51
|
Mondal B, Chattopadhyay S, Dey S, Mahammed A, Mittra K, Rana A, Gross Z, Dey A. Elucidation of Factors That Govern the 2e -/2H + vs 4e -/4H + Selectivity of Water Oxidation by a Cobalt Corrole. J Am Chem Soc 2020; 142:21040-21049. [PMID: 33259190 DOI: 10.1021/jacs.0c08654] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considering the importance of water splitting as the best solution for clean and renewable energy, the worldwide efforts for development of increasingly active molecular water oxidation catalysts must be accompanied by studies that focus on elucidating the mode of actions and catalytic pathways. One crucial challenge remains the elucidation of the factors that determine the selectivity of water oxidation by the desired 4e-/4H+ pathway that leads to O2 rather than by 2e-/2H+ to H2O2. We now show that water oxidation with the cobalt-corrole CoBr8 as electrocatalyst affords H2O2 as the main product in homogeneous solutions, while heterogeneous water oxidation by the same catalyst leads exclusively to oxygen. Experimental and computation-based investigations of the species formed during the process uncover the formation of a Co(III)-superoxide intermediate and its preceding high-valent Co-oxyl complex. The competition between the base-catalyzed hydrolysis of Co(III)-hydroperoxide [Co(III)-OOH]- to release H2O2 and the electrochemical oxidation of the same to release O2 via [Co(III)-O2•]- is identified as the key step determining the selectivity of water oxidation.
Collapse
Affiliation(s)
- Biswajit Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subal Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Kaustuv Mittra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
52
|
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468‐0073 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul 03760 South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
| |
Collapse
|
53
|
Abstract
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [Co4O4(OAc)4(py)4][PF6], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co3(μ3-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
Collapse
|
54
|
Kwon YM, Lee Y, Evenson GE, Jackson TA, Wang D. Crystal Structure and C-H Bond-Cleaving Reactivity of a Mononuclear Co IV-Dinitrate Complex. J Am Chem Soc 2020; 142:13435-13441. [PMID: 32639730 PMCID: PMC7429286 DOI: 10.1021/jacs.0c04368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-valent FeIV═O intermediates with a terminal metal-oxo moiety are key oxidants in many enzymatic and synthetic C-H bond oxidation reactions. While generating stable metal-oxo species for late transition metals remains synthetically challenging, notably, a number of high-valent non-oxo-metal species of late transition metals have been recently described as strong oxidants that activate C-H bonds. In this work, we obtained an unprecedented mononuclear CoIV-dinitrate complex (2) upon one-electron oxidation of its Co(III) precursor supported by a tridentate dianionic N3 ligand. 2 was structurally characterized by X-ray crystallography, showing a square pyramidal geometry with two coordinated nitrate anions. Furthermore, characterization of 2 using combined spectroscopic and computational methods revealed that 2 is a low-spin (S = 1/2) Co(IV) species with the unpaired electron located on the cobalt dz2 orbital, which is well positioned for substrate oxidations. Indeed, while having a high thermal stability, 2 is able to cleave sp3 C-H bonds up to 87 kcal/mol to afford rate constants and kinetic isotope effects (KIEs) of 2-6 that are comparable to other high-valent metal oxidants. The ability to oxidize strong C-H bonds has yet to be observed for CoIV-O and CoIII═O species previously reported. Therefore, 2 represents the first high-valent Co(IV) species that is both structurally characterized by X-ray crystallography and capable of activating strong C-H bonds.
Collapse
Affiliation(s)
- Yubin M. Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59803, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Kansas 66045, United States
| | - Garrett E. Evenson
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59803, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59803, United States
| |
Collapse
|
55
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Kim B, Kim S, Ohta T, Cho J. Redox-Inactive Metal Ions That Enhance the Nucleophilic Reactivity of an Alkylperoxocopper(II) Complex. Inorg Chem 2020; 59:9938-9943. [PMID: 32614571 DOI: 10.1021/acs.inorgchem.0c01109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The importance of redox-inactive metal ions in modulating the reactivity of redox-active biological systems is a subject of great current interest. In this work, the effect of redox-inactive metal ions (M3+ = Sc3+, Y3+, Yb3+, La3+) on the nucleophilic reactivity of a mononuclear ligand-based alkylperoxocopper(II) complex, [Cu(iPr2-tren-C(CH3)2O2)]+ (1), was examined. 1 was prepared by the addition of hydrogen peroxide and triethylamine to the solution of [Cu(iPr3-tren)(CH3CN)]+ (iPr3-tren = tris[2-(isopropylamino)ethyl]amine) via the formation of [Cu(iPr3-tren)(O2H)]+ (2) in methanol (CH3OH) at 30 °C. 1 was characterized using density functional theory (DFT) calculations and spectroscopic methods such as UV-vis, resonance Raman (rR), and electron paramagnetic resonance (EPR). DFT calculations support the electronic structure of 1 with an intermediate geometry between the trigonal-bipyramidal and square-pyramidal geometries, which is consistent with the observed EPR signal exhibiting a signal with g⊥ = 2.03 (A⊥ = 16 G) and g|| = 2.19 (A|| = 158 G). The Cu-O bond stretching frequency of 1 was observed at 507 cm-1 for 16O2 species (486 cm-1 for 18O2 species), and its O-O vibrational energy was determined to be 799 cm-1 for 16O2 species (759 cm-1 for 18O2 species) by rR spectroscopy. The reactivity of 1 was investigated in oxidative nucleophilic reactions. The positive slope of the Hammett plot (ρ = 2.3(1)) with para-substituted benzaldehydes and the reactivity order with 1°-, 2°-, and 3°-CHO demonstrate well the nucleophilic character of this copper(II) ligand-based alkylperoxo complex. The Lewis acidity of M3+ improves the oxidizing ability of 1. The modulated reactivity of 1 with M3+ was revealed to be an opposite trend of the Lewis acidity of M3+ in aldehyde deformylation.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
| | - Seonghan Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
57
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
58
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
59
|
Baeza Cinco MÁ, Wu G, Kaltsoyannis N, Hayton TW. Synthesis of a "Masked" Terminal Zinc Sulfide and Its Reactivity with Brønsted and Lewis Acids. Angew Chem Int Ed Engl 2020; 59:8947-8951. [PMID: 32196886 DOI: 10.1002/anie.202002364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 11/05/2022]
Abstract
The "masked" terminal Zn sulfide, [K(2.2.2-cryptand)][Me LZn(S)] (2) (Me L={(2,6-i Pr2 C6 H3 )NC(Me)}2 CH), was isolated via reaction of [Me LZnSCPh3 ] (1) with 2.3 equivalents of KC8 in THF, in the presence of 2.2.2-cryptand, at -78 °C. Complex 2 reacts readily with PhCCH and N2 O to form [K(2.2.2-cryptand)][Me LZn(SH)(CCPh)] (4) and [K(2.2.2-cryptand)][Me LZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of 2 was examined computationally and compared with the previously reported Ni congener, [K(2.2.2-cryptand)][tBu LNi(S)] (tBu L={(2,6-i Pr2 C6 H3 )NC(t Bu)}2 CH).
