51
|
|
52
|
Li Y, You Y, Zhao P, Liu ZY, Zhang YQ, Yang EC, Zhao XJ. Enhancing the Magnetic Anisotropy in Low-Symmetry Dy-Based Complexes by Tuning the Bond Length. Inorg Chem 2021; 60:11419-11428. [PMID: 34291637 DOI: 10.1021/acs.inorgchem.1c01437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One mononuclear complex [Dy(Htpy)(NO3)2(acac)] (1) and a tpy--extended 1D chain {[Dy(CH3OH)(NO3)2(tpy)]·CH3OH}n (2) (Htpy = 4'-(4-hydroxyphenyl)-2,2':6',2''-terpyridine, Hacac = acetylacetone) were successfully designed to investigate the effect of bond length tuning around the DyIII cation on the magnetic dynamics of single-molecule magnets (SMMs). Interestingly, two magnetic entities possess the same local coordination sphere (N3O6-donor) as well as the configuration (Muffin, Cs) of dysprosium centers. Only a slight difference in structure results from purposefully substituting the acetylacetone ligand in 1 with hydroxyl oxygen from tpy- linkage and one methanol molecule in 2. However, the remarkable differences in dynamics behavior were clearly found between them. Compound 1 possesses a thermal-activated effective energy barrier (Ueff/kB) of 22.7 K under a 0 kOe direct current (dc) field and negligible hysteresis loop at 2.0 K, while complex 2 shows high-performance SMM behavior with the largest energy barrier of 354.36 K among the reported nine-coordinated DyIII-based systems and the magnetic hysteresis up to 4.0 K at a sweep rate of 200 Oe s-1. These experimental results combined with the previous reported data reveal that the shortest bond and the bond length difference around the DyIII center synergistically determine the dynamics of SMMs. The uniaxial anisotropy increases with the decrease of the shortest bond and the increase of the bond length difference, which is confirmed by the theoretical calculations.
Collapse
Affiliation(s)
- Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Ya You
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Pu Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Zhong-Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, PR China
| | - En-Cui Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Xiao-Jun Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.,Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
53
|
Weng GG, Huang XD, Hu R, Bao SS, Zou Q, Wen GH, Zhang YQ, Zheng LM. Homochiral Dysprosium Phosphonate Nanowires: Morphology Control and Magnetic Dynamics. Chem Asian J 2021; 16:2648-2658. [PMID: 34288530 DOI: 10.1002/asia.202100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Indexed: 02/03/2023]
Abstract
Controllable synthesis of uniformly distributed nanowires of coordination polymers with inherent physical functions is highly desirable but challenging. In particular, the combination of chirality and magnetism into nanowires has potential applications in multifunctional materials and spintronic devices. Herein, we report four pairs of enantiopure coordination polymers with formulae S-, R-Dy(cyampH)3 ⋅ CH3 COOH ⋅ 2H2 O (S-1, R-1), S-, R-Dy(cyampH)3 ⋅ 3H2 O (S-2, R-2), S-, R-Dy(cyampH)2 (C2 H5 COO) ⋅ 3H2 O (S-3, R-3) and S-, R-Dy(cyampH)3 ⋅ 0.5C2 H5 COOH ⋅ 2H2 O (S-4, R-4) [cyampH2 =S-, R-(1-cyclohexylethyl)aminomethylphosphonic acids], which were obtained depending on the pH of the reaction mixtures and the specific carboxylic acid used as pH regulator. Interestingly, compounds 3 were obtained as superlong nanowires, showing 1D neutral chain structure which contains both phosphonate and propionate anion ligands. While compounds 1, 2 and 4 appeared as block-like crystals, superhelices and nanorods, respectively, and exhibited similar neutral chain structures containing only phosphonate ligand. Slow magnetization relaxation characteristic of single-molecule magnet (SMM) behavior was observed for compounds S-1 and S-3. Theoretical calculations were performed to rationalize the magneto-structural relationships.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Hu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
54
|
Biswas M, Sañudo EC, Ray D. Carboxylate-Decorated Aggregation of Octanuclear Co 4Ln 4 (Ln = Dy, Ho, Yb) Complexes from Ligand-Controlled Hydrolysis: Synthesis, Structures, and Magnetic Properties. Inorg Chem 2021; 60:11129-11139. [PMID: 34242013 DOI: 10.1021/acs.inorgchem.1c01070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-pot reactions of an asymmetric carboxy-ether-phenol based Schiff base H2L (2-((2-hydroxy-3-methoxybenzylidene)amino)benzoic acid) with selected Ln(NO3)3·nH2O and [Co2(μ-OH2)(O2CCMe3)4(HO2CCMe3)4] (Co2-Piv) in basic MeOH medium resulted in a family of three octanuclear complexes, [CoII4LnIII4L4(μ1,3-Piv)4(μ1,1,3-Piv)2(η1-Piv)2(μ3-OH)4(MeOH)2]·mMeOH·nH2O (Ln = Dy; m = 3, n = 1 (1), Ho; m = 4, n = 0 (2), Yb; m = 3, n = 1 (3)). The coordination aggregates thus obtained were nicely sustained by four ligand anions and eight externally added carboxylate anions showing three different modes of intermetallic connectivity. The options for incorporating different 4f ions in an investigative synthesis, without altering the resulting intermetallic core structure, were successful for the three representative examples. Single-crystal X-ray diffraction studies revealed that the compounds are isostructural and built from two initially formed partial dicubane-type Co2Ln2L2 units. In each of the tetranuclear parts, the metal ion centers are held together by two L2-, two μ3-HO-, three Piv- bridges, one terminal Piv-, and one terminal MeOH. Four carboxylate ends of four L2- units are responsible for connecting two Co2Ln2 units into octanuclear structures. The unique distortion around the CoII centers is achieved from the facile coordination of bigger 4f ions to the adjacent hard OO sites. The distortion is further maintained by the presence of terminal COO- groups from L2-. The dc magnetic susceptibility data revealed ferromagnetic coupling between the CoII and LnIII centers within the series, whereas the ac magnetic susceptibility measurements identified only 1, having a highly anisotropic DyIII ion, as a single-molecule magnet in the absence of any external magnetic field, with an energy barrier Ueff of 12.5 K.
Collapse
Affiliation(s)
- Mousumi Biswas
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - E Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, (IN2UB) 08028 Barcelona, Spain
| | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
55
|
Akhtar MN, AlDamen MA, McMillen CD, Escuer A, Mayans J. Exploring the Role of Intramolecular Interactions in the Suppression of Quantum Tunneling of the Magnetization in a 3d-4f Single-Molecule Magnet. Inorg Chem 2021; 60:9302-9308. [PMID: 34125527 DOI: 10.1021/acs.inorgchem.0c03682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydroxide-bridged FeIII4LnIII2 clusters having the general formula [Fe4Ln2(μ3-OH)2(mdea)6(SCN)2(NO3)2(H2O)2]·4H2O·2MeCN {Ln = Y (1), Dy (2), mdea = N-methyldiethanolamine} were synthesized and magnetically characterized. The thermal relaxation of the magnetization for 2 and the diluted FeIII4DyIIIYIII complex 3 (with and without applied field) has been analyzed. The diluted sample shows a dominant QTM at low temperatures that can be removed with a 0.15 T dc field. Both 2 and 3 show moderately high Ueff barriers and exhibit hysteresis loops until 5 K.
