51
|
Sharma K, Madhu PK, Mote KR. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 65:127-141. [PMID: 27364976 DOI: 10.1007/s10858-016-0043-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 05/04/2023]
Abstract
One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text] can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
| |
Collapse
|
52
|
Tycko R. Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance. Cold Spring Harb Perspect Med 2016; 6:a024083. [PMID: 27481836 PMCID: PMC4968170 DOI: 10.1101/cshperspect.a024083] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made to characterize the molecular structures of Aβ aggregates. Full molecular structural models based primarily on data from measurements using solid-state nuclear magnetic resonance (ssNMR) have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
53
|
Itoh SG, Okumura H. Oligomer Formation of Amyloid-β(29-42) from Its Monomers Using the Hamiltonian Replica-Permutation Molecular Dynamics Simulation. J Phys Chem B 2016; 120:6555-61. [PMID: 27281682 DOI: 10.1021/acs.jpcb.6b03828] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligomers of amyloid-β peptides (Aβ) are formed during the early stage of the amyloidogenesis process and exhibit neurotoxicity. The oligomer formation process of Aβ and even that of Aβ fragments are still poorly understood, though understanding of these processes is essential for remedying Alzheimer's disease. In order to better understand the oligomerization process of the C-terminal Aβ fragment Aβ(29-42) at the atomic level, we performed the Hamiltonian replica-permutation molecular dynamics simulation with Aβ(29-42) molecules using the explicit water solvent model. We observed that oligomers increased in size through the sequential addition of monomers to the oligomer, rather than through the assembly of small oligomers. Moreover, solvent effects played an important role in this oligomerization process.
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,Department of Structural Molecular Science, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| | - Hisashi Okumura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,Department of Structural Molecular Science, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
54
|
Abedini A, Plesner A, Cao P, Ridgway Z, Zhang J, Tu LH, Middleton CT, Chao B, Sartori DJ, Meng F, Wang H, Wong AG, Zanni MT, Verchere CB, Raleigh DP, Schmidt AM. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. eLife 2016; 5. [PMID: 27213520 PMCID: PMC4940161 DOI: 10.7554/elife.12977] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/20/2016] [Indexed: 01/04/2023] Open
Abstract
Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI:http://dx.doi.org/10.7554/eLife.12977.001
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Annette Plesner
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Jinghua Zhang
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Chris T Middleton
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Brian Chao
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Daniel J Sartori
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Fanling Meng
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - C Bruce Verchere
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
55
|
Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016; 17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
56
|
Das AK, Pandit R, Maiti S. Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0187. [PMID: 26009766 DOI: 10.1098/rstb.2014.0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Certain neurodegenerative diseases are thought to be initiated by the aggregation of amyloidogenic proteins. However, the mechanism underlying toxicity remains obscure. Most of the suggested mechanisms are generic in nature and do not directly explain the neuron-type specific lesions observed in many of these diseases. Some recent reports suggest that the toxic aggregates impair the synaptic vesicular machinery. This may lead to an understanding of the neuron-type specificity observed in these diseases. A disruption of the vesicular machinery can also be deleterious for extra-synaptic, especially somatic, neurotransmission (common in serotonergic and dopaminergic systems which are specifically affected in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively), though this relationship has remained unexplored. In this review, we discuss amyloid-induced damage to the neurotransmitter vesicular machinery, with an eye on the possible implications for somatic exocytosis. We argue that the larger size of the system, and the availability of multi-photon microscopy techniques for directly visualizing monoamines, make the somatic exocytosis machinery a more tractable model for understanding the effect of amyloids on all types of vesicular neurotransmission. Indeed, exploring this neglected connection may not just be important, it may be a more fruitful route for understanding AD and PD.
Collapse
Affiliation(s)
- Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Rucha Pandit
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| |
Collapse
|
57
|
Ghosh C, Mukherjee S, Seal M, Dey SG. Peroxidase to Cytochrome b Type Transition in the Active Site of Heme-Bound Amyloid β Peptides Relevant to Alzheimer’s Disease. Inorg Chem 2016; 55:1748-57. [DOI: 10.1021/acs.inorgchem.5b02683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chandradeep Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
58
|
Equbal A, Bjerring M, Sharma K, Madhu P, Nielsen NC. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Single Molecule Tools for Probing Protein Aggregation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2015. [DOI: 10.1007/s40010-015-0248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Mote KR, Madhu PK. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:149-56. [PMID: 26580064 DOI: 10.1016/j.jmr.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/11/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India.