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93016, USA
| |
Collapse
|
60
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
61
|
Baeza Cinco MÁ, Wu G, Kaltsoyannis N, Hayton TW. Synthesis of a “Masked” Terminal Zinc Sulfide and Its Reactivity with Brønsted and Lewis Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Á. Baeza Cinco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| | - Nikolas Kaltsoyannis
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93016 USA
| |
Collapse
|
62
|
Comba P, Löhr A, Pfaff F, Ray K. Redox Potentials of High‐Valent Iron‐, Cobalt‐, and Nickel‐Oxido Complexes: Evidence for Exchange Enhanced Reactivity. Isr J Chem 2020. [DOI: 10.1002/ijch.202000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peter Comba
- Universität Heidelberg Anorganisch-Chemisches Institut, INF 270 D-69120 Heidelberg Germany
- Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) D-69120 Heidelberg Germany
| | - Anna‐Maria Löhr
- Universität Heidelberg Anorganisch-Chemisches Institut, INF 270 D-69120 Heidelberg Germany
| | - Florian Pfaff
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin Germany 12489
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin Germany 12489
| |
Collapse
|
63
|
Sengupta D, Sandoval-Pauker C, Schueller E, Encerrado-Manriquez AM, Metta-Magaña A, Lee WY, Seshadri R, Pinter B, Fortier S. Isolation of a Bimetallic Cobalt(III) Nitride and Examination of Its Hydrogen Atom Abstraction Chemistry and Reactivity toward H 2. J Am Chem Soc 2020; 142:8233-8242. [PMID: 32279486 DOI: 10.1021/jacs.0c00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)x][(ketguan)Co(N3)2] (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride Na(THF)4{[(ketguan)Co(N3)]2(μ-N)} (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII═N═CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other group 9 bridging nitride complexes, no radical character is detected at the bridging N atom of 1. Indeed, 1 is unreactive toward weak C-H donors and even cocrystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(ketguan)Co(N3)(py)]2 (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/Co(III) bridged imido species [(ketguan)Co(py)][(ketguan)Co](μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ∼ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5 ± 0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing benzene/pyridine solutions of 4a under H2 and D2 atmospheres (150 psi), which leads to the exclusive formation of the bis(imido) complexes [(ketguan)Co(μ-NH)]2 (6) and [(ketguan)Co(μ-ND)]2 (6-D), respectively, as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d metal nitrides while providing entryway into C-H activation pathways.
Collapse
Affiliation(s)
- Debabrata Sengupta
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Emily Schueller
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ram Seshadri
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
64
|
Wu YY, Hong JC, Tsai RF, Pan HR, Huang BH, Chiang YW, Lee GH, Cheng MJ, Hsu HF. Ligand-Based Reactivity of Oxygenation and Alkylation in Cobalt Complexes Binding with (Thiolato)phosphine Derivatives. Inorg Chem 2020; 59:4650-4660. [PMID: 32186861 DOI: 10.1021/acs.inorgchem.9b03740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our efforts to understand the nature of metal thiolates, we have explored the chemistry of cobalt ion supported by (thiolato)phosphine ligand derivatives. Herein, we synthesized and characterized a square-planar CoII complex binding with a bidentate (thiolato)phosphine ligand, Co(PS1″)2 (1) ([PS1″]- = [P(Ph)2(C6H3-3-SiMe3-2-S)]-). The complex activates O2 to form a ligand-based oxygenation product, Co(OPS1″)2 (2) ([OPS1″]- = [PO(Ph)2(C6H3-3-SiMe3-2-S)]-). In addition, an octahedral CoIII complex with a tridentate bis(thiolato)phosphine ligand, [NEt4][Co(PS2*)2] (3) ([PS2*]2- = [P(Ph)(C6H3-3-Ph-2-S)2]2-), was obtained. Compound 3 cleaves the C-Cl bond in dichloromethane via an S-based nucleophilic attack to generate a chloromethyl thioether group. Two isomeric products, [Co(PS2*)(PSSCH2Cl*)] (4 and 4') ([PSSCH2Cl*]- = [P(Ph)(C6H3-3-Ph-2-S)(C6H3-3-Ph-2-SCH2Cl)]-), were isolated and fully characterized. Both transformations, oxygenation of a CoII-bound phosphine donor in 1 and alkylation of a CoIII-bound thiolate in 3, were monitored by spectroscopic methods. These reaction products were isolated and fully characterized. Density functional theory (DFT, the B3LYP functional) calculations were performed to understand the electronic structure of 1 as well as the pathway of its transformation to 2.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jia-Cheng Hong
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ruei-Fong Tsai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Ruei Pan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Bo-Hua Huang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
65
|
Martirez JMP, Carter EA. Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants’ Efficacy as Active Sites in Electrocatalytic Water Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John Mark P. Martirez
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
66
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
67
|
van Leest NP, Tepaske MA, Oudsen JPH, Venderbosch B, Rietdijk NR, Siegler MA, Tromp M, van der Vlugt JI, de Bruin B. Ligand Redox Noninnocence in [Co III(TAML)] 0/- Complexes Affects Nitrene Formation. J Am Chem Soc 2019; 142:552-563. [PMID: 31846578 PMCID: PMC6956250 DOI: 10.1021/jacs.9b11715] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The redox noninnocence of the TAML scaffold in cobalt-TAML
(tetra-amido
macrocyclic ligand) complexes has been under debate since 2006. In
this work, we demonstrate with a variety of spectroscopic measurements
that the TAML backbone in the anionic complex [CoIII(TAMLred)]– is truly redox noninnocent
and that one-electron oxidation affords [CoIII(TAMLsq)]. Multireference (CASSCF) calculations show that the electronic
structure of [CoIII(TAMLsq)] is best described as an
intermediate spin (S = 1) cobalt(III) center that
is antiferromagnetically coupled to a ligand-centered radical, affording
an overall doublet (S = 1/2) ground-state. Reaction
of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor
leads to TAML-centered oxidation and produces nitrene radical complexes
without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLsq) determines whether mono- or bis-nitrene
radical complexes are formed. Reaction of [CoIII(TAMLsq)] or [CoIII(TAMLred)]– with PhINNs results in the formation of [CoIII(TAMLq)(N•Ns)] and [CoIII(TAMLq)(N•Ns)2]–, respectively. Herein, ligand-to-substrate
single-electron transfer results in one-electron-reduced Fischer-type
nitrene radicals (N•Ns–) that are intermediates in catalytic nitrene transfer to styrene.