Collapse
Affiliation(s)
- Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murad A AlDamen
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience and Nanotecnology (IN2UB), Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| | - Júlia Mayans
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
56
|
Zahradníková E, Císařová I, Drahoš B. Triple M as Manganese: Medicine, magnetism and macrocycles. Seven-coordinate Mn(II) complexes with pyridine-based macrocyclic ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
57
|
Wang HS, Zhang K, Wang J, Hu ZB, Zhang Z, Song Y, Zhang YQ. Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn-Dy Heterometallic Single Molecule Magnets. Inorg Chem 2021; 60:9941-9955. [PMID: 34114807 DOI: 10.1021/acs.inorgchem.1c01217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we first synthesized a Zn-Dy complex, [Zn6Dy2(L)6(tea)2(CH3OH)2]·6CH3OH·8H2O (H2L = N-3-methoxysalicylidene-2-amino-3-hydroxypyridine, teaH3 = triethanolamine, 1), by employing H2L, anhydrous ZnCl2, and Dy(NO3)3·5H2O reacting with auxiliary ligand teaH3 in the mixture of CH3OH and DMF. When teaH3 and the solvent CH3OH in the reaction system of 1 were replaced by the auxiliary ligand 2,6-pyridinedimethanol (pdmH2) and the solvent MeCN, another Zn-Dy complex, [Zn4Dy4(L)6(pdm)2(pdmH)4]·10CH3CN·5H2O (2), was obtained. For 1, its crystal structure can be viewed as a dimer of two Zn3DyIII units. However, for 2, four DyIII form a zigzag arrangement, and each of its terminals linked two ZnII ions. Interestingly, although the structural topologies of 1 and 2 are different, the coordination geometries of DyIII in 1 and 2 are all triangular dodecahedron (TDD-8). The difference is that the continuous shape measure (CShM) values of DyIII in 1 are larger than the corresponding values in 2. Magnetic investigation revealed that the diluted sample 1@Y exhibits two magnetic relaxation processes, while 2 only exhibits a single relaxation process. Ab initio calculations indicated that, in the crystal lattice of 1, two complexes exhibiting slightly different CShM values of DyIII result in the double relaxation behavior of 1@Y. However, for 2, one of two DyIII fragments possesses a fast quantum tunneling of magnetization (QTM), resulting in its magnetic process presented at T < 1.8 K, so 2 exhibits single relaxation behavior. More importantly, the theoretical calculations also clearly indicated that the weak ligation at equatorial sites of DyIII in 1 and 2 ensure 1@Y and 2 possess SMM behavior, although the coordination geometry of DyIII (TDD-8) in 1 and 2 severely deviates from the ideal polyhedron and its axial symmetry is low.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Ke Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 210024, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
58
|
Wang HS, Zhang K, Song Y, Pan ZQ. Recent advances in 3d-4f magnetic complexes with several types of non-carboxylate organic ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
59
|
Darago LE, Boshart MD, Nguyen BD, Perlt E, Ziller JW, Lukens WW, Furche F, Evans WJ, Long JR. Strong Ferromagnetic Exchange Coupling and Single-Molecule Magnetism in MoS 43--Bridged Dilanthanide Complexes. J Am Chem Soc 2021; 143:8465-8475. [PMID: 34029482 DOI: 10.1021/jacs.1c03098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis and characterization of the trinuclear 4d-4f compounds [Co(C5Me5)2][(C5Me5)2Ln(μ-S)2Mo(μ-S)2Ln(C5Me5)2], 1-Ln (Ln = Y, Gd, Tb, Dy), containing the highly polarizable MoS43- bridging unit. UV-Vis-NIR diffuse reflectance spectra and DFT calculations of 1-Ln reveal a low-energy metal-to-metal charge transfer transition assigned to charge transfer from the singly occupied 4dz2 orbital of MoV to the empty 5d orbitals of the lanthanides (4d in the case of 1-Y), mediated by sulfur-based 3p orbitals. Electron paramagnetic resonance spectra collected for 1-Y in a tetrahydrofuran solution show large 89Y hyperfine coupling constants of A⊥ = 23 MHz and A|| = 26 MHz, indicating the presence of significant yttrium-localized unpaired electron density. Magnetic susceptibility data support similar electron delocalization and ferromagnetic Ln-Mo exchange for 1-Gd, 1-Tb, and 1-Dy. This ferromagnetic exchange gives rise to an S = 15/2 ground state for 1-Gd and one of the largest magnetic exchange constants involving GdIII observed to date, with JGd-Mo = +16.1(2) cm-1. Additional characterization of 1-Tb and 1-Dy by ac magnetic susceptibility measurements reveals that both compounds exhibit slow magnetic relaxation. Although a Raman magnetic relaxation process is dominant for both 1-Tb and 1-Dy, an extracted thermal relaxation barrier of Ueff = 68 cm-1 for 1-Dy is the largest yet reported for a complex containing a paramagnetic 4d metal center. Together, these results provide a potentially generalizable route to enhanced nd-4f magnetic exchange, revealing opportunities for the design of new nd-4f single-molecule magnets and bulk magnetic materials.
