51
|
Coarse-grained dynamics of supramolecules: Conformational changes in outer shells of Dengue viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:20-37. [PMID: 30273615 DOI: 10.1016/j.pbiomolbio.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023]
Abstract
While structural data on viruses are more and more common, information on their dynamics is much harder to obtain as those viruses form very large molecular complexes. In this paper, we propose a new method for computing the coarse-grained normal modes of such supra-molecules, NormalGo. A new formalism is developed to represent the Hessian of a quadratic potential using tensor products. This formalism is applied to the Tirion elastic potential, as well as to a Gō like potential. When combined with a fast method for computing a select set of eigenpairs of the Hessian, this new formalism enables the computation of thousands of normal modes of a full viral shell with more than one hundred thousand atoms in less than 2 h on a standard desktop computer. We then compare the two coarse-grained potentials. We show that, despite significant differences in their formulations, the Tirion and the Gō like potentials capture very similar dynamics characteristics of the molecule under study. However, we find that the Gō like potential should be preferred as it leads to less local deformations in the structure of the molecule during normal mode dynamics. Finally, we use NormalGo to characterize the structural transitions that occur when FAB fragments bind to the icosahedral outer shell of serotype 3 of the Dengue virus. We have identified residues at the surface of the outer shell that are important for the transition between the FAB-free and FAB-bound conformations, and therefore potentially useful for the design of antibodies to Dengue viruses.
Collapse
|
52
|
Xu L, Xu Y, Cheung NH, Wong KY. Practical approach for beryllium atomic clusters: TD-DFT potential energy surfaces from equilibrium to dissociation for excited states of 2s → 2p. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
|
54
|
O’Connor M, Deeks HM, Dawn E, Metatla O, Roudaut A, Sutton M, Thomas LM, Glowacki BR, Sage R, Tew P, Wonnacott M, Bates P, Mulholland AJ, Glowacki DR. Sampling molecular conformations and dynamics in a multiuser virtual reality framework. SCIENCE ADVANCES 2018; 4:eaat2731. [PMID: 29963636 PMCID: PMC6025904 DOI: 10.1126/sciadv.aat2731] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/18/2018] [Indexed: 05/28/2023]
Abstract
We describe a framework for interactive molecular dynamics in a multiuser virtual reality (VR) environment, combining rigorous cloud-mounted atomistic physics simulations with commodity VR hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and sample, with atomic-level precision, the structures and dynamics of complex molecular structures "on the fly" and to interact with other users in the same virtual environment. A series of controlled studies, in which participants were tasked with a range of molecular manipulation goals (threading methane through a nanotube, changing helical screw sense, and tying a protein knot), quantitatively demonstrate that users within the interactive VR environment can complete sophisticated molecular modeling tasks more quickly than they can using conventional interfaces, especially for molecular pathways and structural transitions whose conformational choreographies are intrinsically three-dimensional. This framework should accelerate progress in nanoscale molecular engineering areas including conformational mapping, drug development, synthetic biology, and catalyst design. More broadly, our findings highlight the potential of VR in scientific domains where three-dimensional dynamics matter, spanning research and education.