These nitrene radical species were characterized by EPR, XANES, and
UV–vis spectroscopy, high-resolution mass spectrometry, magnetic
moment measurements, and supporting CASSCF calculations.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime A Siegler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | | | | | | |
Collapse
|
68
|
Li Y, Handunneththige S, Farquhar ER, Guo Y, Talipov MR, Li F, Wang D. Highly Reactive Co III,IV2(μ-O) 2 Diamond Core Complex That Cleaves C-H Bonds. J Am Chem Soc 2019; 141:20127-20136. [PMID: 31794198 DOI: 10.1021/jacs.9b09531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective activation of strong sp3 C-H bonds at mild conditions is a key step in many biological and synthetic transformations and an unsolved challenge for synthetic chemists. In nature, soluble methane monooxygenase (sMMO) is one representative example of nonheme dinuclear iron-dependent enzymes that activate strong sp3 C-H bonds by a high-valent diiron(IV) intermediate Q. To date, synthetic model complexes of sMMO-Q have shown limited abilities to oxidize strong C-H bonds. In this work, we generated a high-valent CoIII,IV2(μ-O)2 complex 3 supported by a tetradentate tris(2-pyridylmethyl)amine (TPA) ligand via one-electron oxidation of its CoIII2(μ-O)2 precursor 2. Characterization of 2 and 3 using X-ray absorption spectroscopy and DFT calculations showed that both species possess a diamond core structure with a short Co···Co distance of 2.78 Å. Furthermore, 3 is an EPR active species showing an S = 1/2 signal with clearly observable hyperfine splittings originated from the coupling of the 59Co nuclear spin with the electronic spin. Importantly, 3 is a highly reactive oxidant for sp3 C-H bonds, and an oxygenation reagent. 3 has the highest rate constant (1.5 M-1 s-1 at -60 °C) for oxidizing 9,10-dihydroanthracene (DHA) compared to diamond core complexes of other first-row transition metals including Mn, Fe and Cu reported previously. Specifically, 3 is about 4-5 orders of magnitude more reactive than the diiron analogs FeIII,IV2(μ-O)2 and FeIV2(μ-O)2 supported by TPA and related ligands. These findings shed light on future development of more reactive approaches for C-H bond activation by bioinspired dicobalt complexes.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II , Brookhaven National Laboratory , Upton , New York 11973 , United States.,School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Marat R Talipov
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Feifei Li
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| |
Collapse
|
69
|
Białek MJ, Chmielewski PJ, Latos‐Grażyński L. C−H and C−M Activation, Aromaticity Tuning, and Co⋅⋅⋅Ru Interactions Confined in the Azuliporphyrin Framework. Chemistry 2019; 25:14536-14545. [DOI: 10.1002/chem.201903215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Michał J. Białek
- Department of Chemistry University of Wrocław F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Department of Chemistry University of Wrocław F. Joliot-Curie 14 50-383 Wrocław Poland
| | | |
Collapse
|
70
|
Budnikova Y, Bochkova O, Khrizanforov M, Nizameev I, Kholin K, Gryaznova T, Laskin A, Dudkina Y, Strekalova S, Fedorenko S, Kononov A, Mustafina A. Selective C(sp2)‐H Amination Catalyzed by High‐Valent Cobalt(III)/(IV)‐bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem 2019. [DOI: 10.1002/cctc.201901391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yulia Budnikova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Olga Bochkova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Kirill Kholin
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Tatyana Gryaznova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Artem Laskin
- Kazan Federal University Kremlevskaya str. 29/1 Kazan 420008 Russian Federation
| | - Yulia Dudkina
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Sofia Strekalova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Aleksandr Kononov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| | - Asia Mustafina
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of Sciences 420088 Arbuzov str. 8 Kazan Russian Federation
| |
Collapse
|
71
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee YM, Pushkar YN, Kim WS, Fukuzumi S, Nam W. A High-Valent Manganese(IV)-Oxo-Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019; 58:16124-16129. [PMID: 31489757 DOI: 10.1002/anie.201910032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/20/2022]
Abstract
A mononuclear nonheme manganese(IV)-oxo complex binding the Ce4+ ion, [(dpaq)MnIV (O)]+ -Ce4+ (1-Ce4+ ), was synthesized by reacting [(dpaq)MnIII (OH)]+ (2) with cerium ammonium nitrate (CAN). 1-Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI-MS, resonance Raman, XANES, and EXAFS, showing an Mn-O bond distance of 1.69 Å with a resonance Raman band at 675 cm-1 . Electron-transfer and oxygen atom transfer reactivities of 1-Ce4+ were found to be greater than those of MnIV (O) intermediates binding redox-inactive metal ions (1-Mn+ ). This study reports the first example of a redox-active Ce4+ ion-bound MnIV -oxo complex and its spectroscopic characterization and chemical properties.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yulia N Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
72
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee Y, Pushkar YN, Kim W, Fukuzumi S, Nam W. A High‐Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepika G. Karmalkar
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yulia N. Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Won‐Suk Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468-0073 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
73
|
Castro L, So YM, Cho CW, Lortz R, Wong KH, Wang K, Arnold PL, Au-Yeung KC, Sung HHY, Williams ID, Leung WH, Maron L. A Combined Experimental and Theoretical Study of the Versatile Reactivity of an Oxocerium(IV) Complex: Concerted Versus Reductive Addition. Chemistry 2019; 25:10834-10839. [PMID: 31287592 DOI: 10.1002/chem.201903035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 11/09/2022]
Abstract
A combined experimental and theoretical investigation on the cerium(IV) oxo complex [(LOEt )2 Ce(=O)(H2 O)]⋅MeC(O)NH2 (1; LOEt - =[Co(η5 -C5 H5 ){P(O)(OEt)2 }3 ]- ) demonstrates that the intermediate spin-state nature of the ground state of the cerium complex is responsible for the versatility of its reactivity towards small molecules such as CO, CO2 , SO2 , and NO. CASSCF calculations together with magnetic susceptibility measurements indicate that the ground state of the cerium complex is of multiconfigurational character and comprised of 74 % of CeIV and 26 % of CeIII . The latter is found to be responsible for its reductive addition behavior towards CO, SO2 , and NO. This is the first report to date on the influence of the multiconfigurational ground state on the reactivity of a metal-oxo complex.