Collapse
Affiliation(s)
- Lucy E Darago
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Monica D Boshart
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
60
|
Yin JJ, Lu TQ, Chen C, Shi HY, Zhuang GL, Zheng J, Fang X, Zheng XY. A new family of decanuclear Ln 7Cr 3 clusters exhibiting a magnetocaloric effect. RSC Adv 2021; 11:17346-17351. [PMID: 35479672 PMCID: PMC9033162 DOI: 10.1039/d1ra02734d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/05/2021] [Indexed: 01/16/2023] Open
Abstract
Two dimeric Ln–Cr clusters with formula {Ln(H2O)8[Ln6Cr3(L)6(CH3COO)6(μ3-OH)12(H2O)12]}·(ClO4)6·xH2O (Ln = Gd, x = 35 for 1 and Ln = Dy, x = 45 for 2, HL = 2-pyrazinecarboxylic acid) were obtained by a ligand-controlled hydrolytic method with a mixed ligand system (2-pyrazinecarboxylic acid and acetate). Single crystal structure analysis showed that two trigonal bipyramids of [Gd3Cr2(μ3-OH)6]9+ worked as building blocks in constructing the metal-oxo cluster core of [Gd6Cr3(μ3-OH)12]15+ by sharing a common top – a Cr3+ ion. Additionally, compound 1 forms a three-dimensional framework with a one-dimensional nanopore channel along the a-axis through a hydrogen-bond interaction between the cationic cluster core and the free mononuclear cation [Gd(H2O)8]3+ and the π-bond interactions of the pyrazine groups on the two cationic cluster cores. Magnetic calculations indicated a weak ferromagnetic coupling interaction for Gd⋯Gd and Gd⋯Cr in compound 1, with its magnetic entropy change (−ΔSm) reaching 21.1 J kg−1 K−1 at 5 K, 7 T, while compound 2 displayed an obvious frequency-dependency at Hdc = 2000 Oe. Two decanuclear Ln–Cr clusters Ln7Cr3 were obtained, which formed a three-dimensional framework with one-dimensional nanopore channel through hydrogen-bond and π-bond interactions. Gd7Cr3 had a magnetic entropy change of 21.1 J kg−1 K−1 at 5 K, 7 T.![]()
Collapse
Affiliation(s)
- Jia-Jia Yin
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University Hefei 230601 China
| | - Tian-Qi Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University Hefei 230601 China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University Hefei 230601 China
| | - Hai-Yan Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032 China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University Hefei 230601 China
| | - Xiaolong Fang
- College of Materials and Chemical Engineering, Anhui Jianzhu University Hefei 230601 China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University Hefei 230601 China .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
61
|
Nguyen GT, Ungur L. Understanding the magnetization blocking mechanism in N 23--radical-bridged dilanthanide single-molecule magnets. Phys Chem Chem Phys 2021; 23:10303-10310. [PMID: 33908512 DOI: 10.1039/d1cp00452b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a theoretical investigation of the electronic structure and magnetic properties in [(Cp2Me4HLn(THF))2(μ-N2˙)]- and [(Cp2Me4HLn)2(μ-N2˙)]- (THF = tetrahydrofuran, CpMe4H = tetramethylcyclopentadienyl, Ln = Tb, Dy) complexes [as reported in Demir et al., Nat. Commun., 8, 1-9, 2144 (2017)]. By ab initio methods, their magnetic blocking behaviors are successfully characterized allowing elucidation of the origin of the two blocking barriers observed experimentally. In addition, a detailed analysis of exchange wave functions explains why the blocking barrier of the Tb complexes is roughly twice as large as that of the Dy analogues, a fact which appears to be a general trend exhibited in this family of compounds.
Collapse
Affiliation(s)
- Giang T Nguyen
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | - Liviu Ungur
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
62
|
Qin L, Zhang HL, Zhai YQ, Nojiri H, Schröder C, Zheng YZ. A giant spin molecule with ninety-six parallel unpaired electrons. iScience 2021; 24:102350. [PMID: 33898945 PMCID: PMC8054144 DOI: 10.1016/j.isci.2021.102350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Unpaired electrons which are essential for organic radicals and magnetic materials are hardly to align parallel, especially upon the increasing of spin numbers. Here, we show that the antiferromagnetic interaction in the largest Cr(III)-RE (rare earth) cluster {Cr10RE18} leads to 96 parallel electrons, forming a ground spin state ST of 48 for RE = Gd. This is so far the third largest ground spin state achieved in one molecule. Moreover, by using the classical Monte Carlo simulation, the exchange coupling constants Jij can be determined. Spin dynamics simulation reveals that the strong Zeeman effects of 18 Gd(III) ions stabilize the ground ferrimagnetic state and hinder the magnetization reversals of these spins. In addition, the dysprosium(III) analog is an exchange-biasing single-molecule magnet. We believe that the ferrimagnetic approach and analytical protocol established in this work can be applied generally in constructing and analyzing giant spin molecules. The largest {Cr10RE18} molecular clusters were assembled for RE = Gd, Dy, and Y The {Cr10Gd18} cluster shows a large ground spin state of ST = 48 The exchange coupling constants were determined by Classical Monte Carlo simulation Spin dynamics simulation reveals a ferrimagnetic ground state of {Cr10Gd18}.
Collapse
Affiliation(s)
- Lei Qin
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hao-Lan Zhang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hiroyuki Nojiri
- Institute of Materials Research (IMR), Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Christian Schröder
- Bielefeld Institute for Applied Materials Research, Bielefeld University of Applied Sciences, D-33619 Bielefeld, Germany.,Faculty of Physics, Bielefeld University, D-33615 Bielefeld, Germany
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
63
|
|
64
|
Jing P, Xi L, Lu J, Han J, Huang X, Jin C, Xie J, Li L. Regulating Spin Dynamics of Nitronyl Nitroxide Biradical Lanthanide Complexes through Introducing Different Transition Metals. Chem Asian J 2021; 16:793-800. [PMID: 33590716 DOI: 10.1002/asia.202100062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Indexed: 11/05/2022]
Abstract
Four biradical-Ln complexes with different transition metal ions, namely [LnM(hfac)5 (NITPh-PyPzbis)] (MII =MnII and LnIII =Gd 1, Dy 2; MII =NiII and LnIII =Tb 3, Dy 4), were prepared by the reaction of Ln(hfac)3 ⋅ 2H2 O, Mn(hfac)2 ⋅ 2H2 O or Ni(hfac)2 ⋅ 2H2 O with NITPh-PyPzbis biradical (hfac=hexafluoroacetylacetonate, NITPh-PyPzbis=5-(3-(2-pyridinyl)-1H-pyrazol-1-yl)-1,3-bis(1'-oxyl-3'-oxido- 4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). In complexes 1-4, the NITPh-PyPzbis biradical chelates one LnIII ion by means of its aminoxyl moieties and the transition metal ion is introduced through the two N donors from the pyridyl pyrazolyl moiety. Magnetic investigations indicate that complex 4 displays visible maxima in frequency/temperature-dependent χ'' signals with two-step relaxation processes, but complex 2 exhibits no slow magnetization relaxation. The comparison of structure parameters of both Dy complexes indicates that the symmetries of coordination spheres of two Dy ions are D2d for 2 and C2v for 4, which thus probably results in different magnetic relaxation behaviors. This work provides new insight for improving properties of Ln-biradical based SMMs.
