
Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK, Kumar A. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci Rep 2019; 9:1791. [PMID: 30741996 PMCID: PMC6370756 DOI: 10.1038/s41598-018-38400-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
Several G-quadruplex forming motifs have been reported to be highly conserved in the regulatory regions of the genome of different organisms and influence various biological processes like DNA replication, recombination and gene expression. Here, we report the highly conserved and three potentially G-quadruplex forming motifs (SP-PGQs) in the essential genes (hsdS, recD, and pmrA) of the Streptococcus pneumoniae genome. These genes were previously observed to play a vital role in providing the virulence to the bacteria, by participating in the host-pathogen interaction, drug-efflux system and recombination- repair system. However, the presence and importance of highly conserved G-quadruplex motifs in these genes have not been previously recognized. We employed the CD spectroscopy, NMR spectroscopy, and electrophoretic mobility shift assay to confirm the adaptation of the G-quadruplex structure by the SP-PGQs. Further, ITC and CD melting analysis revealed the energetically favorable and thermodynamically stable interaction between a candidate G4 binding small molecule TMPyP4 and SP-PGQs. Next, TFP reporter based assay confirmed the regulatory role of SP-PGQs in the expression of PGQ harboring genes. All these experiments together characterized the SP-PGQs as a promising drug target site for combating the Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Arpita Tawani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Tarun Kumar Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
57
|
Mirihana Arachchilage G, Hetti Arachchilage M, Venkataraman A, Piontkivska H, Basu S. Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias. Gene 2019; 696:149-161. [PMID: 30753890 DOI: 10.1016/j.gene.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The distributions of secondary structural elements appear to differ between coding regions (CDS) of mRNAs compared to the untranslated regions (UTRs), presumably as a mechanism to fine-tune gene expression, including efficiency of translation. However, a systematic and comprehensive analysis of secondary structure avoidance because of potential bias in codon usage is difficult as some of the common secondary structures, such as, hairpins can be formed by numerous sequence combinations. Using G-quadruplex (GQ) as the model secondary structure we studied the impact of codon bias on GQs within the CDS. Because GQs can be predicted using specific consensus sequence motifs, they provide an excellent platform for investigation of the selectivity of such putative structures at the codon level. Using a bioinformatics approach, we calculated the frequencies of putative GQs within the CDS of a variety of species. Our results suggest that the most stable GQs appear to be significantly underrepresented within the CDS, through the use of specific synonymous codon combinations. Furthermore, we identified many peptide sequence motifs in which silent mutations can potentially alter translation via stable GQ formation. This work not only provides a comprehensive analysis on how stable secondary structures appear to be avoided within the CDS of mRNA, but also broadens the current understanding of synonymous codon usage as they relate to the structure-function relationship of RNA.
Collapse
Affiliation(s)
| | | | - Aparna Venkataraman
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States of America
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States of America.
| |
Collapse
|
58
|
Saha P, Panda D, Dash J. The application of click chemistry for targeting quadruplex nucleic acids. Chem Commun (Camb) 2019; 55:731-750. [PMID: 30489575 DOI: 10.1039/c8cc07107a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the "click reaction", has emerged as a powerful and versatile synthetic tool that finds a broad spectrum of applications in chemistry, biology and materials science. The efficiency, selectivity and versatility of the CuAAC reactions have enabled the preparation of vast arrays of triazole compounds with biological and pharmaceutical applications. In this feature article, we outline the applications and future prospects of click chemistry in the synthesis and development of small molecules that target G-quadruplex nucleic acids and show promising biological activities. Furthermore, this article highlights the template-assisted in situ click chemistry for developing G-quadruplex specific ligands and the use of click chemistry for enhancing drug specificity as well as designing imaging and sensor systems to elucidate the biological functions of G-quadruplex nucleic acids in live cells.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | |
Collapse
|
59
|