| | - Perunthiruthy K Madhu
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|
61
|
Chandrakesan M, Bhowmik D, Sarkar B, Abhyankar R, Singh H, Kallianpur M, Dandekar SP, Madhu PK, Maiti S, Mithu VS. Steric Crowding of the Turn Region Alters the Tertiary Fold of Amyloid-β18-35 and Makes It Soluble. J Biol Chem 2015; 290:30099-107. [PMID: 26487720 DOI: 10.1074/jbc.m115.674135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
Aβ self-assembles into parallel cross-β fibrillar aggregates, which is associated with Alzheimer's disease pathology. A central hairpin turn around residues 23-29 is a defining characteristic of Aβ in its aggregated state. Major biophysical properties of Aβ, including this turn, remain unaltered in the central fragment Aβ18-35. Here, we synthesize a single deletion mutant, ΔG25, with the aim of sterically hindering the hairpin turn in Aβ18-35. We find that the solubility of the peptide goes up by more than 20-fold. Although some oligomeric structures do form, solution state NMR spectroscopy shows that they have mostly random coil conformations. Fibrils ultimately form at a much higher concentration but have widths approximately twice that of Aβ18-35, suggesting an opening of the hairpin bend. Surprisingly, two-dimensional solid state NMR shows that the contact between Phe(19) and Leu(34) residues, observed in full-length Aβ and Aβ18-35, is still intact in these fibrils. This is possible if the monomers in the fibril are arranged in an antiparallel β-sheet conformation. Indeed, IR measurements, supported by tyrosine cross-linking experiments, provide a characteristic signature of the antiparallel β-sheet. We conclude that the self-assembly of Aβ is critically dependent on the hairpin turn and on the contact between the Phe(19) and Leu(34) regions, making them potentially sensitive targets for Alzheimer's therapeutics. Our results show the importance of specific conformations in an aggregation process thought to be primarily driven by nonspecific hydrophobic interactions.
Collapse
Affiliation(s)
- Muralidharan Chandrakesan
- From the Department of Biochemistry, Seth G. S. Medical College and King Edward Memorial Hospital, Parel, Mumbai 400012, India
| | - Debanjan Bhowmik
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Bidyut Sarkar
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Rajiv Abhyankar
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Harwinder Singh
- the Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India, and
| | - Mamata Kallianpur
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Sucheta P Dandekar
- From the Department of Biochemistry, Seth G. S. Medical College and King Edward Memorial Hospital, Parel, Mumbai 400012, India
| | - Perunthiruthy K Madhu
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India, the Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, Narsinghi, Hyderabad 500 075, India
| | - Sudipta Maiti
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India,
| | - Venus Singh Mithu
- the Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India, and
| |
Collapse
|
62
|
Das P, Murray B, Belfort G. Alzheimer's protective A2T mutation changes the conformational landscape of the Aβ₁₋₄₂ monomer differently than does the A2V mutation. Biophys J 2015; 108:738-47. [PMID: 25650940 DOI: 10.1016/j.bpj.2014.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the etiology of Alzheimer's disease (AD). Recently, it has been reported that an A2T mutation in Aβ can protect against AD. Interestingly, a nonpolar A2V mutation also has been found to offer protection against AD in the heterozygous state, although it causes early-onset AD in homozygous carriers. Since the conformational landscape of the Aβ monomer is known to directly contribute to the early-stage aggregation mechanism, it is important to characterize the effects of the A2T and A2V mutations on Aβ₁₋₄₂ monomer structure. Here, we have performed extensive atomistic replica-exchange molecular dynamics simulations of the solvated wild-type (WT), A2V, and A2T Aβ₁₋₄₂ monomers. Our simulations reveal that although all three variants remain as collapsed coils in solution, there exist significant structural differences among them at shorter timescales. A2V exhibits an enhanced double-hairpin population in comparison to the WT, similar to those reported in toxic WT Aβ₁₋₄₂ oligomers. Such double-hairpin formation is caused by hydrophobic clustering between the N-terminus and the central and C-terminal hydrophobic patches. In contrast, the A2T mutation causes the N-terminus to engage in unusual electrostatic interactions with distant residues, such as K16 and E22, resulting in a unique population comprising only the C-terminal hairpin. These findings imply that a single A2X (where X = V or T) mutation in the primarily disordered N-terminus of the Aβ₁₋₄₂ monomer can dramatically alter the β-hairpin population and switch the equilibrium toward alternative structures. The atomistically detailed, comparative view of the structural landscapes of A2V and A2T variant monomers obtained in this study can enhance our understanding of the mechanistic differences in their early-stage aggregation.