Collapse
Affiliation(s)
- Pei Jing
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Lu Xi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Jiao Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Jing Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Xiaohui Huang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R China
| |
Collapse
|
65
|
A potential ferromagnetic lanthanide‒transition heterometallic molecular‒based bacteriostatic agent. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
66
|
Lu J, Jing P, Jin C, Xie J, Li L. Modulating the magnetization dynamics in Ln-Cu-Rad hetero-tri-spin complexes through cis/ trans coordination of nitronyl nitroxide radicals around the metal center. Dalton Trans 2021; 50:3280-3288. [PMID: 33587736 DOI: 10.1039/d1dt00090j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembling the novel nitronyl nitroxide radical NIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) with Ln(hfac)3·2H2O and Cu(hfac)2 (hfac = hexafluoroacetylacetonate) resulted in two heterometallic complexes with formula [LnCu(hfac)5(NIT-3Py-5-Ph)2] (Ln = Gd 1, Dy 2), in which two NIT-3Py-5-Ph radicals are coordinated with the LnIII ion via their nitroxide units in the cis-arrangement manner and the CuII ion is ligated by the pyridyl N donors of the radicals. Interestingly, when the phenyl group of NIT-3Py-5-Ph was replaced with a p-pyridyl group, a new family of 2D networks, namely, {[Ln(hfac)3][Cu(hfac)2]2(NIT-3Py-5-4Py)2}n (Ln = Gd 3, Tb 4, Dy 5; NIT-3Py-5-4Py = 2-(5-(4-pyridyl)-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was obtained. In the 2D sheet, each NIT-3Py-5-4Py ligand serves as a μ3-bridge to bind one LnIII center by the aminoxyl moiety and two CuII ions through two pyridine groups to form a 2D structure. The LnIII ion is coordinated by two NO units of two radicals in a trans configuration. DC magnetic measurements indicate that ferromagnetic LnIII-NO exchange occurs in 1-5. AC studies reveal that 2 displays slow relaxation of the magnetization while no such magnetic relaxation is found in complex 5. The observed different magnetic relaxation behaviors of two Dy analogues could be attributed to the different coordination modes of NO groups of the radicals, and the coordination geometry of the Dy center is from C2v in 2 to D2d in 5.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Pei Jing
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
67
|
Li H, Jing P, Lu J, Xi L, Wang Q, Ding L, Wang WM, Song Z. Multifunctional properties of {CuLn} systems involving nitrogen-rich nitronyl nitroxide: single-molecule magnet behavior, luminescence, magnetocaloric effects and heat capacity. Dalton Trans 2021; 50:2854-2863. [PMID: 33538274 DOI: 10.1039/d0dt04344c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of nitrogen-rich nitronyl nitroxide radical PPNIT (1)-based (PPNIT = 2-(1-(pyrazin-2-yl)-1H-pyrazole)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) 3d-4f ring-shaped tetranuclear clusters [Ln2Cu2(hfac)10(PPNIT)2(H2O)2]·CHCl3 (LnIII = Gd 2, Tb 3, Dy 4; hfac = hexafiuoroacetylacetonate) with multifunctional properties were isolated. The magnetic behavior, luminescence and heat capacity of the 3d-4f complexes were investigated, displaying interesting multiple properties of the molecular materials. The Gd derivative shows a magnetocaloric effect with the maximum entropy change (-ΔSm) of 15.3 J kg-1 K-1 at 2 K for ΔH = 70 kOe. The Tb cluster exhibits spin glass behavior and the characteristic fluorescence emission of the TbIII ion, while the Dy cluster exhibits SMM behaviour, and the heat capacity has been investigated. Notably, in nitronyl nitroxide radical-metal systems, the investigation of diverse properties is still scarce so far. This work can pave the way towards the synthesis of multifunctional materials that combine SMM behavior, and optical or/and thermodynamic properties.
Collapse
Affiliation(s)
- Hongdao Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China. and Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Pei Jing
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jiao Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lu Xi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qi Wang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Lifeng Ding
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Wen-Min Wang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhenjun Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
68
|
Yang H, Zhang Y, Sun L, Li D, Zeng S, Li Y, Yang Y, Dou J. Slow Magnetic Relaxation in a [Na
2
Dy
4
] Complex and Coexistence of Multiple Metal Rings. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology Nanjing Normal University Nanjing 210023 P. R. China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Da‐Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Su‐Yuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yun‐Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yan Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University 250014 Jinan P. R. China
| | - Jian‐Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| |
Collapse
|
69
|
Wang J, Li Q, Wu S, Chen Y, Wan R, Huang G, Liu Y, Liu J, Reta D, Giansiracusa MJ, Wang Z, Chilton NF, Tong M. Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Quan‐Wen Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Si‐Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Rui‐Chen Wan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Daniel Reta
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Zhen‐Xing Wang
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Nicholas F. Chilton
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
70
|
Hu Z, Hu H, Chen Z, Liu D, Zhang Y, Sun J, Liang Y, Yao D, Liang F. Guest-Induced Switching of a Molecule-Based Magnet in a 3d-4f Heterometallic Cluster-Based Chain Structure. Inorg Chem 2021; 60:633-641. [PMID: 33373231 DOI: 10.1021/acs.inorgchem.0c02466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the motivation of controlling a magnetic switch by external stimuli, we report here an infinite chain structure formed from the secondary building units of Cu3Tb2 clusters through the linkage of nitrate ions. It behaves as a molecule-based magnet with the highest energy barrier among isolated Tb/Cu-based single-molecule magnets and single-chain magnets, which is close to a dimer of a Cu3Tb2 cluster unit from a magnetic point as revealed by its correlation length of 2.23 Cu3Tb2 units. This kind of molecule-based magnet in a chain structure is rare. The removal of its guest ethanol molecules leads to the complete disappearance of slow magnetic relaxation behavior. Interestingly, the capture and removal of guest ethanol molecules are reversible, mediating a rare ON/OFF switching of a 3d-4f heterometallic molecule-based magnet, which was interpreted by the theoretical calculations based on the structural difference upon desolvation.
Collapse
Affiliation(s)
- Zhaobo Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.,Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Huancheng Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dongcheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junliang Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuning Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Di Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fupei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
71
|
Wang J, Li QW, Wu SG, Chen YC, Wan RC, Huang GZ, Liu Y, Liu JL, Reta D, Giansiracusa MJ, Wang ZX, Chilton NF, Tong ML. Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono-Decker to Double-Decker Metallacrown. Angew Chem Int Ed Engl 2021; 60:5299-5306. [PMID: 33216437 DOI: 10.1002/anie.202014993] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 02/03/2023]
Abstract
Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Quan-Wen Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Rui-Chen Wan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniel Reta
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zhen-Xing Wang
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
72
|
You Z, Prsa K, Mutschler J, Herringer SN, Wang J, Luo Y, Zheng B, Decurtins S, Krämer KW, Waldmann O, Liu SX. Formation of Defect-Dicubane-Type Ni II 2Ln III 2 (Ln = Tb, Er) Clusters: Crystal Structures and Modeling of the Magnetic Properties. ACS OMEGA 2021; 6:483-491. [PMID: 33458500 PMCID: PMC7807793 DOI: 10.1021/acsomega.0c04930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In the field of molecular nanoclusters, cubane and defect-dicubane, or butterfly structures, are typical examples of tetranuclear metal core architectures. In this work, a halogenated and anionic Schiff-base ligand (L2-) is utilized as it is predisposed to chelate within a cluster core to both 3d and 4f metal ions, in different binding configurations (H2L = 4-chloro-2-(2-hydroxy-3-methoxybenzyliden amino)phenol). The phenolate oxygen atoms of the deprotonated ligand can act in μ-O and μ3-O bridging binding modes for the intramolecular assembly of metal ions. Based on that, two tetranuclear and isostructural compounds [Ni2Tb2(L)4(NO3)2(DMF)2]·2CH3CN (1) and [Ni2Er2(L)4(NO3)2(DMF)2]·0.5CH3CN (2) were synthesized and structurally characterized. Magnetic susceptibility and magnetization data indicate the occurrence of dominant intramolecular ferromagnetic interactions between the spin centers. Particular emphasis is given to the theoretical description of the magnetic behavior, taking into account the Ln-Ni and Ni-Ni coupling paths and the magnetic anisotropy of the LnIII and NiII ions. The study is distinguished for its discussion of two distinct models, whereby model A relies on the uniaxial B 20 Stevens term describing the lanthanide anisotropy and model B is based on point-charge model calculations. Importantly, the physical meaning of the obtained parameters for both models was critically scrutinized.