Ogasawara S. Transcription Driven by Reversible Photocontrol of Hyperstable G-Quadruplexes. ACS Synth Biol 2018; 7:2507-2513. [PMID: 30350586 DOI: 10.1021/acssynbio.8b00216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G-quadruplexes occur in promoter regions, 5'-untranslated regions of mRNA and telomeric regions, and they function as regulatory elements for various key biological events, such as transcription, translation, and telomere elongation. As the stability of G-quadruplexes dramatically impacts these biological processes, controlling G-quadruplex stability via external stimuli such as light enables regulation of important biological phenomena with high spatial and temporal resolution. Here, we report a method for reversible photoregulation of transcription by controlling the stability of G-quadruplexes via cis- trans photoisomerization of photochromic nucleobase (PCN). Transcription was effectively inhibited when the PCN-modified G-quadruplex was in a hyperstable state, whereas transcription activity recovered markedly when the G-quadruplex changed to an unstable state induced by trans to cis PCN photoisomerization. Moreover, a reversibly photoactivatable plasmid was constructed by introducing PCN-modified G-quadruplexes downstream of the cytomegalovirus promoter of the pCS2 plasmid, which was used to demonstrate photoregulation of gene expression in zebrafish embryos.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
60
|
Zhao C, Song H, Scott P, Zhao A, Tateishi-Karimata H, Sugimoto N, Ren J, Qu X. Mirror-Image Dependence: Targeting Enantiomeric G-Quadruplex DNA Using Triplex Metallohelices. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P. R. China
| | - Hualong Song
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter Scott
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Andong Zhao
- University of Chinese Academy of Sciences; Beijing 100039 P. R. China
| | | | | | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P. R. China
| |
Collapse
|
61
|
Zhao C, Song H, Scott P, Zhao A, Tateishi-Karimata H, Sugimoto N, Ren J, Qu X. Mirror-Image Dependence: Targeting Enantiomeric G-Quadruplex DNA Using Triplex Metallohelices. Angew Chem Int Ed Engl 2018; 57:15723-15727. [PMID: 30311333 DOI: 10.1002/anie.201809207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Natural d-DNA and l-DNA are mirror-image counterparts. However, because of the inherent flexibility and conformation diversity of DNA, it is still not clear how enantiomeric compounds recognize d-DNA and l-DNA. Herein, taking G-quadruplex (G4) DNA as an example that has diverse conformations and distinct biofunctions, the binding of ten pairs of iron triplex metallohelices to d- and l-G4 DNA were evaluated. The Δ-enantiomer binds to d-DNA and the Λ-enantiomer binds to l-DNA, exhibiting almost the same stabilization effect and binding affinity. The binding affinity of the Δ-metallohelix with d-G4 is nearly 70-fold higher than that of Λ-metallohelix binding d-G4. Δ-Metallohelix binding to d-G4 follows a two-step binding process driven by a favorable enthalpy contribution to compensate for the associated unfavorable entropy.
Collapse
Affiliation(s)
- Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Hualong Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andong Zhao
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | | | | | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
62
|
Genome-wide analysis of regulatory G-quadruplexes affecting gene expression in human cytomegalovirus. PLoS Pathog 2018; 14:e1007334. [PMID: 30265731 PMCID: PMC6179306 DOI: 10.1371/journal.ppat.1007334] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/10/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
G-quadruplex (G4), formed by repetitive guanosine-rich sequences, is known to play various key regulatory roles in cells. Herpesviruses containing a large double-stranded DNA genome show relatively higher density of G4-forming sequences in their genomes compared to human and mouse. However, it remains poorly understood whether all of these sequences form G4 and how they play a role in the virus life cycle. In this study, we performed genome-wide analyses of G4s present in the putative promoter or gene regulatory regions of a 235-kb human cytomegalovirus (HCMV) genome and investigated their roles in viral gene expression. We evaluated 36 putative G4-forming sequences associated with 20 genes for their ability to form G4 and for the stability of G4s in the presence or absence of G4-stabilizing ligands, by circular dichroism and melting temperature analyses. Most identified sequences formed a stable G4; 28 sequences formed parallel G4s, one formed an antiparallel G4, and four showed mixed conformations. However, when we assessed the effect of G4 on viral promoters by cloning the 20 putative viral promoter regions containing 36 G4-forming sequences into the luciferase reporter and monitoring the expression of luciferase reporter gene in the presence of G4-stabilizing chemicals, we found that only 9 genes were affected by G4 formation. These results revealed promoter context-dependent gene suppression by G4 formation. Mutational analysis of two potential regulatory G4s also demonstrated gene suppression by the sequence-specific G4 formation. Furthermore, the analysis of a mutant virus incapable of G4 formation in the UL35 promoter confirmed promoter regulation by G4 in the context of virus infection. Our analyses provide a platform for assessing G4 functions at the genomic level and demonstrate the properties of the HCMV G4s and their regulatory roles in viral gene expression.