Collapse
Affiliation(s)
- Payel Das
- Soft Matter Theory and Simulations Group, Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
| | - Brian Murray
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
63
|
Bhowmik D, Mote KR, MacLaughlin CM, Biswas N, Chandra B, Basu JK, Walker GC, Madhu PK, Maiti S. Cell-Membrane-Mimicking Lipid-Coated Nanoparticles Confer Raman Enhancement to Membrane Proteins and Reveal Membrane-Attached Amyloid-β Conformation. ACS NANO 2015; 9:9070-7. [PMID: 26391443 DOI: 10.1021/acsnano.5b03175] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-β40 (Aβ40), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a β-turn, flanked by two β-sheet regions. We use solid-state NMR data to confirm the presence of the β-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic Aβ fibrils. Significantly, this allows a "porin" like β-barrel structure, providing a structural basis for proposed mechanisms of Aβ oligomer toxicity.
Collapse
Affiliation(s)
- Debanjan Bhowmik
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences , 21 Brundavan Colony, Narsinghi, Hyderabad 500075, India
| | - Christina M MacLaughlin
- Department of Chemistry, Lash Miller Laboratories, University of Toronto , Toronto, ON M5S 3H6, Canada
| | - Nupur Biswas
- Department of Physics, Indian Institute of Science , Bengaluru 560012, India
| | - Bappaditya Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science , Bengaluru 560012, India
| | - Gilbert C Walker
- Department of Chemistry, Lash Miller Laboratories, University of Toronto , Toronto, ON M5S 3H6, Canada
| | - Perunthiruthy K Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
- TIFR Centre for Interdisciplinary Sciences , 21 Brundavan Colony, Narsinghi, Hyderabad 500075, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
64
|
Das AK, Rawat A, Bhowmik D, Pandit R, Huster D, Maiti S. An early folding contact between Phe19 and Leu34 is critical for amyloid-β oligomer toxicity. ACS Chem Neurosci 2015; 6:1290-5. [PMID: 25951510 DOI: 10.1021/acschemneuro.5b00074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small hydrophobic oligomers of aggregation-prone proteins are thought to be generically toxic. Here we examine this view by perturbing an early folding contact between Phe19 and Leu34 formed during the aggregation of Alzheimer's amyloid-β (Aβ40) peptide. We find that even conservative single mutations altering this interaction can abolish Aβ40 toxicity. Significantly, the mutants are not distinguishable either by the oligomers size or by the end-state fibrillar structure from the wild type Aβ40. We trace the change in their toxicity to a drastic lowering of membrane affinity. Therefore, nonlocal folding contacts play a key role in steering the oligomeric intermediates through specific conformations with very different properties and toxicity levels. Our results suggest that engineering the folding energy landscape may provide an alternative route to Alzheimer therapeutics.
Collapse
Affiliation(s)
- Anand K. Das
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Anoop Rawat
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Debanjan Bhowmik
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rucha Pandit
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Daniel Huster
- Institute
of Medical Physics and Biophysics, University of Leipzig, Härtelstr.
16-18, D-04107 Leipzig, Germany
| | - Sudipta Maiti
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
65
|
Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
66
|
Abstract
Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
67
|
Kotler SA, Brender JR, Vivekanandan S, Suzuki Y, Yamamoto K, Monette M, Krishnamoorthy J, Walsh P, Cauble M, Holl MMB, Marsh ENG, Ramamoorthy A. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Sci Rep 2015; 5:11811. [PMID: 26138908 PMCID: PMC4490348 DOI: 10.1038/srep11811] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/21/2015] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.