Collapse
Affiliation(s)
- Michael O’Connor
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
| | - Helen M. Deeks
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
| | - Edward Dawn
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Oussama Metatla
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
| | - Anne Roudaut
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
| | - Matthew Sutton
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
| | - Lisa May Thomas
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
- Department of Theatre, University of Bristol, Cantock’s Close, Bristol BS8 1UP, UK
| | - Becca Rose Glowacki
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
- School of Art and Design, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Rebecca Sage
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
- Interactive Scientific, Engine Shed, Station Approach, Bristol BS1 6QH, UK
| | - Philip Tew
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
- Interactive Scientific, Engine Shed, Station Approach, Bristol BS1 6QH, UK
| | - Mark Wonnacott
- Interactive Scientific, Engine Shed, Station Approach, Bristol BS1 6QH, UK
| | - Phil Bates
- Oracle Cloud Development Centre, Tower Wharf, Cheese Lane, Bristol BS2 2JJ, UK
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - David R. Glowacki
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Computer Science, University of Bristol, Merchant Venturer’s Building, Bristol BS8 1UB, UK
- Pervasive Media Studio, Watershed, 1 Canons Road, Bristol BS1 5TX, UK
| |
Collapse
|
55
|
Fianchini M. Synthesis meets theory: Past, present and future of rational chemistry. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Chemical synthesis has its roots in the empirical approach of alchemy. Nonetheless, the birth of the scientific method, the technical and technological advances (exploiting revolutionary discoveries in physics) and the improved management and sharing of growing databases greatly contributed to the evolution of chemistry from an esoteric ground into a mature scientific discipline during these last 400 years. Furthermore, thanks to the evolution of computational resources, platforms and media in the last 40 years, theoretical chemistry has added to the puzzle the final missing tile in the process of “rationalizing” chemistry. The use of mathematical models of chemical properties, behaviors and reactivities is nowadays ubiquitous in literature. Theoretical chemistry has been successful in the difficult task of complementing and explaining synthetic results and providing rigorous insights when these are otherwise unattainable by experiment. The first part of this review walks the reader through a concise historical overview on the evolution of the “model” in chemistry. Salient milestones have been highlighted and briefly discussed. The second part focuses more on the general description of recent state-of-the-art computational techniques currently used worldwide by chemists to produce synergistic models between theory and experiment. Each section is complemented by key-examples taken from the literature that illustrate the application of the technique discussed therein.
Collapse
|
56
|
Wong KY, Xu Y, Xu L. Pitfall in Free-Energy Simulations on Simplest Systems. ChemistrySelect 2017. [DOI: 10.1002/slct.201601160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kin-Yiu Wong
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Yuqing Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Liang Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
| |
Collapse
|
57
|
Affiliation(s)
- Kun Dong
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomin Liu
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haifeng Dong
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Suojiang Zhang
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
58
|
Koehl P, Poitevin F, Navaza R, Delarue M. The Renormalization Group and Its Applications to Generating Coarse-Grained Models of Large Biological Molecular Systems. J Chem Theory Comput 2017; 13:1424-1438. [PMID: 28170254 DOI: 10.1021/acs.jctc.6b01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the dynamics of biomolecules is the key to understanding their biological activities. Computational methods ranging from all-atom molecular dynamics simulations to coarse-grained normal-mode analyses based on simplified elastic networks provide a general framework to studying these dynamics. Despite recent successes in studying very large systems with up to a 100,000,000 atoms, those methods are currently limited to studying small- to medium-sized molecular systems due to computational limitations. One solution to circumvent these limitations is to reduce the size of the system under study. In this paper, we argue that coarse-graining, the standard approach to such size reduction, must define a hierarchy of models of decreasing sizes that are consistent with each other, i.e., that each model contains the information of the dynamics of its predecessor. We propose a new method, Decimate, for generating such a hierarchy within the context of elastic networks for normal-mode analysis. This method is based on the concept of the renormalization group developed in statistical physics. We highlight the details of its implementation, with a special focus on its scalability to large systems of up to millions of atoms. We illustrate its application on two large systems, the capsid of a virus and the ribosome translation complex. We show that highly decimated representations of those systems, containing down to 1% of their original number of atoms, still capture qualitatively and quantitatively their dynamics. Decimate is available as an OpenSource resource.
Collapse
Affiliation(s)
- Patrice Koehl
- Department of Computer Sciences and Genome Center, University of California, Davis , Davis, California 95616, United States
| | - Frédéric Poitevin
- Department of Structural Biology, Stanford University , Stanford, California 94305, United States.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Standford University , Menlo Park, California 94025, United States
| | - Rafael Navaza
- Platform of Crystallogenesis and Crystallography, CiTech, Institut Pasteur , 75015 Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur , 75015 Paris, France
| |
Collapse
|
59
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
60
|
Liao JM, Wang YT, Lin CLS. A fragment-based docking simulation for investigating peptide–protein bindings. Phys Chem Chem Phys 2017; 19:10436-10442. [DOI: 10.1039/c6cp07136h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We developed a fragment-based docking strategy for long peptide docking simulations, which separates a long peptide into halves for docking, and then recombined to rebuild whole-peptide docking conformations. With further screening, optimizations and MM/GBSA scoring, our method was capable of efficiently predicting the near-native peptide binding conformations.