Collapse
|
63
|
Kwok CK, Marsico G, Balasubramanian S. Detecting RNA G-Quadruplexes (rG4s) in the Transcriptome. Cold Spring Harb Perspect Biol 2018; 10:10/7/a032284. [PMID: 29967010 DOI: 10.1101/cshperspect.a032284] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA G-quadruplex (rG4) secondary structures are proposed to play key roles in fundamental biological processes that include the modulation of transcriptional, co-transcriptional, and posttranscriptional events. Recent methodological developments that include predictive algorithms and structure-based sequencing have enabled the detection and mapping of rG4 structures on a transcriptome-wide scale at high sensitivity and resolution. The data generated by these studies provide valuable insights into the potentially diverse roles of rG4s in biology and open up a number of mechanistic hypotheses. Herein we highlight these methodologies and discuss the associated findings in relation to rG4-related biological mechanisms.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Giovanni Marsico
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
64
|
Liu L, Kim BG, Feroze U, Macgregor RB, Chalikian TV. Probing the Ionic Atmosphere and Hydration of the c-MYC i-Motif. J Am Chem Soc 2018; 140:2229-2238. [DOI: 10.1021/jacs.7b11537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Byul G. Kim
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Ujala Feroze
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B. Macgregor
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
65
|
Lee J, Im H, Chong SH, Ham S. Role of electrostatic interactions in determining the G-quadruplex structures. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Peng P, Du Y, Sun Y, Liu S, Mi L, Li T. Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing. Analyst 2018; 143:3814-3820. [DOI: 10.1039/c8an00914g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel ligand-free signal readout mechanism for probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yi Du
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yudie Sun
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Shuangna Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Lan Mi
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Tao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
67
|
Usui K, Okada A, Sakashita S, Shimooka M, Tsuruoka T, Nakano SI, Miyoshi D, Mashima T, Katahira M, Hamada Y. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity. Molecules 2017; 22:E1991. [PMID: 29144399 PMCID: PMC6150327 DOI: 10.3390/molecules22111991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Collapse
Affiliation(s)
- Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Arisa Okada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shungo Sakashita
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masayuki Shimooka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
68
|
Wang SR, Zhang QY, Wang JQ, Ge XY, Song YY, Wang YF, Li XD, Fu BS, Xu GH, Shu B, Gong P, Zhang B, Tian T, Zhou X. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem Biol 2017; 23:1113-1122. [PMID: 27617851 DOI: 10.1016/j.chembiol.2016.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, our bioinformatics analysis first reveals the existence of a conserved guanine-rich sequence within the Zaire ebolavirus L gene. Using various methods, we show that this sequence tends to fold into G-quadruplex RNA. TMPyP4 treatment evidently inhibits L gene expression at the RNA level. Moreover, the mini-replicon assay demonstrates that TMPyP4 effectively inhibits the artificial Zaire ebolavirus mini-genome and is a more potent inhibitor than ribavirin. Although TMPyP4 treatment reduced the replication of the mutant mini-genome when G-quadruplex formation was abolished in the L gene, its inhibitory effect was significantly alleviated compared with wild-type. Our findings thus provide the first evidence that G-quadruplex RNA is present in a negative-sense RNA virus. Finally, G-quadruplex RNA stabilization may represent a new therapeutic strategy against Ebola virus disease.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Qiu-Yan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xing-Yi Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yan-Yan Song
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Ya-Fen Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xiao-Dan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Shu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
69
|
Zheng KW, He YD, Liu HH, Li XM, Hao YH, Tan Z. Superhelicity Constrains a Localized and R-Loop-Dependent Formation of G-Quadruplexes at the Upstream Region of Transcription. ACS Chem Biol 2017; 12:2609-2618. [PMID: 28846373 DOI: 10.1021/acschembio.7b00435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription induces formation of intramolecular G-quadruplex structures at the upstream region of a DNA duplex by an upward transmission of negative supercoiling through the DNA. Currently the regulation of such G-quadruplex formation remains unclear. Using plasmid as a model, we demonstrate that while it is the dynamic negative supercoiling generated by a moving RNA polymerase that triggers a formation of a G-quadruplex, the constitutional superhelicity determines the potential and range of the formation of a G-quadruplex by constraining the propagation of the negative supercoiling. G-quadruplex formation is maximal in negatively supercoiled and nearly abolished in relaxed plasmids while being moderate in nicked and linear ones. The formation of a G-quadruplex strongly correlates with the presence of an R-loop. Preventing R-loop formation virtually abolished G-quadruplex formation even in the negatively supercoiled plasmid. Enzymatic action and protein binding that manipulate supercoiling or its propagation all impact the formation of G-quadruplexes. Because chromosomes and plasmids in cells in their natural form are maintained in a supercoiled state, our findings reveal a physical basis that justifies the formation and regulation of G-quadruplexes in vivo. The structural features involved in G-quadruplex formation may all serve as potential targets in clinical and therapeutic applications.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yi-de He