Collapse
Affiliation(s)
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chang-Woo Cho
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Rolf Lortz
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Kai-Hong Wong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Kai Wang
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Polly L Arnold
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Ka-Chun Au-Yeung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Laurent Maron
- LPCNO, Université de Toulouse, 31077, Toulouse, France
| |
Collapse
|
74
|
Andris E, Navrátil R, Jašík J, Srnec M, Rodríguez M, Costas M, Roithová J. M-O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes. Angew Chem Int Ed Engl 2019; 58:9619-9624. [PMID: 31083766 PMCID: PMC6618258 DOI: 10.1002/anie.201904546] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Indexed: 01/05/2023]
Abstract
Terminal oxo complexes of late transition metals are frequently proposed reactive intermediates. However, they are scarcely known beyond Group 8. Using mass spectrometry, we prepared and characterized two such complexes: [(N4Py)CoIII (O)]+ (1) and [(N4Py)CoIV (O)]2+ (2). Infrared photodissociation spectroscopy revealed that the Co-O bond in 1 is rather strong, in accordance with its lack of chemical reactivity. On the contrary, 2 has a very weak Co-O bond characterized by a stretching frequency of ≤659 cm-1 . Accordingly, 2 can abstract hydrogen atoms from non-activated secondary alkanes. Previously, this reactivity has only been observed in the gas phase for small, coordinatively unsaturated metal complexes. Multireference ab-initio calculations suggest that 2, formally a cobalt(IV)-oxo complex, is best described as cobalt(III)-oxyl. Our results provide important data on changes to metal-oxo bonding behind the oxo wall and show that cobalt-oxo complexes are promising targets for developing highly active C-H oxidation catalysts.
Collapse
Affiliation(s)
- Erik Andris
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Rafael Navrátil
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Juraj Jašík
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CASv. v. i., Dolejškova 2155/31822 3Prague 8Czech Republic
| | - Mònica Rodríguez
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of GironaCampus MontiliviGirona17071Spain
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of GironaCampus MontiliviGirona17071Spain
| | - Jana Roithová
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
- Radboud University NijmegenInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
75
|
Wang YH, Schneider PE, Goldsmith ZK, Mondal B, Hammes-Schiffer S, Stahl SS. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O 2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS CENTRAL SCIENCE 2019; 5:1024-1034. [PMID: 31263762 PMCID: PMC6598176 DOI: 10.1021/acscentsci.9b00194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/11/2023]
Abstract
The selective reduction of O2, typically with the goal of forming H2O, represents a long-standing challenge in the field of catalysis. Macrocyclic transition-metal complexes, and cobalt porphyrins in particular, have been the focus of extensive study as catalysts for this reaction. Here, we show that the mononuclear Co-tetraarylporphyrin complex, Co(porOMe) (porOMe = meso-tetra(4-methoxyphenyl)porphyrin), catalyzes either 2e-/2H+ or 4e-/4H+ reduction of O2 with high selectivity simply by changing the identity of the Brønsted acid in dimethylformamide (DMF). The thermodynamic potentials for O2 reduction to H2O2 or H2O in DMF are determined and exhibit a Nernstian dependence on the acid pK a, while the CoIII/II redox potential is independent of the acid pK a. The reaction product, H2O or H2O2, is defined by the relationship between the thermodynamic potential for O2 reduction to H2O2 and the CoIII/II redox potential: selective H2O2 formation is observed when the CoIII/II potential is below the O2/H2O2 potential, while H2O formation is observed when the CoIII/II potential is above the O2/H2O2 potential. Mechanistic studies reveal that the reactions generating H2O2 and H2O exhibit different rate laws and catalyst resting states, and these differences are manifested as different slopes in linear free energy correlations between the log(rate) versus pK a and log(rate) versus effective overpotential for the reactions. This work shows how scaling relationships may be used to control product selectivity, and it provides a mechanistic basis for the pursuit of molecular catalysts that achieve low overpotential reduction of O2 to H2O.