Collapse
Affiliation(s)
- Samuel A. Kotler
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Jeffrey R. Brender
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | | | - Yuta Suzuki
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Kazutoshi Yamamoto
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Martine Monette
- Bruker BioSpin Ltd., Bruker Corporation, 555 E Steeles Ave, Milton, ON, Canada
| | - Janarthanan Krishnamoorthy
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Patrick Walsh
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Meagan Cauble
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - E. Neil. G. Marsh
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
- Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, U.S.A
| |
Collapse
|
68
|
Potapov A, Yau WM, Ghirlando R, Thurber KR, Tycko R. Successive Stages of Amyloid-β Self-Assembly Characterized by Solid-State Nuclear Magnetic Resonance with Dynamic Nuclear Polarization. J Am Chem Soc 2015; 137:8294-307. [PMID: 26068174 PMCID: PMC5559291 DOI: 10.1021/jacs.5b04843] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Self-assembly of amyloid-β (Aβ) peptides in human brain tissue leads to neurodegeneration in Alzheimer's disease (AD). Amyloid fibrils, whose structures have been extensively characterized by solid state nuclear magnetic resonance (ssNMR) and other methods, are the thermodynamic end point of Aβ self-assembly. Oligomeric and protofibrillar assemblies, whose structures are less well-understood, are also observed as intermediates in the assembly process in vitro and have been implicated as important neurotoxic species in AD. We report experiments in which the structural evolution of 40-residue Aβ (Aβ40) is monitored by ssNMR measurements on frozen solutions prepared at four successive stages of the self-assembly process. Measurements on transient intermediates are enabled by ssNMR signal enhancements from dynamic nuclear polarization (DNP) at temperatures below 30 K. DNP-enhanced ssNMR data reveal a monotonic increase in conformational order from an initial state comprised primarily of monomers and small oligomers in solution at high pH, to larger oligomers near neutral pH, to metastable protofibrils, and finally to fibrils. Surprisingly, the predominant molecular conformation, indicated by (13)C NMR chemical shifts and by side chain contacts between F19 and L34 residues, is qualitatively similar at all stages. However, the in-register parallel β-sheet supramolecular structure, indicated by intermolecular (13)C spin polarization transfers, does not develop before the fibril stage. This work represents the first application of DNP-enhanced ssNMR to the characterization of peptide or protein self-assembly intermediates.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Kent R. Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| |
Collapse
|
69
|
Xu L, Shan S, Chen Y, Wang X, Nussinov R, Ma B. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization. J Chem Inf Model 2015; 55:1218-30. [PMID: 26017140 PMCID: PMC6407634 DOI: 10.1021/acs.jcim.5b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonfibrillar neurotoxic amyloid β (Aβ) oligomer structures are typically rich in β-sheets, which could be promoted by metal ions like Zn(2+). Here, using molecular dynamics (MD) simulations, we systematically examined combinations of Aβ40 peptide conformations and Zn(2+) binding modes to probe the effects of secondary structure on Aβ dimerization energies and kinetics. We found that random conformations do not contribute to dimerization either thermodynamically or kinetically. Zn(2+) couples with preformed secondary structures (α-helix and β-hairpin) to speed dimerization and stabilize the resulting dimer. Partial α-helices increase the dimerization speed, and dimers with α-helix rich conformations have the lowest energy. When Zn(2+) coordinates with residues D1, H6, H13, and H14, Aβ40 β-hairpin monomers have the fastest dimerization speed. Dimers with experimentally observed zinc coordination (E11, H6, H13, and H14) form with slower rate but have lower energy. Zn(2+) cannot stabilize fibril-like β-arch dimers. However, Zn(2+)-bound β-arch tetramers have the lowest energy. Collectively, zinc-stabilized β-hairpin oligomers could be important in the nucleation-polymerization of cross-β structures. Our results are consistent with experimental findings that α-helix to β-structural transition should accompany Aβ aggregation in the presence of zinc ions and that Zn(2+) stabilizes nonfibrillar Aβ oligomers and, thus, inhibits formation of less toxic Aβ fibrils.