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hong-he Liu
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xin-min Li
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
70
|
Tateishi-Karimata H, Ohyama T, Muraoka T, Podbevsek P, Wawro AM, Tanaka S, Nakano SI, Kinbara K, Plavec J, Sugimoto N. Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH-π interactions. Nucleic Acids Res 2017; 45:7021-7030. [PMID: 28453855 PMCID: PMC5499538 DOI: 10.1093/nar/gkx299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Oligoethylene glycols are used as crowding agents in experiments that aim to understand the effects of intracellular environments on DNAs. Moreover, DNAs with covalently attached oligoethylene glycols are used as cargo carriers for drug delivery systems. To investigate how oligoethylene glycols interact with DNAs, we incorporated deoxythymidine modified with oligoethylene glycols of different lengths, such as tetraethylene glycol (TEG), into DNAs that form antiparallel G-quadruplex or hairpin structures such that the modified residues were incorporated into loop regions. Thermodynamic analysis showed that because of enthalpic differences, the modified G-quadruplexes were stable and the hairpin structures were slightly unstable relative to unmodified DNA. The stability of G-quadruplexes increased with increasing length of the ethylene oxides and the number of deoxythymidines modified with ethylene glycols in the G-quadruplex. Nuclear magnetic resonance analyses and molecular dynamics calculations suggest that TEG interacts with bases in the G-quartet and loop via CH–π and lone pair–π interactions, although it was previously assumed that oligoethylene glycols do not directly interact with DNAs. The results suggest that numerous cellular co-solutes likely affect DNA function through these CH–π and lone pair–π interactions.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahiro Muraoka
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Peter Podbevsek
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Adam M Wawro
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shu-Ichi Nakano
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazushi Kinbara
- Tokyo Institute of Technology, School of Life Science and Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Slovenia
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
71
|
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc Natl Acad Sci U S A 2017; 114:9605-9610. [PMID: 28827350 DOI: 10.1073/pnas.1704258114] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.
Collapse
|
72
|
Perrone R, Lavezzo E, Riello E, Manganelli R, Palù G, Toppo S, Provvedi R, Richter SN. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci Rep 2017; 7:5743. [PMID: 28720801 PMCID: PMC5515968 DOI: 10.1038/s41598-017-05867-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/02/2017] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the top 10 causes of death worldwide in 2015. The recent emergence of strains resistant to all current drugs urges the development of compounds with new mechanisms of action. G-quadruplexes are nucleic acids secondary structures that may form in G-rich regions to epigenetically regulate cellular functions. Here we implemented a computational tool to scan the presence of putative G-quadruplex forming sequences in the genome of Mycobacterium tuberculosis and analyse their association to transcription start sites. We found that the most stable G-quadruplexes were in the promoter region of genes belonging to definite functional categories. Actual G-quadruplex folding of four selected sequences was assessed by biophysical and biomolecular techniques: all molecules formed stable G-quadruplexes, which were further stabilized by two G-quadruplex ligands. These compounds inhibited Mycobacterium tuberculosis growth with minimal inhibitory concentrations in the low micromolar range. These data support formation of Mycobacterium tuberculosis G-quadruplexes in vivo and their potential regulation of gene transcription, and prompt the use of G4 ligands to develop original antitubercular agents.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Erika Riello
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy.
| | - Roberta Provvedi
- Department of Biology, University of Padua, via Ugo Bassi 58/b, 35121, Padua, Italy.
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy.
| |
Collapse
|
73
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
74
|
Endoh T, Sugimoto N. Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. CHEM REC 2017; 17:817-832. [DOI: 10.1002/tcr.201700016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
75
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
76
|
Pandey S, Agarwala P, Maiti S. Targeting RNA G-Quadruplexes for Potential Therapeutic Applications. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Rouleau S, Jodoin R, Garant JM, Perreault JP. RNA G-Quadruplexes as Key Motifs of the Transcriptome. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:1-20. [PMID: 28382477 DOI: 10.1007/10_2017_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-Quadruplexes are non-canonical secondary structures that can be adopted under physiological conditions by guanine-rich DNA and RNA molecules. They have been reported to occur, and to perform multiple biological functions, in the genomes and transcriptomes of many species, including humans. This chapter focuses specifically on RNA G-quadruplexes and reviews the most recent discoveries in the field, as well as addresses the upcoming challenges researchers studying these structures face.