Collapse
Affiliation(s)
- Yu-Heng Wang
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Patrick E. Schneider
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary K. Goldsmith
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Biswajit Mondal
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
76
|
Andris E, Navrátil R, Jašík J, Srnec M, Rodríguez M, Costas M, Roithová J. M−O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)‐Oxyl and Cobalt(III)‐Oxo Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Erik Andris
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Rafael Navrátil
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Juraj Jašík
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS v. v. i., Dolejškova 2155/3 1822 3 Prague 8 Czech Republic
| | - Mònica Rodríguez
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of Girona Campus Montilivi Girona 17071 Spain
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of Girona Campus Montilivi Girona 17071 Spain
| | - Jana Roithová
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
- Radboud University NijmegenInstitute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
77
|
Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem Rev 2019; 119:6509-6560. [DOI: 10.1021/acs.chemrev.9b00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Seihwan Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
78
|
Wind M, Hoof S, Herwig C, Braun‐Cula B, Limberg C. The Influence of Alkali Metal Ions on the Stability and Reactivity of Chromium(III) Superoxide Moieties Spanned by Siloxide Ligands. Chemistry 2019; 25:5743-5750. [DOI: 10.1002/chem.201900236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Marie‐Louise Wind
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Santina Hoof
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Christian Herwig
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Beatrice Braun‐Cula
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Christian Limberg
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
79
|
Ho XL, Das SP, Ng LKS, Ng AYR, Ganguly R, Soo HS. Cobalt Complex of a Tetraamido Macrocyclic Ligand as a Precursor for Electrocatalytic Hydrogen Evolution. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xian Liang Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Siva Prasad Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Department of Chemistry, School of Science, RK University, Bhavnagar Highway, Kasturbadham, Rajkot 360020, Gujarat India
| | - Leonard Kia-Sheun Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Andrew Yun Ru Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
80
|
Lionetti D, Suseno S, Tsui EY, Lu L, Stich TA, Carsch KM, Nielsen RJ, Goddard WA, Britt RD, Agapie T. Effects of Lewis Acidic Metal Ions (M) on Oxygen-Atom Transfer Reactivity of Heterometallic Mn 3MO 4 Cubane and Fe 3MO(OH) and Mn 3MO(OH) Clusters. Inorg Chem 2019; 58:2336-2345. [PMID: 30730725 DOI: 10.1021/acs.inorgchem.8b02701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The modulation of the reactivity of metal oxo species by redox inactive metals has attracted much interest due to the observation of redox inactive metal effects on processes involving electron transfer both in nature (the oxygen-evolving complex of Photosystem II) and in heterogeneous catalysis (mixed-metal oxides). Studies of small-molecule models of these systems have revealed numerous instances of effects of redox inactive metals on electron- and group-transfer reactivity. However, the heterometallic species directly involved in these transformations have rarely been structurally characterized and are often generated in situ. We have previously reported the preparation and structural characterization of multiple series of heterometallic clusters based on Mn3 and Fe3 cores and described the effects of Lewis acidity of the heterometal incorporated in these complexes on cluster reduction potential. To determine the effects of Lewis acidity of redox inactive metals on group transfer reactivity in structurally well-defined complexes, we studied [Mn3MO4], [Mn3MO(OH)], and [Fe3MO(OH)] clusters in oxygen atom transfer (OAT) reactions with phosphine substrates. The qualitative rate of OAT correlates with the Lewis acidity of the redox inactive metal, confirming that Lewis acidic metal centers can affect the chemical reactivity of metal oxo species by modulating cluster electronics.
Collapse
Affiliation(s)
| | | | | | - Luo Lu
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Troy A Stich
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | | | | | | | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | | |
Collapse
|
81
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
82
|
Harmalkar SS, Narulkar DD, Butcher RJ, Deshmukh MS, Kumar Srivastava A, Mariappan M, Lama P, Dhuri SN. Dual-site aqua mononuclear nickel(II) complexes of non-heme tetradentate ligands: Synthesis, characterization and reactivity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Fukuzumi S, Lee YM, Nam W. Kinetics and mechanisms of catalytic water oxidation. Dalton Trans 2019; 48:779-798. [PMID: 30560964 DOI: 10.1039/c8dt04341h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | |
Collapse
|
84
|
Sankaralingam M, Lee YM, Pineda-Galvan Y, Karmalkar DG, Seo MS, Jeon SH, Pushkar Y, Fukuzumi S, Nam W. Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 141:1324-1336. [PMID: 30580510 DOI: 10.1021/jacs.8b11492] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mononuclear nonheme manganese(IV)-oxo complexes binding calcium ion and other redox-inactive metal ions, [(dpaq)MnIV(O)]+-M n+ (1-Mn+, M n+ = Ca2+, Mg2+, Zn2+, Lu3+, Y3+, Al3+, and Sc3+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate), were synthesized by reacting a hydroxomanganese(III) complex, [(dpaq)MnIII(OH)]+, with iodosylbenzene (PhIO) in the presence of redox-inactive metal ions (M n+). The Mn(IV)-oxo complexes were characterized using various spectroscopic techniques. In reactivity studies, we observed contrasting effects of M n+ on the reactivity of 1-M n+ in redox reactions such as electron-transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. In the OAT and ET reactions, the reactivity order of 1-M n+, such as 1-Sc3+ ≈ 1-Al3+ > 1-Y3+ > 1-Lu3+ > 1-Zn2+ > 1-Mg2+ > 1-Ca2+, follows the Lewis acidity of M n+ bound to the Mn-O moiety; that is, the stronger the Lewis acidity of M n+, the higher the reactivity of 1-M n+ becomes. In sharp contrast, the reactivity of 1-M n+ in the HAT reaction was reversed, giving the reactivity order 1-Ca2+ > 1-Mg2+ > 1-Zn2+ > 1-Lu3+> 1-Y3+> 1-Al3+ ≈ 1-Sc3+; that is, the higher is Lewis acidity of M n+, the lower the reactivity of 1-M n+ in the HAT reaction. The latter result implies that the Lewis acidity of M n+ bound to the Mn-O moiety can modulate the basicity of the metal-oxo moiety, thus influencing the HAT reactivity of 1-M n+; cytochrome P450 utilizes the axial thiolate ligand to increase the basicity of the iron-oxo moiety, which enhances the reactivity of compound I in C-H bond activation reactions.