Collapse
Affiliation(s)
- Liang Xu
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Shengsheng Shan
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Yonggang Chen
- Network and Information Center, Dalian University of Technology, Dalian, China
| | - Xiaojuan Wang
- School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Ruth Nussinov
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
70
|
Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat Struct Mol Biol 2015; 22:499-505. [PMID: 25938662 PMCID: PMC4476499 DOI: 10.1038/nsmb.2991] [Citation(s) in RCA: 638] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022]
Abstract
Increasing evidence has suggested that formation and propagation of misfolded aggregates of 42-residue human amyloid β (Aβ(1-42)), rather than of the more abundant Aβ(1-40), provokes the Alzheimer's disease cascade. However, structural details of misfolded Aβ(1-42) have remained elusive. Here we present the atomic model of an Aβ(1-42) amyloid fibril, from solid-state NMR (ssNMR) data. It displays triple parallel-β-sheet segments that differ from reported structures of Aβ(1-40) fibrils. Remarkably, Aβ(1-40) is incompatible with the triple-β-motif, because seeding with Aβ(1-42) fibrils does not promote conversion of monomeric Aβ(1-40) into fibrils via cross-replication. ssNMR experiments suggest that C-terminal Ala42, absent in Aβ(1-40), forms a salt bridge with Lys28 to create a self-recognition molecular switch that excludes Aβ(1-40). The results provide insight into the Aβ(1-42)-selective self-replicating amyloid-propagation machinery in early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Fei Long
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Minako Hoshi
- 1] Institute of Biomedical Research and Innovation, Kobe, Japan. [2] Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ruth Nussinov
- 1] Cancer and Inflammation Program, Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, Maryland, USA. [2] Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoshitaka Ishii
- 1] Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA. [2] Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
71
|
Spencer RK, Kreutzer AG, Salveson PJ, Li H, Nowick JS. X-ray Crystallographic Structures of Oligomers of Peptides Derived from β2-Microglobulin. J Am Chem Soc 2015; 137:6304-11. [PMID: 25915729 DOI: 10.1021/jacs.5b01673] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes share common features of toxic soluble protein oligomers. There are no structures at atomic resolution of oligomers formed by full-length amyloidogenic peptides and proteins, and only a few structures of oligomers formed by peptide fragments. The paucity of structural information provides a fundamental roadblock to understanding the pathology of amyloid diseases and developing preventions or therapies. Here, we present the X-ray crystallographic structures of three families of oligomers formed by macrocyclic peptides containing a heptapeptide sequence derived from the amyloidogenic E chain of β2-microglobulin (β2m). Each macrocyclic peptide contains the heptapeptide sequence β2m63-69 and a second heptapeptide sequence containing an N-methyl amino acid. These peptides form β-sheets that further associate into hexamers, octamers, and dodecamers: the hexamers are trimers of dimers; the octamers are tetramers of dimers; and the dodecamers contain two trimer subunits surrounded by three pairs of β-sheets. These structures illustrate a common theme in which dimer and trimer subunits further associate to form a hydrophobic core. The seven X-ray crystallographic structures not only illustrate a range of oligomers that a single amyloidogenic peptide sequence can form, but also how mutation can alter the size and topology of the oligomers. A cocrystallization experiment in which a dodecamer-forming peptide recruits a hexamer-forming peptide to form mixed dodecamers demonstrates that one species can dictate the oligomerization of another. These findings should also be relevant to the formation of oligomers of full-length peptides and proteins in amyloid diseases.
Collapse
Affiliation(s)
- Ryan K Spencer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Adam G Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Patrick J Salveson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Hao Li
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
72
|
Huang D, Zimmerman MI, Martin PK, Nix AJ, Rosenberry TL, Paravastu AK. Antiparallel β-Sheet Structure within the C-Terminal Region of 42-Residue Alzheimer's Amyloid-β Peptides When They Form 150-kDa Oligomers. J Mol Biol 2015; 427:2319-28. [PMID: 25889972 DOI: 10.1016/j.jmb.2015.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 11/28/2022]
Abstract
Understanding the molecular structures of amyloid-β (Aβ) oligomers and underlying assembly pathways will advance our understanding of Alzheimer's disease (AD) at the molecular level. This understanding could contribute to disease prevention, diagnosis, and treatment strategies, as oligomers play a central role in AD pathology. We have recently presented a procedure for production of 150-kDa oligomeric samples of Aβ(1-42) (the 42-residue variant of the Aβ peptide) that are compatible with solid-state nuclear magnetic resonance (NMR) analysis, and we have shown that these oligomers and amyloid fibrils differ in intermolecular arrangement of β-strands. Here we report new solid-state NMR constraints that indicate antiparallel intermolecular alignment of β-strands within the oligomers. Specifically, 150-kDa Aβ(1-42) oligomers with uniform (13)C and (15)N isotopic labels at I32, M35, G37, and V40 exhibit β-strand secondary chemical shifts in 2-dimensional (2D) finite-pulse radiofrequency-driven recoupling NMR spectra, spatial proximities between I32 and V40 as well as between M35 and G37 in 2D dipolar-assisted rotational resonance spectra, and close proximity between M35 H(α) and G37 H(α) in 2D CHHC spectra. Furthermore, 2D dipolar-assisted rotational resonance analysis of an oligomer sample prepared with 30% labeled peptide indicates that the I32-V40 and M35-G37 contacts are between residues on different molecules. We employ molecular modeling to compare the newly derived experimental constraints with previously proposed geometries for arrangement of Aβ molecules into oligomers.