Collapse
Affiliation(s)
- Samuel Rouleau
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Rachel Jodoin
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Michel Garant
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, Canada, J1E 4K8.
| |
Collapse
|
78
|
Effects of metal ions and cosolutes on G-quadruplex topology. J Inorg Biochem 2016; 166:190-198. [PMID: 27665315 DOI: 10.1016/j.jinorgbio.2016.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Topologies of G-quadruplexes depend on oligonucleotide sequences and on environmental factors, and the diversity of G-quadruplex topologies complicates investigation of functions of these nucleic acid structures. To investigate how metal ions and cosolutes regulate topologies of G-quadruplexes, we stabilized the antiparallel conformation by insertion of 2'-deoxyxanthosine and 8-oxo-2'-deoxyguanosine into selected positions of an oligonucleotide. Thermodynamic analyses of the oligonucleotide revealed that Na+ stabilized the antiparallel G-quadruplex, whereas K+ destabilized this topology. This result suggests that metal ions selectively stabilize G-quadruplex topologies with cavities between G-quartet planes of certain sizes. In the presence of KCl in 20wt% poly(ethylene glycol) with average molecular weight of 200, the antiparallel basket-type G-quadruplex conformation was not stabilized compared with the dilute condition. In the presence of NaCl, the cosolute did stabilize the G-quadruplex with respect to the dilute condition. The presented data show that metal ions and cosolutes regulate topologies of G-quadruplexes through mechanisms that depend on sizes of metal ion cavities and hydration states.
Collapse
|
79
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016; 55:14315-14319. [DOI: 10.1002/anie.201605431] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
80
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
81
|
Katsuda Y, Sato SI, Asano L, Morimura Y, Furuta T, Sugiyama H, Hagihara M, Uesugi M. A Small Molecule That Represses Translation of G-Quadruplex-Containing mRNA. J Am Chem Soc 2016; 138:9037-40. [DOI: 10.1021/jacs.6b04506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | - Masaki Hagihara
- Graduate
School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | | |
Collapse
|
82
|
Tateishi-Karimata H, Muraoka T, Kinbara K, Sugimoto N. G-Quadruplexes with Tetra(ethylene glycol)-Modified Deoxythymidines are Resistant to Nucleases and Inhibit HIV-1 Reverse Transcriptase. Chembiochem 2016; 17:1399-402. [PMID: 27251574 DOI: 10.1002/cbic.201600162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 12/21/2022]
Abstract
G-quadruplex formation in virally encoded templates arrests reverse transcription. Methods to stabilize this structure are promising for antiviral approaches. To stabilize G-quadruplex formation, deoxythymidines were modified with tetra(ethylene glycol) (TEG). The TEG-modified G-quadruplexes were stabilized significantly relative to unmodified DNA. In the presence of a TEG-modified oligonucleotide that is capable of forming an intermolecular G-quadruplex with a template containing a hu- man immunodeficiency virus-1 sequence, reverse transcription was inhibited by more than 70 % relative to the reaction in the absence of the TEG-modified oligonucleotide. Moreover, the TEG-modified deoxythymidines protected the DNA oligonucleotide from degradation by various nucleases in human serum. Thus, DNA oligonucleotides modified with TEG have potential in therapeutic applications.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takahiro Muraoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazushi Kinbara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
83
|
Sherlock ME, Rumble CA, Kwok CK, Breffke J, Maroncelli M, Bevilacqua PC. Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes. J Phys Chem B 2016; 120:5146-58. [PMID: 27267433 DOI: 10.1021/acs.jpcb.6b03790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Rumble
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Chun Kit Kwok
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jens Breffke
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
84
|
Harkness RW, Mittermaier AK. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res 2016; 44:3481-94. [PMID: 27060139 PMCID: PMC4856995 DOI: 10.1093/nar/gkw190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022] Open
Abstract
G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol−1 K−1, with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University, Department of Chemistry, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
85
|
Wang SR, Min YQ, Wang JQ, Liu CX, Fu BS, Wu F, Wu LY, Qiao ZX, Song YY, Xu GH, Wu ZG, Huang G, Peng NF, Huang R, Mao WX, Peng S, Chen YQ, Zhu Y, Tian T, Zhang XL, Zhou X. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target. SCIENCE ADVANCES 2016; 2:e1501535. [PMID: 27051880 PMCID: PMC4820367 DOI: 10.1126/sciadv.1501535] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/18/2016] [Indexed: 05/24/2023]
Abstract
G-quadruplex (G4) is one of the most important secondary structures in nucleic acids. Until recently, G4 RNAs have not been reported in any ribovirus, such as the hepatitis C virus. Our bioinformatics analysis reveals highly conserved guanine-rich consensus sequences within the core gene of hepatitis C despite the high genetic variability of this ribovirus; we further show using various methods that such consensus sequences can fold into unimolecular G4 RNA structures, both in vitro and under physiological conditions. Furthermore, we provide direct evidences that small molecules specifically targeting G4 can stabilize this structure to reduce RNA replication and inhibit protein translation of intracellular hepatitis C. Ultimately, the stabilization of G4 RNA in the genome of hepatitis C represents a promising new strategy for anti-hepatitis C drug development.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan 430071, Hubei, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Chao-Xing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Ling-Yu Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Zhi-Xian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Yan-Yan Song
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Zhi-Guo Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Gai Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Nan-Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Rong Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Wu-Xiang Mao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Yu-Qi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Ying Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan 430071, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
86
|
Fujii T, Sugimoto N. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys Chem Chem Phys 2016; 17:16719-22. [PMID: 26058487 DOI: 10.1039/c5cp02794b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability of i-motif structures at neutral pH is of interest due to the potential of these structures to impact gene expression. A systematic investigation of loop sequence and length revealed that certain loop nucleobases stabilize i-motif quadruplexes.