Collapse
Affiliation(s)
- Zhonglu You
- Department
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Krunoslav Prsa
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Strasse 3, Freiburg D-79104, Germany
| | - Julius Mutschler
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Strasse 3, Freiburg D-79104, Germany
| | - Susan N. Herringer
- Departement
für Chemie und Biochemie, Universität
Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Jiaqi Wang
- Department
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Yingying Luo
- Department
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Boyang Zheng
- Department
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Silvio Decurtins
- Departement
für Chemie und Biochemie, Universität
Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Karl W. Krämer
- Departement
für Chemie und Biochemie, Universität
Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Oliver Waldmann
- Physikalisches
Institut, Universität Freiburg, Hermann-Herder-Strasse 3, Freiburg D-79104, Germany
| | - Shi-Xia Liu
- Departement
für Chemie und Biochemie, Universität
Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
73
|
Li D, Ding MM, Huang Y, Tello Yepes DF, Li H, Li Y, Zhang YQ, Yao J. Evolution from a single relaxation process to two-step relaxation processes of Dy 2 single-molecule magnets via the modulations of the terminal solvent ligands. Dalton Trans 2021; 50:217-228. [PMID: 33295893 DOI: 10.1039/d0dt03093g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To explore the influences of magnetic interactions on the relaxation dynamics of single-molecule magnets (SMMs) and to understand the relationship between single-ion relaxation and the relaxation of a molecular entity, it is very important to design dinuclear lanthanide-based SMMs with two-step relaxation processes. Here, three Dy2 complexes of compositions [Dy2(L)2(NO3)2(MeOH)2] (1), [Dy2(L)2(NO3)2(EtOH)2] (2), and [Dy2(L)2(NO3)2(DMF)2]·0.5EtOH (3) (H2L = 2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)-4-methoxyphenol) were successfully synthesized via elaborately introducing different terminal solvent ligands. X-ray single-crystal diffraction analyses revealed that complexes 1-3 are isostructural. The two DyIII ions of 1 and 2 both adopt D2d symmetry, while the two DyIII centres of 3 display D2d and D4d symmetries, respectively. The magnetic property studies of 1-3 indicated that all three complexes exhibit single-molecule magnet (SMM) behaviours with energy barriers of 104 K for 1, 98.94 K for 2, and 76.28 K and 45.54 K for 3 under zero dc field. The target of assembling Dy2 SMMs with two-step relaxation processes was achieved by gradually increasing the sizes of the terminal solvent ligands. Complex 3 exhibits two-step relaxation processes. Complete active space self-consistent field (CASSCF) calculations were performed on 1-3 to rationalize the observed differences in the magnetic behaviour. It is found that both the angles θ between the magnetic axis and the vector connecting two DyIII ions and the symmetries of DyIII ions are vital factors that affect the energy barriers of 1-3. The high local symmetries of the central metals in 1 and 2 make the complexes act as SMMs with higher energy barriers, while the smaller θ angle and different symmetries of the two DyIII ions render complex 3 as a SMM with a two-step relaxation process. This work demonstrates a new methodology for preparing SMMs with two-step relaxation processes by fine-tuning the terminal solvent ligands.
Collapse
Affiliation(s)
- Dawei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Boyce SAJ, Moutet J, Niederegger L, Simler T, Nocton G, Hess CR. Influence of a Lanthanide Ion on the Ni Site of a Heterobimetallic 3d-4f Mabiq Complex. Inorg Chem 2021; 60:403-411. [PMID: 33319984 DOI: 10.1021/acs.inorgchem.0c03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work presents the synthesis and characterization of a 3d-4f bimetallic complex based on the redox-active macrocyclic biquinazoline ligand, Mabiq. The mixed Yb-Ni complex, [(Cp*)2Yb(Mabiq)Ni]BArF (3), was synthesized upon reaction of [NiII(Mabiq)]BArF (2) with (Cp*)2YbII(OEt2). The molecular structures of 3 and its sister complex, [(Cp*)2Yb(Mabiq)Ni][(Cp*)2Yb(OTf)2] (1), confirmed the presence of a Yb(III) center and a reduced Ni-Mabiq unit. Spectroscopy (absorption and NMR), cyclic voltammetry, and magnetic susceptibility studies were employed to analyze the electronic structure of 3, which is best described by the [(Cp*)2YbIII(Mabiq•)NiII]+ formulation. Notably, the ligand-centered radical is delocalized over both the diketiminate and bipyrimidine units of the Mabiq ligand. The magnetic susceptibility and variable temperature NMR studies for 3 denote coupling between the Ni-Mabiq site and the peripheral Yb center-previously unobserved in 3d-3d Mabiq complexes. The complex nature of the exchange interactions is highlighted by the multiconfigurational ground state for 3, comprising nearly degenerate singlet and triplet states.