Collapse
Affiliation(s)
- Jun-min Liao
- Graduate School of Medicine
- Kaohsiung Medical University
- Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry
- Kaohsiung Medical University
- Taiwan
| | | |
Collapse
|
61
|
Leberecht C, Heinke F, Labudde D. Simulation of diffusion using a modular cell dynamic simulation system. In Silico Biol 2017; 12:129-142. [PMID: 28482632 DOI: 10.3233/isb-170468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A variety of mathematical models is used to describe and simulate the multitude of natural processes examined in life sciences. In this paper we present a scalable and adjustable foundation for the simulation of natural systems. Based on neighborhood relations in graphs and the complex interactions in cellular automata, the model uses recurrence relations to simulate changes on a mesoscopic scale. This implicit definition allows for the manipulation of every aspect of the model even during simulation. The definition of value rules ω facilitates the accumulation of change during time steps. Those changes may result from different physical, chemical or biological phenomena. Value rules can be combined into modules, which in turn can be used to create baseline models. Exemplarily, a value rule for the diffusion of chemical substances was designed and its applicability is demonstrated. Finally, the stability and accuracy of the solutions is analyzed.
Collapse
Affiliation(s)
- Christoph Leberecht
- Faculty of Applied Computer Sciences and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, Dresden, Germany
| | - Florian Heinke
- Faculty of Applied Computer Sciences and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, Germany
- Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Akademiestrasse 6, Freiberg, Germany
| | - Dirk Labudde
- Faculty of Applied Computer Sciences and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, Germany
| |
Collapse
|
62
|
Duneau JP, Khao J, Sturgis JN. Lipid perturbation by membrane proteins and the lipophobic effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:126-134. [PMID: 27794424 DOI: 10.1016/j.bbamem.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
Abstract
Understanding how membrane proteins interact with their environment is fundamental to the understanding of their structure, function and interactions. We have performed coarse-grained molecular dynamics simulations on a series of membrane proteins in a membrane environment to examine the perturbations of the lipids by the presence of protein. We analyze these perturbations in terms of elastic membrane deformations and local lipid protein interactions. However these two factors are insufficient to describe the variety of effects that we observe and the changes caused by membranes proteins to the structure and dynamics of their lipid environment. Other factors that change the conformation available to lipid molecules are evident and are able to modify lipid structure far from the protein surface, and thus mediate long-range interactions between membrane proteins. We suggest that these multiple modifications to lipid behavior are responsible, at the molecular level, for the lipophobic effect we have proposed to account for our observations of membrane protein organization.
Collapse
Affiliation(s)
- Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| | - Jonathan Khao
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France
| | - James N Sturgis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| |
Collapse
|
63
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
64
|
O'Brien ES, Wand AJ, Sharp KA. On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain order parameters. Protein Sci 2016; 25:1156-60. [PMID: 26990788 DOI: 10.1002/pro.2922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 11/08/2022]
Abstract
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify MD force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or nuclear magnetic resonance (NMR) chemical shifts and residual dipolar couplings. NMR derived Lipari-Szabo squared generalized order parameter (O(2) ) values of amide NH bond vectors of the polypeptide chain were also often employed for refinement and validation. However, with a few exceptions, side chain methyl symmetry axis order parameters have not been incorporated into experimental reference sets. Using a test set of five diverse proteins, the performance of several force fields implemented in the NAMDD simulation package was examined. It was found that simulations employing explicit water implemented using the TIP3 model generally performed significantly better than those using implicit water in reproducing experimental methyl symmetry axis O(2) values. Overall the CHARMM27 force field performs nominally better than two implementations of the Amber force field. It appeared that recent quantum mechanics modifications to side chain torsional angles of leucine and isoleucine in the Amber force field have significantly hindered proper motional modeling for these residues. There remained significant room for improvement as even the best correlations of experimental and simulated methyl group Lipari-Szabo generalized order parameters fall below an R(2) of 0.8.