Collapse
Affiliation(s)
- Taiga Fujii
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
87
|
Oyaghire SN, Cherubim CJ, Telmer CA, Martinez JA, Bruchez MP, Armitage BA. RNA G-Quadruplex Invasion and Translation Inhibition by Antisense γ-Peptide Nucleic Acid Oligomers. Biochemistry 2016; 55:1977-88. [PMID: 26959335 DOI: 10.1021/acs.biochem.6b00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the abilities of three complementary γ-peptide nucleic acid (γPNA) oligomers to invade an RNA G-quadruplex and potently inhibit translation of a luciferase reporter transcript containing the quadruplex-forming sequence (QFS) within its 5'-untranslated region. All three γPNA oligomers bind with low nanomolar affinities to an RNA oligonucleotide containing the QFS. However, while all probes inhibit translation with low to midnanomolar IC50 values, the γPNA designed to hybridize to the first two G-tracts of the QFS and adjacent 5'-overhanging nucleotides was 5-6 times more potent than probes directed to either the 3'-end or internal regions of the target at 37 °C. This position-dependent effect was eliminated after the probes and target were preincubated at an elevated temperature prior to translation, demonstrating that kinetic effects exert significant control over quadruplex invasion and translation inhibition. We also found that antisense γPNAs exhibited similarly potent effects against luciferase reporter transcripts bearing QFS motifs having G2, G3, or G4 tracts. Finally, our results indicate that γPNA oligomers exhibit selectivity and/or potency higher than those of other antisense molecules such as standard PNA and 2'-OMe RNA previously reported to target G-quadruplexes in RNA.
Collapse
Affiliation(s)
- Stanley N Oyaghire
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Collin J Cherubim
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Cheryl A Telmer
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Joe A Martinez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Marcel P Bruchez
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
88
|
Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci Rep 2016; 6:22719. [PMID: 26948955 PMCID: PMC4780275 DOI: 10.1038/srep22719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/18/2016] [Indexed: 01/10/2023] Open
Abstract
G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5′ untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells. Periodic fluctuation of translation suppression was observed at every three nucleotides within the ORF but not within the 5′ UTR. The results suggested that difference in motion of ribosome at the 5′ UTR and the ORF determined the ability of the G-quadruplex structure to act as a roadblock to translation in cells and provided mechanical insights into ribosomal progression to overcome the roadblock.
Collapse
|
89
|
Abstract
G-quadruplexes are non-canonical secondary structures found in guanine rich regions of DNA and RNA. Reports have indicated the wide occurrence of RNA G-quadruplexes across the transcriptome in various regions of mRNAs and non-coding RNAs. RNA G-quadruplexes have been implicated in playing an important role in translational regulation, mRNA processing events and maintenance of chromosomal end integrity. In this review, we summarize the structural and functional aspects of RNA G-quadruplexes with emphasis on recent progress to understand the protein/trans factors binding these motifs. With the revelation of the importance of these secondary structures as regulatory modules in biology, we have also evaluated the various advancements towards targeting these structures and the challenges associated with them. Apart from this, numerous potential applications of this secondary motif have also been discussed.
Collapse
Affiliation(s)
- Prachi Agarwala
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | |
Collapse
|
90
|
Rehm C, Wurmthaler LA, Li Y, Frickey T, Hartig JS. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp. PLoS One 2015; 10:e0144275. [PMID: 26695179 PMCID: PMC4692102 DOI: 10.1371/journal.pone.0144275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 12/04/2022] Open
Abstract
In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5
nucleotides (nt) are causative for phase and antigenic variation. Although an
increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs
of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity
to fold into G-quadruplex (G4) structures have received little attention. In silico
analysis of prokaryotic genomes show putative G4 forming sequences to be abundant.
This report focuses on a surprisingly enriched G-rich repeat of the type
GGGNATC in Xanthomonas and cyanobacteria
such as Nostoc. We studied in detail the genomes of
Xanthomonas campestris pv. campestris ATCC 33913
(Xcc), Xanthomonas axonopodis pv.
citri str. 306 (Xac), and Nostoc
sp. strain PCC7120 (Ana). In all three organisms repeats
are spread all over the genome with an over-representation in non-coding regions.