Collapse
Affiliation(s)
- Stuart A J Boyce
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Jules Moutet
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Lukas Niederegger
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Simler
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Grégory Nocton
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
75
|
Ghosh TK, Maity S, Mayans J, Ghosh A. Family of Isomeric Cu II-Ln III (Ln = Gd, Tb, and Dy) Complexes Presenting Field-Induced Slow Relaxation of Magnetization Only for the Members Containing Gd III. Inorg Chem 2021; 60:438-448. [PMID: 33351616 DOI: 10.1021/acs.inorgchem.0c03129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The strategic design and synthesis of two isomeric CuII complexes, [CuLA] and [CuLB], of asymmetrically dicondensed N2O3-donor Schiff-base ligands (where H2LA and H2LB are N-salicylidene-N'-3-methoxysalicylidenepropane-1,2-diamine and N-3-methoxysalicylidene-N'-salicylidenepropane-1,2-diamine, respectively) have been accomplished via a convenient CuII template method. These two complexes have been used as metalloligands for the synthesis of three pairs of Cu-Ln isomeric complexes [CuL(μ-NO3)Ln(NO3)2(H2O)]·CH3CN (for complexes 1A-3A, L = LA, and for complexes 1B-3B, L = LB and Ln = Gd, Tb, and Dy, respectively), all of which have been characterized structurally. In all six isomorphous and isostructural complexes, the decacoordinated LnIII centers and pentacoordinated CuII centers possess sphenocorona and square-pyramidal geometries, respectively. The isomeric pair of Cu-Gd compounds shows field-induced slow relaxation of magnetization, although they present the typical isotropic behavior of GdIII complexes, indicating that slow relaxation is not due to the usual energy barrier originating from the magnetic anisotropy. The isostructural derivatives with the ion-anisotropic lanthanides TbIII and DyIII do not show slow magnetic relaxation with or without a direct-current bias field, demonstrating that the magnetic response of the isotropic system CuII-GdIII occurs through different mechanisms than the rest of the Ln cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Júlia Mayans
- Instituto de Ciencia Molecular, Universitat de València, c/Catedrático José Beltrán 2, Paterna (València) 46980, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
76
|
Mondal A, Raizada M, Sahu PK, Konar S. A new family of Fe 4Ln 4 (Ln = Dy III, Gd III, Y III) wheel type complexes with ferromagnetic interaction, magnetocaloric effect and zero-field SMM behavior. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00781e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Observation of ferromagnetic interactions and single molecule toroic (SMT) behavior in Fe4Ln4 wheel complexes.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, MP, India
| |
Collapse
|
77
|
Liu C, Hao X, Zhang D. Effects of substituents on bridging ligands on the single‐molecule magnet properties of Zn
2
Dy
2
cluster complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cai‐Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| | - De‐Qing Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
78
|
Kong M, Feng X, Wang J, Zhang YQ, Song Y. Tuning magnetic anisotropy via terminal ligands along the Dy⋯Dy orientation in novel centrosymmetric [Dy2] single molecule magnets. Dalton Trans 2021; 50:568-577. [DOI: 10.1039/d0dt03854g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SMM properties of four dinuclear DyIII complexes can be effectively tuned by the appropriate alteration of terminal ligands and lattice guests.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Lab For NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| |
Collapse
|
79
|
Xu SM, An ZW, Zhang W, Zhang YQ, Yao MX. Ligand field and anion-driven structures and magnetic properties of dysprosium complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Based on the organic ligand H2L, three Dy-based complexes were synthesized, and structurally and magnetically characterized. Theoretical calculations are performed to analyze the performance of single molecule magnets.
Collapse
Affiliation(s)
- Shao-Min Xu
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Zhong-Wu An
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Wei Zhang
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Min-Xia Yao
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
80
|
|
81
|
Wang F, Gong HW, Zhang Y, Xue AQ, Zhu WH, Zhang YQ, Huang ZN, Sun HL, Liu B, Fang YY, Gao S. The comparative studies on the magnetic relaxation behaviour of the axially-elongated pentagonal-bipyramidal dysprosium and erbium ions in similar one-dimensional chain structures. Dalton Trans 2021; 50:8736-8745. [PMID: 34079971 DOI: 10.1039/d1dt00944c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A family of cyano-bridged 3d-4f 1D chain compounds, {RE[TM(CN)6(2-PNO)5]}·(H2O)4 {RE = YIII, TM = [FeIII]LS (1); RE = DyIII, TM = CoIII (3); RE = ErIII, TM = [FeIII]LS (4), CoIII (5); 2-PNO = 2-picoline-N-oxide} and {RE[TM(CN)6(2-PNO)5]} {RE = DyIII, TM = [FeIII]LS (2)}, were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that compounds 1 and 3-5 are isostructural, while compound 2 has a similar 1D chain structure with a different chain to chain arrangement. An axially-elongated pentagonal bipyramidal (D5h) coordination geometry is formed with five 2-PNO ligands in the equatorial plane and two [TM(CN)6]3- on the apical sites around the rare earth ions in these compounds. A comparison of the magnetic relaxation behaviour in detail reveals that it is more favorable for the Er (4 and 5) than the Dy analogues (2 and 3) to exhibit SIM properties in this axially-elongated D5h coordination environment. Under zero dc field, ac susceptibility measurements show that the Dy analogues have no magnetic relaxation behaviour, while the Er analogues exhibit frequency dependence despite the strong QTM effect. Under a 1 kOe dc field, the Er analogues generally show 1-2 orders of magnitude longer relaxation time at each selected temperature and a higher relaxation energy barrier than the Dy analogues. And the RECo compounds (3 and 5) show a more suppressed QTM effect than the corresponding REFe (2 and 4) compounds, which may be ascribed to the elimination of the fluctuation field from the neighbouring [FeIII]LS ions. The ab initio calculations indicate the misplacement between the orientation of the main magnetic axis and the structural axis in the Dy analogues, and the relative consistency in the Er analogues, which should be the source of the Er analogues showing better SIM properties than the Dy analogues.
Collapse
Affiliation(s)
- Fei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Hui-Wen Gong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Yan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - An-Qi Xue
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Wen-Hua Zhu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China.
| | - Zhen-Na Huang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Bei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Yue-Yi Fang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, P. R. China.
| |
Collapse
|
82
|
Akiyoshi R, Ohtani R, Lindoy LF, Hayami S. Spin crossover phenomena in long chain alkylated complexes. Dalton Trans 2021; 50:5065-5079. [DOI: 10.1039/d1dt00004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discussion of soft metal complexes with a focus on spin crossover behaviours that are associated with structural phase transition, including liquid crystal LC transition.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| |
Collapse
|
83
|
Sun J, Wu Q, Lu J, Jing P, Du Y, Li L. Slow relaxation of magnetization in lanthanide-biradical complexes based on a functionalized nitronyl nitroxide biradical. Dalton Trans 2020; 49:17414-17420. [PMID: 33216082 DOI: 10.1039/d0dt03312j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three novel lanthanide-biradical complexes {[Ln(hfac)3]2(mbisNITPyPh)(H2O)}{[Ln(hfac)3](mbisNITPyPh)}·CHCl3 (1-Gd; 2-Tb; 3-Dy) were successfully achieved by reacting the biradical mbisNITPyPh (5-(3-pyridyl)-1,3-bis(1-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) with Ln(hfac)3·2H2O (hfac = hexafluoroacetylacetonate). These Ln-biradical complexes consist of two kinds of spin moieties, namely, dinuclear {[Ln(hfac)3]2(mbisNITPyPh)(H2O)} and mononuclear {[Ln(hfac)3](mbisNITPyPh)}, in which two adjacent dinuclear units are linked by intermolecular hydrogen bonds involving the uncoordinated nitroxide units and the coordinated water molecules of Ln ions, forming a cyclic tetranuclear structure unit. The magnetization study reveals that intramolecular Ln(iii)-coordinated NO ferromagnetic interactions are dominant in the present system. Moreover, the clear frequency dependence of ac magnetic susceptibilities of complex 3-Dy is indicative of slow relaxation of magnetization behavior, indicating its single-molecule magnet nature.