Collapse
Affiliation(s)
- Danting Huang
- Department of Chemical and Biomedical Engineering, Florida Agricultural & Mechanical University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046, USA; National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Maxwell I Zimmerman
- Department of Chemical and Biomedical Engineering, Florida Agricultural & Mechanical University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046, USA; National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Patricia K Martin
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - A Jeremy Nix
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Terrone L Rosenberry
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Anant K Paravastu
- Department of Chemical and Biomedical Engineering, Florida Agricultural & Mechanical University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046, USA; National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
73
|
Bhowmik D, Das AK, Maiti S. Rapid, cell-free assay for membrane-active forms of amyloid-β. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4049-4053. [PMID: 25310376 DOI: 10.1021/la502679t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Small oligomers of amyloid beta (Aβ) are suspected to be the key to Alzheimer's disease (AD). However, identifying these toxic species in the background of other similar but nontoxic Aβ aggregates has remained a challenge. Recent studies indicate that Aβ undergoes a global structural transition in an early step of aggregation. This transition is marked by a strong increase in its affinity for cell membranes, which suggests that the resultant oligomers could be the key to Aβ toxicity. Here we use this increased membrane affinity to develop a rapid, quantitative, cell-free assay for these bioactive oligomers. It uses fluorescence correlation spectroscopy of fluorescently labeled Aβ and requires only 30 s of measurement time. We also describe a simpler (though less rapid) assay based on the same principles, which uses a dialysis step followed by conventional fluorescence spectroscopy. Our results potentially provide a much-needed high-throughput assay for AD drug development.
Collapse
Affiliation(s)
- Debanjan Bhowmik
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
74
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
75
|
Falsone A, Falsone SF. Legal but lethal: functional protein aggregation at the verge of toxicity. Front Cell Neurosci 2015; 9:45. [PMID: 25741240 PMCID: PMC4332346 DOI: 10.3389/fncel.2015.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022] Open
Abstract
Many neurodegenerative disorders are linked to irreversible protein aggregation, a process that usually comes along with toxicity and serious cellular damage. However, it is emerging that protein aggregation can also serve for physiological purposes, as impressively shown for prions. While the aggregation of this protein family was initially considered exclusively toxic in mammalians organisms, it is now almost clear that many other proteins adopt prion-like attributes to rationally polymerize into higher order complexes with organized physiologic roles. This implies that cells can tolerate at least in some measure the accumulation of inherently dangerous protein aggregates for functional profit. This review summarizes currently known strategies that living organisms adopt to preserve beneficial aggregation, and to prevent the catastrophic accumulation of toxic aggregates that frequently accompany neurodegeneration.
Collapse
Affiliation(s)
- Angelika Falsone
- Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| |
Collapse
|
76
|
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129:183-206. [PMID: 25604547 DOI: 10.1007/s00401-015-1386-3] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer's disease.
Collapse
|
77
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
78
|
Pouplana R, Campanera JM. Energetic contributions of residues to the formation of early amyloid-β oligomers. Phys Chem Chem Phys 2014; 17:2823-37. [PMID: 25503571 DOI: 10.1039/c4cp04544k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-weight amyloid-β (Aβ) oligomers formed at early stages of oligomerization rather than fibril assemblies seem to be the toxic components that drive neurodegeneration in Alzheimer's disease. Unfortunately, detailed knowledge of the structure of these early oligomers at the residue level is not yet available. In this study, we performed all-atom explicit solvent molecular dynamics simulations to examine the oligomerization process of Aβ10-35 monomers when forming dimers, trimers, tetramers and octamers, with four independent simulations of a total simulated time of 3 μs for each oligomer system. The decomposition of the stability free energy by MM-GBSA methodology allowed us to unravel the network of energetic interactions that stabilize such oligomers. The contribution of the intermonomeric van der Waals term is the most significant energy feature of the oligomerization process, consistent with the so-called hydrophobic effect. Furthermore, the decomposition of the stability free energy into residues and residue-pairwise terms revealed that it is mainly apolar interactions between the three specific hydrophobic fragments 31-35 (C-terminal region), 17-20 (central hydrophobic core) and 12-14 (N-terminal region) that are responsible for such a favourable effect. The conformation in which the hydrophobic cthr-chc interaction is oriented perpendicularly is particularly important. We propose three other model substructures that favour the oligomerization process and can thus be considered as molecular targets for future inhibitors. Understanding Aβ oligomerization at the residue level could lead to more efficient design of inhibitors of this process.
Collapse
Affiliation(s)
- R Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, Diagonal Sud, 08028, Barcelona, Catalonia, Spain.
| | | |
Collapse
|