Extensive variation of the number of repetitive units was observed with repeat
numbers ranging from two up to 26 units. However a clear preference for four units
was detected. The strong bias for four units coincides with the requirement of four
consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus
repeat sequences was found in biophysical studies utilizing CD spectroscopy. The
G-rich repeats are preferably located between aligned open reading frames (ORFs) and
are under-represented in coding regions or between divergent ORFs. The G-rich repeats
are preferentially located within a distance of 50 bp upstream of an ORF on the
anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis
of whole transcriptome sequence data showed that the majority of repeat sequences are
transcribed. The genetic loci in the vicinity of repeat regions show increased
genomic stability. In conclusion, we introduce and characterize a special class of
highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.
Collapse
Affiliation(s)
- Charlotte Rehm
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Lena A Wurmthaler
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Yuanhao Li
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
91
|
Usui K, Okada A, Kobayashi K, Sugimoto N. Control of guanine-rich DNA secondary structures depending on the protease activity using a designed PNA peptide. Org Biomol Chem 2015; 13:2022-5. [PMID: 25519192 DOI: 10.1039/c4ob02535k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We constructed a regulation system for DNA secondary structure formation of G-rich sequences using a designed PNA peptide exhibiting an on-to-off switching functionality, depending on the protease activity. This study introduces the new concept of a simple and powerful system for regulating quadruplex-related important biological events.
Collapse
Affiliation(s)
- Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
92
|
Endoh T, Hnedzko D, Rozners E, Sugimoto N. Nucleobase-Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA In Vitro and in Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; Japan
| | - Dziyana Hnedzko
- Department of Chemistry; Binghamton University; The State University of New York; Binghamton NY 13902 USA
| | - Eriks Rozners
- Department of Chemistry; Binghamton University; The State University of New York; Binghamton NY 13902 USA
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| |
Collapse
|
93
|
Endoh T, Hnedzko D, Rozners E, Sugimoto N. Nucleobase-Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA In Vitro and in Cells. Angew Chem Int Ed Engl 2015; 55:899-903. [PMID: 26473504 DOI: 10.1002/anie.201505938] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/08/2015] [Indexed: 11/11/2022]
Abstract
Compounds that bind specifically to double-stranded regions of RNA have potential as regulators of structure-based RNA function; however, sequence-selective recognition of double-stranded RNA is challenging. The modification of peptide nucleic acid (PNA) with unnatural nucleobases enables the formation of PNA-RNA triplexes. Herein, we demonstrate that a 9-mer PNA forms a sequence-specific PNA-RNA triplex with a dissociation constant of less than 1 nm at physiological pH. The triplex formed within the 5' untranslated region of an mRNA reduces the protein expression levels both in vitro and in cells. A single triplet mismatch destabilizes the complex, and in this case, no translation suppression is observed. The triplex-forming PNAs are unique and potent compounds that hold promise as inhibitors of cellular functions that are controlled by double-stranded RNAs, such as RNA interference, RNA editing, and RNA localization mediated by protein-RNA interactions.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan
| | - Dziyana Hnedzko
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, USA
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
94
|
Holder IT, Hartig JS. A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. ACTA ACUST UNITED AC 2015; 21:1511-21. [PMID: 25459072 DOI: 10.1016/j.chembiol.2014.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/13/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Abstract
We provide important insights into secondary-structure-mediated regulation of gene expression in Escherichia coli. In a comprehensive survey, we show that the strand orientation and the exact position of a G-quadruplex sequence strongly influence its effect on transcription and translation. We generated a series of reporter gene constructs that contained systematically varied positions of quadruplexes and respective control sequences inserted into several positions within the promoter, 50-UTR, and 30-UTR regions. G-rich sequences at specific locations in the promoter and also in proximity to the ribosome-binding site (RBS) showed pronounced inhibitory effects. Additionally, we rationally designed a system where quadruplex formation showed a gene-activating behavior. Moreover, we characterized quadruplexes in proximity to the RBS that occur naturally in E. coli genes, demonstrating that some of these quadruplexes exert significant modulation of gene expression. Taken together, our data show strong position-dependent effects of quadruplex secondary structures on bacterial gene expression.