Collapse
Affiliation(s)
- Juan Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | | | | | | | | | | |
Collapse
|
84
|
Caporale C, Sobolev AN, Phonsri W, Murray KS, Swain A, Rajaraman G, Ogden MI, Massi M, Fuller RO. Lanthanoid pyridyl-β-diketonate 'triangles'. New examples of single molecule toroics. Dalton Trans 2020; 49:17421-17432. [PMID: 33220677 DOI: 10.1039/d0dt02855j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Trinuclear lanthanoid clusters have been synthesised and investigated as toroidal spin systems. A pyridyl functionalised β-diketonate, 1,3-bis(pyridin-2-yl)propane-1,3-dione (o-dppdH) has been used to synthesise a family of clusters of the form [Dy3(OH)2(o-dppd)3Cl2(H2O)4]Cl2·7H2O (1), [Tb3(o-dppd)3(μ3-OH)2(CH3CH2OH)3Cl3][Tb3(o-dppd)3(μ3-OH)2(H2O)(CH3CH2OH)2Cl3]Cl2·H2O (2), [Ho3(OH)2(o-dppd)3Cl(H2O)5]Cl3·3H2O (3) and [Er3(OH)2(o-dppd)3Cl2(H2O)3(CH3OH)]Cl2·3H2O·CH3OH (4). Despite the previous occurrence of this structural motif in the literature, these systems have not been widely investigated in terms of torodic behaviour. Magnetic studies were used to further characterise the complexes. DC susceptibility studies support weak antiferromagnetic exchange in the complexes. Slow magnetic relaxation behaviour is observed in the dynamic AC magnetic studies for complex 1. Theoretical studies predict that complex 1 and 3 have a non-magnetic ground state based on a toroidal arrangement of spins. Changes to the coordination environment in 2 do not support a toroic spin state. The prolate nature of the ErIII centres in complex 4 and large transverse anisotropy do not support the toroidal arrangement of lanthanoid spins in the complex.
Collapse
Affiliation(s)
- Chiara Caporale
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Chen C, Hu ZB, Ruan H, Zhao Y, Zhang YQ, Tan G, Song Y, Wang X. Tuning the Single-Molecule Magnetism of Dysprosium Complexes by a Redox-Noninnocent Diborane Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
86
|
Gould CA, Mu E, Vieru V, Darago LE, Chakarawet K, Gonzalez MI, Demir S, Long JR. Substituent Effects on Exchange Coupling and Magnetic Relaxation in 2,2′-Bipyrimidine Radical-Bridged Dilanthanide Complexes. J Am Chem Soc 2020; 142:21197-21209. [DOI: 10.1021/jacs.0c10612] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Veacheslav Vieru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | - Selvan Demir
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
87
|
Yang H, Liu Z, Meng Y, Zeng S, Li Y, Li D, Dou J. A bell-like 15-metallacrown-5 complex from flexible H2Glyha ligand: Synthesis, structure and filed-induced slow magnetic relaxation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
88
|
Lin CB, Guo KK, Guo WX, Wang YH, Wang K, Li Y, Zhang SH, Zhang XQ, Zhang YQ, Liang FP. Rationally Designing Metal–Organic Frameworks Based on [Ln2] Magnetic Building Blocks Utilizing 2-Hydroxyisophthalate and Fine-Tuning the Magnetic Properties of Dy Analogues by Terminal Coordinated Solvents. Inorg Chem 2020; 59:16924-16935. [DOI: 10.1021/acs.inorgchem.0c01956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chao-Bin Lin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ke-Ke Guo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wen-Xiao Guo
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yi-Han Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiu-Qing Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Fu-Pei Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
89
|
Nikolaevskii SA, Yambulatov DS, Voronina JK, Melnikov SN, Babeshkin KA, Efimov NN, Goloveshkin AS, Kiskin MA, Sidorov AA, Eremenko IL. The First Example of 3 d‐4 f‐Heterometallic Carboxylate Complex Containing Phosphine Ligand. ChemistrySelect 2020. [DOI: 10.1002/slct.202002982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stanislav A. Nikolaevskii
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Dmitriy S. Yambulatov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Julia K. Voronina
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Stanislav N. Melnikov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Konstantin A. Babeshkin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Nikolay N. Efimov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Alexander S. Goloveshkin
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova Str. 28 119991 Moscow Russian Federation
| | - Mikhail A. Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Aleksey A. Sidorov
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| |
Collapse
|
90
|
Shen FX, Pramanik K, Brandão P, Zhang YQ, Jana NC, Wang XY, Panja A. Macrocycle supported dimetallic lanthanide complexes with slow magnetic relaxation in Dy 2 analogues. Dalton Trans 2020; 49:14169-14179. [PMID: 33026012 DOI: 10.1039/d0dt02778b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Six dimetallic lanthanide complexes, [Ln2(L')(acac)4] (1Dy-3Gd) (Ln = Dy (1Dy), Tb (2Tb) and Gd (3Gd)) and [Ln2(L')(tfac)4] (4Dy-6Gd) (Ln = Dy (4Dy), Tb (5Tb) and Gd (6Gd)) (H2L' = 1,9-dichloro-3,7,11,15-tetraaza-1,9(1,3)-dibenzenacyclohexadecaphane-2,10-diene-1,9-diol), have been synthesized by the reaction of lanthanide nitrates with the HL ligand in the presence of acetylacetonate (acac) (or trifluoroacetylacetonate (tfac) and triethylamine (HL = 4-chloro-2,6-bis(-((3-((3-(dimethylamino)propyl)amino)propyl)imino)methyl)phenol). Ln-Assisted modification of the Schiff base HL occurred and led to the formation of a new macrocyclic ligand (H2L'). X-ray crystallographic analysis revealed that the LnIII ions of complexes 1Dy-6Gd are all eight-coordinated in a square antiprismatic geometry with D4d local symmetry. Magnetic measurements of these complexes revealed that 1Dy and 4Dy show single-molecule magnet behaviour with energy barriers of 66.7 and 79.0 K, respectively, under a zero direct magnetic field. The orientations of the magnetic axes and crystal field parameters were obtained from theoretical calculations and an electrostatic model. The magneto-structural correlations of SMMs 1Dy and 4Dy are further discussed in detail.