Collapse
Affiliation(s)
- Evan S O'Brien
- Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| | - Kim A Sharp
- Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| |
Collapse
|
65
|
Rodrigues JPGLM, Melquiond ASJ, Bonvin AMJJ. Molecular dynamics characterization of the conformational landscape of small peptides: A series of hands-on collaborative practical sessions for undergraduate students. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:160-167. [PMID: 26751257 DOI: 10.1002/bmb.20941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These improvements are also benefitting scientific education. Molecular simulations, their underlying theory, and their applications are particularly difficult to grasp for undergraduate students. Having hands-on experience with the methods contributes to a better understanding and solidification of the concepts taught during the lectures. To this end, we have created a computer practical class, which has been running for the past five years, composed of several sessions where students characterize the conformational landscape of small peptides using molecular dynamics simulations in order to gain insights on their binding to protein receptors. In this report, we detail the ingredients and recipe necessary to establish and carry out this practical, as well as some of the questions posed to the students and their expected results. Further, we cite some examples of the students' written reports, provide statistics, and share their feedbacks on the structure and execution of the sessions. These sessions were implemented alongside a theoretical molecular modelling course but have also been used successfully as a standalone tutorial during specialized workshops. The availability of the material on our web page also facilitates this integration and dissemination and lends strength to the thesis of open-source science and education.
Collapse
Affiliation(s)
- João P G L M Rodrigues
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Adrien S J Melquiond
- Biomedical Genomics, Hubrecht Insitute, KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
66
|
Vilseck JZ, Kostal J, Tirado-Rives J, Jorgensen WL. Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions. J Comput Chem 2015; 36:2064-74. [PMID: 26311531 PMCID: PMC4575649 DOI: 10.1002/jcc.24045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with QM alone. For several decades, semiempirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the interprogram communication. The BOSS-Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS-Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations using semiempirical methods.
Collapse
Affiliation(s)
- Jonah Z. Vilseck
- Department of Chemistry, Yale University, New Haven, CT 06520-8107USA
| | - Jakub Kostal
- Department of Chemistry, Yale University, New Haven, CT 06520-8107USA
| | | | | |
Collapse
|
67
|
Daday C, Curutchet C, Sinicropi A, Mennucci B, Filippi C. Chromophore–Protein Coupling beyond Nonpolarizable Models: Understanding Absorption in Green Fluorescent Protein. J Chem Theory Comput 2015; 11:4825-39. [DOI: 10.1021/acs.jctc.5b00650] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Csaba Daday
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Carles Curutchet
- Departament
de Fisicoquı́mica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n 08028, Barcelona, Spain
| | - Adalgisa Sinicropi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe
Moruzzi 3, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
68
|
Reilly PJ, Rovira C. Computational Studies of Glycoside, Carboxylic Ester, and Thioester Hydrolase Mechanisms: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter J. Reilly
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Carme Rovira
- Departament de Química Orgànica
and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
69
|
Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1782-94. [PMID: 25936775 DOI: 10.1016/j.bbapap.2015.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Abstract
Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O-transphosphorylation. For all these applications, we used our recently-developed path-integral method based on the KP theory, called automated integration-free path-integral (AIF-PI) method, to perform ab initio path-integral calculations of isotope effects. As opposed to the conventional path-integral molecular dynamics (PIMD) and Monte Carlo (PIMC) simulations, values calculated from our AIF-PI path-integral method can be as precise as (not as accurate as) the numerical precision of the computing machine. Lastly, comments are made on the general challenges in theoretical modeling of candidates matching the experimental "fingerprints" of RLTS. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
|
70
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 760] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|