Collapse
|
95
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
96
|
Kim IS, Seo YJ. TT Dimerization and Its Effect on Human Telomere G-Quadruplex Formation. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In Sun Kim
- Department of Chemistry; Chonbuk National University; Jeonju 561-756 South Korea
| | - Young Jun Seo
- Department of Chemistry; Chonbuk National University; Jeonju 561-756 South Korea
- Department of Bioactive Material Sciences; Chonbuk National University; Jeonju 561-756 South Korea
| |
Collapse
|
97
|
Kwok CK, Ding Y, Shahid S, Assmann SM, Bevilacqua PC. A stable RNA G-quadruplex within the 5'-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem J 2015; 467:91-102. [PMID: 25793418 DOI: 10.1042/bj20141063] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Guanine quadruplex structures (GQSs) play important roles in the regulation of gene expression and cellular processes. Recent studies provide strong evidence for the formation and function of DNA and RNA GQSs in human cells. However, whether GQSs form and are functional in plants remains essentially unexplored. On the basis of circular dichroism (CD)-detected titration, UV-detected melting, in-line probing (ILP) and reporter gene assay studies, we report the first example of a plant RNA GQS that inhibits translation. This GQS is located within the 5'-UTR of the ATAXIA TELANGIECTASIA-MUTATED AND RAD3-RELATED (ATR) mRNA of Arabidopsis thaliana (mouse-ear cress). We show that this GQS is highly stable and is thermodynamically favoured over a competing hairpin structure in the 5'-UTR at physiological K⁺ and Mg²⁺ concentrations. Results from ILP reveal the secondary structure of the RNA and support formation of the GQS in vitro in the context of the complete 5'-UTR. Transient reporter gene assays performed in living plants reveal that the GQS inhibits translation but not transcription, implicating this GQS as a translational repressor in vivo. Our results provide the first complete demonstration of the formation and function of a regulatory RNA GQS in plants and open new avenues to explore potential functional roles of GQS in the plant kingdom.
Collapse
Affiliation(s)
- Chun Kit Kwok
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yiliang Ding
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Saima Shahid
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Sarah M Assmann
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Philip C Bevilacqua
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
98
|
Yangyuoru PM, Di Antonio M, Ghimire C, Biffi G, Balasubramanian S, Mao H. Dual binding of an antibody and a small molecule increases the stability of TERRA G-quadruplex. Angew Chem Int Ed Engl 2015; 54:910-3. [PMID: 25421962 PMCID: PMC4506565 DOI: 10.1002/anie.201408113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/08/2014] [Indexed: 11/30/2022]
Abstract
In investigating the binding interactions between the human telomeric RNA (TERRA) G-quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ-selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single-molecule mechanical unfolding experiments revealed a population (48%) with substantially increased mechanical and thermodynamic stability. Force-jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G-quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA-GQ-ligand complex may inspire new strategies for the selective stabilization of G-quadruplexes in cells.
Collapse
Affiliation(s)
- Philip M Yangyuoru
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| | - Marco Di Antonio
- Department of Chemistry, University of CambridgeLensfield Road, CB2 1EW (UK)
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
| | - Chiran Ghimire
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| | - Giulia Biffi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
| | - Shankar Balasubramanian
- Department of Chemistry, University of CambridgeLensfield Road, CB2 1EW (UK)
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreRobinson Way, Cambridge CB2 0RE (UK)
- School of Clinical Medicine, University of CambridgeAddenbrooke&s Hospital, Hills Road, Cambridge CB2 0SP (UK)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH 44242 (USA)
| |
Collapse
|
99
|
Yangyuoru PM, Di Antonio M, Ghimire C, Biffi G, Balasubramanian S, Mao H. Dual Binding of an Antibody and a Small Molecule Increases the Stability of TERRA G-Quadruplex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 127:924-927. [PMID: 26300569 PMCID: PMC4535663 DOI: 10.1002/ange.201408113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/08/2014] [Indexed: 11/24/2022]
Abstract
In investigating the binding interactions between the human telomeric RNA (TERRA) G-quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ-selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single-molecule mechanical unfolding experiments revealed a population (48 %) with substantially increased mechanical and thermodynamic stability. Force-jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G-quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA-GQ-ligand complex may inspire new strategies for the selective stabilization of G-quadruplexes in cells.
Collapse
Affiliation(s)
- Philip M Yangyuoru
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| | - Marco Di Antonio
- Department of Chemistry, University of Cambridge Lensfield Road, CB2 1EW (UK) E-mail: ; Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK)
| | - Chiran Ghimire
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| | - Giulia Biffi
- Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK)
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge Lensfield Road, CB2 1EW (UK) E-mail: ; Cancer Research UK, Cambridge Research Institute Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE (UK) ; School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital Hills Road, Cambridge CB2 0SP (UK)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University Kent, OH 44242 (USA) E-mail:
| |
Collapse
|
100
|
Agarwala P, Pandey S, Maiti S. Role of G-quadruplex located at 5ʹ end of mRNAs. Biochim Biophys Acta Gen Subj 2014; 1840:3503-10. [DOI: 10.1016/j.bbagen.2014.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023]
|