Collapse
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Deepika G Karmalkar
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - So Hyun Jeon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, SENTAN, Japan Science and Technology Agency (JST) , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , 730000 , China
| |
Collapse
|
85
|
Mondal B, Saha S, Borah D, Mazumdar R, Mondal B. Nitric Oxide Dioxygenase Activity of a Nitrosyl Complex of Cobalt(II) Porphyrinate in the Presence of Hydrogen Peroxide via Putative Peroxynitrite Intermediate. Inorg Chem 2019; 58:1234-1240. [PMID: 30623661 DOI: 10.1021/acs.inorgchem.8b02722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reaction of a cobalt porphyrin complex, [(F8TPP)Co], 1 {F8TPP = 5,10,15,20- tetrakis(2,6-difluorophenyl)porphyrinate dianion} in dichloromethane with nitric oxide (NO) led to the nitrosyl complex, [(F8TPP)Co(NO)], 2. Spectroscopic studies and structural characterization revealed it as a bent nitrosyl of {CoNO}8 description. It was stable in the presence of dioxygen. However, it reacts with H2O2 in acetonitrile (or THF) solution at -40 °C (or -80 °C) to result in the corresponding Co(III)-nitrate complex, [(F8TPP)Co(NO3)], 3. The reaction presumably proceeds via the formation of a Co-peroxynitrite intermediate. X-Band electron paramagnetic resonance and electrospray ionization-mass spectroscopic studies suggest the intermediate formation of the [(porphyrin)Co(III)-O•] radical, which in turn supports the generation of the corresponding Co(IV)-oxo species during the reaction. This is in accord with the homolytic cleavage of the O-O bond in heme-peroxynitrite proposed in the nitric oxide dioxygenases activity. In addition, the characteristic peroxynitrite-induced phenol ring reaction was also observed.
Collapse
Affiliation(s)
- Baishakhi Mondal
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| | - Soumen Saha
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| | - Dibyajyoti Borah
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| | - Rakesh Mazumdar
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| | - Biplab Mondal
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| |
Collapse
|
86
|
Domenianni LI, Fligg R, Schäfermeier A, Straub S, Beerhues J, Sarkar B, Vöhringer P. Molecular and electronic structure of an azidocobalt(iii) complex derived from X-ray crystallography, linear spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 2019; 21:20393-20402. [DOI: 10.1039/c9cp04350k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray diffraction, UV/Vis electronic spectroscopy and Fourier-transform infrared spectroscopy are used with DFT and CAS calculations to explore the molecular and electronic structure of the cationic complex (cyclam)(diazido)cobalt(iii).
Collapse
Affiliation(s)
- Luis I. Domenianni
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Reinhold Fligg
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Annett Schäfermeier
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Steffen Straub
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Julia Beerhues
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Peter Vöhringer
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| |
Collapse
|
87
|
Reactive Cobalt⁻Oxo Complexes of Tetrapyrrolic Macrocycles and N-based Ligand in Oxidative Transformation Reactions. Molecules 2018; 24:molecules24010078. [PMID: 30587824 PMCID: PMC6337149 DOI: 10.3390/molecules24010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/09/2023] Open
Abstract
High-valent cobalt–oxo complexes are reactive transient intermediates in a number of oxidative transformation processes e.g., water oxidation and oxygen atom transfer reactions. Studies of cobalt–oxo complexes are very important for understanding the mechanism of the oxygen evolution center in natural photosynthesis, and helpful to replicate enzyme catalysis in artificial systems. This review summarizes the development of identification of high-valent cobalt–oxo species of tetrapyrrolic macrocycles and N-based ligands in oxidation of organic substrates, water oxidation reaction and in the preparation of cobalt–oxo complexes.
Collapse
|
88
|
Cook BJ, Pink M, Chen C, Caulton KG. Electrophile Recruitment as a Structural Element in Bis‐Pyrazolate Pyridine Complex Aggregation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian J. Cook
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Maren Pink
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
- Indiana University Molecular Structure Center Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
- Indiana University Molecular Structure Center Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| | - Kenneth G. Caulton
- Department of Chemistry Indiana University‐Bloomington 800 E Kirkwood Avenue 47405 Bloomington IN USA
| |
Collapse
|
89
|
Nurdin L, Spasyuk DM, Fairburn L, Piers WE, Maron L. Oxygen-Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O 2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. J Am Chem Soc 2018; 140:16094-16105. [PMID: 30398331 DOI: 10.1021/jacs.8b07726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In reactions of significance to alternative energy schemes, metal catalysts are needed to overcome kinetically and thermodynamically difficult processes. Often, high-oxidation-state, high-energy metal oxo intermediates are proposed as mediators in elementary steps involving O-O bond cleavage and formation, but the mechanisms of these steps are difficult to study because of the fleeting nature of these species. Here we utilized a novel dianionic pentadentate ligand system that enabled a detailed mechanistic investigation of the protonation of a cobalt(III)-cobalt(III) peroxo dimer, a known intermediate in oxygen reduction catalysis to hydrogen peroxide. It was shown that double protonation occurs rapidly and leads to a low-energy O-O bond cleavage step that generates a Co(III) aquo complex and a highly reactive Co(IV) oxyl cation. The latter was probed computationally and experimentally implicated through chemical interception and isotope labeling experiments. In the absence of competing chemical reagents, it dimerizes and eliminates dioxygen in a step highly relevant to O-O bond formation in the oxygen evolution step in water oxidation. Thus, the study demonstrates both facile O-O bond cleavage and formation in the stoichiometric reduction of O2 to H2O with 2 equiv of Co(II) and suggests a new pathway for selective reduction of O2 to water via Co(III)-O-O-Co(III) peroxo intermediates.
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Denis M Spasyuk
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laura Fairburn
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Warren E Piers
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS, LPCNO , 135 avenue de Rangueil , F-31077 Toulouse , France , and CNRS, LPCNO, F-31077 Toulouse, France
| |
Collapse
|
90
|
A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat Commun 2018; 9:3861. [PMID: 30242151 PMCID: PMC6155020 DOI: 10.1038/s41467-018-06296-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022] Open
Abstract
Development of single-site catalysts supported by ultrathin two-dimensional (2D) porous matrix with ultrahigh surface area is highly desired but also challenging. Here we report a cocoon silk chemistry strategy to synthesize isolated metal single-site catalysts embedded in ultrathin 2D porous N-doped carbon nanosheets (M-ISA/CNS, M = Fe, Co, Ni). X-ray absorption fine structure analysis and spherical aberration correction electron microscopy demonstrate an atomic dispersion of metal atoms on N-doped carbon matrix. In particular, the Co-ISA/CNS exhibit ultrahigh specific surface area (2105 m2 g−1) and high activity for C–H bond activation in the direct catalytic oxidation of benzene to phenol with hydrogen peroxide at room temperature, while the Co species in the form of phthalocyanine and metal nanoparticle show a negligible activity. Density functional theory calculations discover that the generated O = Co = O center intermediates on the single Co sites are responsible for the high activity of benzene oxidation to phenol. Single-site catalysts supported by ultrathin two-dimensional (2D) porous matrix are desirable for catalytic reactions, yet their synthesis remains a great challenge. Herein the authors report a cocoon silk chemistry strategy to synthesize isolated metal single-site catalysts embedded in ultrathin 2D porous N-doped carbon nanosheets.