Collapse
Affiliation(s)
- Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India. and Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| |
Collapse
|
91
|
Zhang C, Ma X, Cen P, Jin X, Yang J, Zhang YQ, Ferrando-Soria J, Pardo E, Liu X. A series of lanthanide(III) metal-organic frameworks derived from a pyridyl-dicarboxylate ligand: single-molecule magnet behaviour and luminescence properties. Dalton Trans 2020; 49:14123-14132. [PMID: 33020782 DOI: 10.1039/d0dt02736g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactions of LnIII ions with a versatile pyridyl-decorated dicarboxylic acid ligand lead to the formation of a series of novel three-dimensional (3D) Ln-MOFs, [Ln3(pta)4(Hpta)(H2O)]·xH2O (Ln = Dy (1), Eu (2), Gd (3), Tb (4), H2pta = 2-(4-pyridyl)-terephthalic acid, x = 6 for 1, 2.5 for 2, 1.5 for 3 and 2 for 4). The Ln3+ ions act as nine-coordinated muffin spheres, linking to each other to generate trinuclear {Ln3(OOC)6N2} SBUs, which are further extended to be interesting 3D topological architectures. To the best of our knowledge, the Dy-MOF exhibits zero-field single-molecule magnet (SMM) behaviour with the largest effective energy barrier among the previously reported 3D MOF-based Dy-SMMs. The combined analyses of a diluted sample (1@Y) and ab initio calculations demonstrate that the thermally assisted slow relaxation is mainly attributed to the single-ion magnetism. Furthermore, fluorescence measurements reveal that H2pta can sensitize EuIII and TbIII characteristic luminescence.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
92
|
Acharya J, Ahmed N, Flores Gonzalez J, Kumar P, Cador O, Singh SK, Pointillart F, Chandrasekhar V. Slow magnetic relaxation in a homo dinuclear Dy(iii) complex in a pentagonal bipyramidal geometry. Dalton Trans 2020; 49:13110-13122. [PMID: 32930277 DOI: 10.1039/d0dt02881a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We hereby report a dinuclear Dy(iii) complex, [Dy(LH3)Cl2]2·2Et2O (1) (LH4 = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide where both the metal centres are in a pentagonal bipyramidal (PBP) geometry with the axial positions being occupied by negatively charged Cl- ions. The complex as well as it's 10% diluted analogue (110) do not show zero-field SMM behaviour. However, in the presence of small optimum dc fields the slow relaxation of magnetization was displayed. The effective energy barrier for 110 at 800 Oe of applied field was extracted as 83(17) K with τ0 = 2(4) × 10-12 s. Through a combined experimental and ab initio electronic structure calculations studies we have thoroughly analysed the role of the ligand field around the Dy(iii), present in pentagonal bipyramidal geometry, in contributing to the slow relaxation of magnetization.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Wu Y, Zhou Y, Cao S, Cen P, Zhang YQ, Yang J, Liu X. Lanthanide Metal-Organic Frameworks Assembled from Unexplored Imidazolylcarboxylic Acid: Structure and Field-Induced Two-Step Magnetic Relaxation. Inorg Chem 2020; 59:11930-11934. [PMID: 32805992 DOI: 10.1021/acs.inorgchem.0c01855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 3D homologous metal-organic frameworks, [M(H0.5L)2] [M = Dy (1), Ho (2), Yb (3), Sm (4), Gd (5), and Y (6); H2L = 5-(1H-imidazol-1-yl)isophthalic acid], were isolated. In these complexes, the metal centers behave as hexacoordinated environments with distorted octahedral geometries, which is unusual in the lanthanide series, linking to each other and producing a fascinating 3D architecture. Magnetically, 1 features a field-driven dual-magnetic relaxation, which is rarely observed in high-dimensional coordination polymers. Analysis on the dilution sample (1@Y) and ab initio calculation unveil that the thermally assisted slow relaxation is mostly caused by the single-ion magnetism of DyIII itself.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuting Zhou
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Senni Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
94
|
Biswas M, Sañudo EC, Ray D. Octanuclear Ni
4
Ln
4
Coordination Aggregates from Schiff Base Anion Supports and Connecting of Two Ni
2
Ln
2
Cubes: Syntheses, Structures, and Magnetic Properties. Chem Asian J 2020; 15:2731-2741. [DOI: 10.1002/asia.202000679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Mousumi Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| | - E. Carolina Sañudo
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut de Nanociència i Nanotecnologia Universitat de Barcelona (IN2UB) 08028 Barcelona Spain
| | - Debashis Ray
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| |
Collapse
|
95
|
Meng Y, Xiong J, Yang M, Qiao Y, Zhong Z, Sun H, Han J, Liu T, Wang B, Gao S. Experimental Determination of Magnetic Anisotropy in Exchange‐Bias Dysprosium Metallocene Single‐Molecule Magnets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. Dalian 116024 P. R. China
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Mu‐Wen Yang
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Yu‐Sen Qiao
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zhi‐Qiang Zhong
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hao‐Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 P. R. China
| | - Jun‐Bo Han
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. Dalian 116024 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
96
|
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing Jiangsu 210023 China
| | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing Jiangsu 210023 China
| |
Collapse
|
97
|
Meng YS, Xiong J, Yang MW, Qiao YS, Zhong ZQ, Sun HL, Han JB, Liu T, Wang BW, Gao S. Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets. Angew Chem Int Ed Engl 2020; 59:13037-13043. [PMID: 32347593 DOI: 10.1002/anie.202004537] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/10/2022]
Abstract
We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp'2 Dy(μ-X)]2 (Cp'=cyclopentadienyltrimethylsilane anion; 1: X=CH3 - ; 2: X=Cl- ; 3: X=Br- ; 4: X=I- ). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.
Collapse
Affiliation(s)
- Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, P. R. China.,Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mu-Wen Yang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu-Sen Qiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Qiang Zhong
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jun-Bo Han
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
98
|
Bazhina ES, Aleksandrov GG, Kiskin MA, Sidorov AA, Eremenko IL. Coordination Polymers Based on Oxovanadium(IV) Butylmalonate Fragments and Potassium, Magnesium, and Cadmium Cations. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
99
|
Wu J, Demeshko S, Dechert S, Meyer F. Hexanuclear [Cp*Dy] 6 single-molecule magnet. Chem Commun (Camb) 2020; 56:3887-3890. [PMID: 32134051 DOI: 10.1039/c9cc09774k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexanuclear cluster [(Cp*Dy)6K4Cl16(THF)6], [Cp*Dy]6, has been constructed from six {Cp*DyIII} synthons in which the strongly coordinating Cp*- caps determine the local anisotropy axes. Structural characterization of [Cp*Dy]6 shows two almost parallel triangular (Cp*Dy)3 fragments that are linked by the K+ and Cl- ions. Magnetic measurements reveal slow thermal relaxation and fast quantum tunneling relaxation in the absence of an external dc field. After applying a weak dc field, the quantum tunneling relaxation is efficiently suppressed, giving a sizable energy barrier of 561 K, which represents the current record energy barrier for high nuclearity organometallic SMMs.
Collapse
Affiliation(s)
- Jianfeng Wu
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, D-37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
100
|
Shukla P, Roy S, Dolui D, Cañón-Mancisidor W, Das S. Pentanuclear Spirocyclic Ni4
Ln Derivatives: Field Induced Slow Magnetic Relaxation in the Dysprosium and Erbium Analogues. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pooja Shukla
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| | - Soumalya Roy
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| | - Dependu Dolui
- Discipline of Chemistry; Indian Institute of Technology; 382355 Gandhinagar Gujarat India
| | - Walter Cañón-Mancisidor
- Facultad de Químicas y Biología; Departamento de Química de Materiales; Universidad de Santiago de Chile (USACH); Santiago Chile
- Departamento de Química de Materiales; Center for the Development of Nanoscience and Nanotechnology (CEDENNA); Santiago Chile
| | - Sourav Das
- Department of Chemistry; Institute of Infrastructure Technology Research And Management; Near Khokhra Circle, Maninagar East 380026 Ahmedabad Gujarat India
| |
Collapse
|