Collapse
|
91
|
Nam W, Lee YM, Fukuzumi S. Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates. Acc Chem Res 2018; 51:2014-2022. [PMID: 30179459 DOI: 10.1021/acs.accounts.8b00299] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular oxygen (O2), the greenest oxidant, is kinetically stable in the oxidation of organic substrates due to its triplet ground state. In nature, O2 is reduced by two electrons with two protons to produce hydrogen peroxide (H2O2) and by four electrons with four protons to produce water (H2O) by oxidase and oxygenase metalloenzymes. In the process of the two-electron/two-proton and four-electron/four-proton reduction of O2 by metalloenzymes and their model compounds, metal-oxygen intermediates, such as metal-superoxido, -peroxido, -hydroperoxido, and -oxido species, are generated depending on the numbers of electrons and protons involved in the O2 activation reactions. The one-electron reduction of metal-oxygen intermediates is coupled with the binding of one proton. Such a hydrogen atom transfer (HAT) is defined as proton-coupled electron transfer (PCET), and there is a mechanistic dichotomy whether HAT occurs via a concerted PCET pathway or stepwise pathways [i.e., electron transfer followed by proton transfer (ET/PT) or proton transfer followed by electron transfer (PT/ET)]. The metal-oxygen intermediates formed are oxidants that can abstract a hydrogen atom (H-atom) from substrate C-H bonds. The H-atom abstraction from substrate C-H bonds by the metal-oxygen intermediates can also occur via a concerted PCET or stepwise PCET pathways. In the PCET reactions, a proton can be provided not only by the substrate itself but also by an acid that is added to a reaction solution. This Account describes the reactivities of metal-oxygen intermediates, such as metal-superoxido, -peroxido, -hydroperoxido, and -oxido complexes, in HAT reactions, focusing on the mechanisms of PCET reactions of metal-oxygen intermediates and on the mechanistic dichotomy of concerted versus stepwise pathways. Recent developments in the reactivity studies of Cr-, Fe-, and Cu-superoxido complexes in H-atom and hydride transfer reactions are discussed. Reactivities of an iron(III)-hydroperoxido complex and an iron(III)-peroxido complex binding redox-inactive metal ions are also summarized briefly. Mononuclear nonheme iron(IV)- and manganese(IV)-oxido complexes have shown high reactivities in HAT reactions, and their chemistry in PCET reactions is discussed intensively. Acid-catalyzed HAT reactions of metal-oxygen intermediates are also discussed to demonstrate a unified driving force dependence of logarithm of the rate constants of acid-catalyzed oxidation of various substrates by an iron(IV)-oxido complex and that of PCET from one-electron donors to the iron(IV)-oxido complex. PCET reactions of metal-oxygen intermediates are shown to proceed via a concerted pathway (one-step HAT) or a stepwise ET/PT pathway depending on the ET and PCET driving forces (-Δ G). The boundary conditions between concerted versus stepwise PCET pathways are clarified to demonstrate a switchover of the mechanisms only by changing the reaction temperature in the boundary conditions. This Account summarizes recent developments in the HAT reactions by synthetic mononuclear nonheme metal-oxygen intermediates over the past 10 years.
Collapse
Affiliation(s)
- Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
92
|
Saracini C, Malik DD, Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. Inorg Chem 2018; 57:10945-10952. [PMID: 30133298 DOI: 10.1021/acs.inorgchem.8b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Deesha D Malik
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-8502 , Japan
| |
Collapse
|
93
|
Goetz MK, Hill EA, Filatov AS, Anderson JS. Isolation of a Terminal Co(III)-Oxo Complex. J Am Chem Soc 2018; 140:13176-13180. [PMID: 30078327 DOI: 10.1021/jacs.8b07399] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Late transition metal oxo complexes with high d-electron counts have been implicated as intermediates in a wide variety of important catalytic reactions; however, their reactive nature has often significantly limited their study. While some examples of these species have been isolated and characterized, complexes with d-electron counts >4 are exceedingly rare. Here we report that use of a strongly donating tris(imidazol-2-ylidene)borate scaffold enables the isolation of two highly unusual CoIII-oxo complexes which have been thoroughly characterized by a suite of physical techniques including single crystal X-ray diffraction. These complexes display O atom and H atom transfer reactivity and demonstrate that terminal metal oxo complexes with six d-electrons can display strong metal-oxygen bonding and sufficient stability to enable their characterization. The unambiguous assignment of these complexes supports the viability of related species that are frequently invoked, but rarely observed, in the types of catalytic reactions mentioned above. The studies described here change our understanding of the reactivity and bonding in late transition metal oxo complexes and open the door to further study of the properties of this class of elusive and important intermediates.
Collapse
Affiliation(s)
- McKenna K Goetz
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Ethan A Hill
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - Alexander S Filatov
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| | - John S Anderson
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
94
|
Kinauer M, Diefenbach M, Bamberger H, Demeshko S, Reijerse EJ, Volkmann C, Würtele C, van Slageren J, de Bruin B, Holthausen MC, Schneider S. An iridium(iii/iv/v) redox series featuring a terminal imido complex with triplet ground state. Chem Sci 2018; 9:4325-4332. [PMID: 29780564 PMCID: PMC5944377 DOI: 10.1039/c8sc01113c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 01/11/2023] Open
Abstract
The iridium(iii/iv/v) imido redox series [Ir(NtBu){N(CHCHPtBu2)2}]0/+/2+ was synthesized and examined spectroscopically, magnetically, crystallographically and computationally. The monocationic iridium(iv) imide exhibits an electronic doublet ground state with considerable 'imidyl' character as a result of covalent Ir-NtBu bonding. Reduction gives the neutral imide [Ir(NtBu){N(CHCHPtBu2)2}] as the first example of an iridium complex with a triplet ground state. Its reactivity with respect to nitrene transfer to selected electrophiles (CO2) and nucleophiles (PMe3), respectively, is reported.
Collapse
Affiliation(s)
- Markus Kinauer
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Martin Diefenbach
- Institut für Anorganische und Analytische Chemie , Goethe-Universität , Max-von-Laue-Str. 7 , 60438 Frankfurt am Main , Germany
| | - Heiko Bamberger
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Serhiy Demeshko
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Christian Volkmann
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Christian Würtele
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| | - Joris van Slageren
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam , The Netherlands .
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie , Goethe-Universität , Max-von-Laue-Str. 7 , 60438 Frankfurt am Main , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstr. 4 , 37077 Göttingen , Germany .
| |
Collapse
|
95
|
Cook BJ, Pink M, Pal K, Caulton KG. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment. Inorg Chem 2018; 57:6176-6185. [DOI: 10.1021/acs.inorgchem.8b00816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian J. Cook
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kuntal Pal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kenneth G. Caulton
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
96
|
Hill EA, Kelty ML, Filatov AS, Anderson JS. Isolable iodosylarene and iodoxyarene adducts of Co and their O-atom transfer and C-H activation reactivity. Chem Sci 2018; 9:4493-4499. [PMID: 29896391 PMCID: PMC5958341 DOI: 10.1039/c8sc01167b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023] Open
Abstract
We report an unusual series of discrete iodosyl- and iodoxyarene adducts of Co(ii) including detailed studies of their O-transfer reactivity and mechanism.
We report an unusual series of discrete iodosyl- and iodoxyarene adducts of Co. The formation of these adducts was confirmed by a suite of techniques including single crystal X-ray diffraction. The reactivity of these adducts with O-atom acceptors and an H-atom donor has been investigated with particular focus on elucidating mechanistic details. Detailed kinetic analysis allows for discrimination between proposed oxo and adduct mediated mechanisms. In particular, these reactions have been interrogated by competition experiments with isotopically labelled mixtures which shows that all of the studied adducts display a large KIE. These studies suggest different mechanisms may be relevant depending on subtle substituent changes in the adduct complexes. Reactivity data are consistent with the involvement of a transient oxo complex in one case, while the two other systems appear to react with substrates directly as iodosyl- or iodoxyarene adducts. These results support that reactivity typically ascribed to metal-oxo complexes, such as O-atom transfer and C–H activation, can also be mediated by discrete transition metal iodosyl- or iodoxyarene adducts that are frequent intermediates in the generation of oxo complexes. The influence of additional Lewis acids such as Sc3+ on the reactivity of these systems has also been investigated.
Collapse
Affiliation(s)
- Ethan A Hill
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - Margaret L Kelty
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - Alexander S Filatov
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - John S Anderson
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| |
Collapse
|
97
|
Elrod LT, Kim E. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex. Inorg Chem 2018; 57:2594-2602. [PMID: 29443517 DOI: 10.1021/acs.inorgchem.7b02956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reduction of nitrate (NO3-) to nitrite (NO2-) is of significant biological and environmental importance. While MoIV(O) and MoVI(O)2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst MoIV(O)(SN)2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf)3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to MoVI(O)2(SN)2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N2O and O2. This work highlights the ability of Sc3+ additives to expand the reactivity scope of an existing MoIV(O) complex together with which Sc3+ can convert nitrate to stable gaseous molecules.
Collapse
Affiliation(s)
- Lee Taylor Elrod
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Eunsuk Kim
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
98
|
Pegis ML, Wise CF, Martin DJ, Mayer JM. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem Rev 2018; 118:2340-2391. [PMID: 29406708 DOI: 10.1021/acs.chemrev.7b00542] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oxygen reduction reaction (ORR) is a key component of biological processes and energy technologies. This Review provides a comprehensive report of soluble molecular catalysts and electrocatalysts for the ORR. The precise synthetic control and relative ease of mechanistic study for homogeneous molecular catalysts, as compared to heterogeneous materials or surface-adsorbed species, enables a detailed understanding of the individual steps of ORR catalysis. Thus, the Review places particular emphasis on ORR mechanism and thermodynamics. First, the thermochemistry of oxygen reduction and the factors influencing ORR efficiency are described to contextualize the discussion of catalytic studies that follows. Reports of ORR catalysis are presented in terms of their mechanism, with separate sections for catalysis proceeding via initial outer- and inner-sphere electron transfer to O2. The rates and selectivities (for production of H2O2 vs H2O) of these catalysts are provided, along with suggested methods for accurately comparing catalysts of different metals and ligand scaffolds that were examined under different experimental conditions.
Collapse
Affiliation(s)
- Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Catherine F Wise
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - James M Mayer
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
99
|
Du HY, Chen SC, Su XJ, Jiao L, Zhang MT. Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Co III Complex as Water Oxidation Catalyst. J Am Chem Soc 2018; 140:1557-1565. [PMID: 29309165 DOI: 10.1021/jacs.8b00032] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water oxidation is the key step in both natural and artificial photosynthesis to capture solar energy for fuel production. The design of highly efficient and stable molecular catalysts for water oxidation based on nonprecious metals is still a great challenge. In this article, the electrocatalytic oxidation of water by Na[(L4-)CoIII], where L is a substituted tetraamido macrocyclic ligand, was investigated in aqueous solution (pH 7.0). We found that Na[(L4-)CoIII] is a stable and efficient homogeneous catalyst for electrocatalytic water oxidation with 380 mV onset overpotential in 0.1 M phosphate buffer (pH 7.0). Both ligand- and metal-centered redox features are involved in the catalytic cycle. In this cycle, Na[(L4-)CoIII] was first oxidized to [(L2-)CoIIIOH] via a ligand-centered proton-coupled electron transfer process in the presence of water. After further losing an electron and a proton, the resting state, [(L2-)CoIIIOH], was converted to [(L2-)CoIV═O]. Density functional theory (DFT) calculations at the B3LYP-D3(BJ)/6-311++G(2df,2p)//B3LYP/6-31+G(d,p) level of theory confirmed the proposed catalytic cycle. According to both experimental and DFT results, phosphate-assisted water nucleophilic attack to [(L2-)CoIV═O] played a key role in O-O bond formation.
Collapse
Affiliation(s)
- Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Si-Cong Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Jun Su
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
100
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|