51
|
Konai MM, Bhattacharjee B, Ghosh S, Haldar J. Recent Progress in Polymer Research to Tackle Infections and Antimicrobial Resistance. Biomacromolecules 2018; 19:1888-1917. [PMID: 29718664 DOI: 10.1021/acs.biomac.8b00458] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global health is increasingly being threatened by the rapid emergence of drug-resistant microbes. The ability of these microbes to form biofilms has further exacerbated the scenario leading to notorious infections that are almost impossible to treat. For addressing this clinical threat, various antimicrobial polymers, polymer-based antimicrobial hydrogels and polymer-coated antimicrobial surfaces have been developed in the recent past. This review aims to discuss such polymer-based antimicrobial strategies with a focus on their current advancement in the field. Antimicrobial polymers, whose designs are inspired from antimicrobial peptides (AMPs), are described with an emphasis on structure-activity analysis. Additionally, antibiofilm activity and in vivo efficacy are delineated to elucidate the real potential of these antimicrobial polymers as possible therapeutics. Antimicrobial hydrogels, prepared from either inherently antimicrobial polymers or biocide-loaded into polymer-derived hydrogel matrix, are elaborated followed by various strategies to engineer polymer-coated antimicrobial surfaces. In the end, the current challenges are accentuated along with future directions for further expansion of the field toward tackling infections and antimicrobial resistance.
Collapse
Affiliation(s)
- Mohini Mohan Konai
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| |
Collapse
|
52
|
Dai T, Wang C, Wang Y, Xu W, Hu J, Cheng Y. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15163-15173. [PMID: 29648438 DOI: 10.1021/acsami.8b02527] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.
Collapse
Affiliation(s)
- Tianjiao Dai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Changping Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yuqing Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai 200003 , P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
53
|
Liang R, Wang T, Zhang H, Yao R, Qin W. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition. Front Chem 2018; 6:81. [PMID: 29662877 PMCID: PMC5890108 DOI: 10.3389/fchem.2018.00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Nowadays, it is still difficult for molecularly imprinted polymers (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.
Collapse
Affiliation(s)
- Rongning Liang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai, China
| | - Tiantian Wang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Huan Zhang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Ruiqing Yao
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
54
|
|
55
|
Wei J, Wenjie Y, Ping L, Na W, Haixia R, Xuequn Z. Antibiotic resistance of Klebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway. Exp Ther Med 2018; 15:2247-2254. [PMID: 29563975 PMCID: PMC5854942 DOI: 10.3892/etm.2018.5728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Overuse and misuse of antibiotics leads to rapid evolution of antibiotic-resistant bacteria and antibiotic resistance genes. Klebsiella pneumoniae has become the most common pathogenic bacterium accountable for nosocomial infections due to its high virulence factor and general occurrence of resistance to most antibiotics. The β-lactamase signaling pathway has been suggested to be involved in antibiotic resistance against β-lactams in Klebsiella pneumoniae. In the present study, the molecular mechanism of the antibiotic resistance of Klebsiella pneumoniae was investigated and the results indicated involvement of the β-arrestin recruitment-induced β-lactamase signaling pathway. Antimicrobial susceptibility of Klebsiella pneumoniae was assessed using automated systems and extended-spectrum β-lactamase (ESBL) and β-arrestin expression levels in Klebsiella pneumoniae were analyzed by reverse-transcription quantitative PCR. β-lactam resistance in Klebsiella pneumoniae was determined using β-lactam agar screening plates. The results demonstrated that β-arrestin recruitment was increased in Klebsiella pneumoniae with antibiotic resistance (AR-K.P.) compared with that in the native Klebsiella pneumoniae strain (NB-K.P.). Increased production of ESBL was observed in AR-K.P. after treatment with the β-lactam penicillin. Of note, inhibition of β-arrestin recruitment significantly suppressed ESBL expression in AR-K.P. and in addition, genes encoding β-arrestin and ESBL were upregulated in Klebsiella pneumoniae. Restoration of endogenous β-arrestin markedly increased antibiotic resistance of Klebsiella pneumoniae to β-lactam. Knockdown of endogenous β-arrestin downregulated antibiotic resistance genes and promoted the inhibitory effects of β-lactam antibiotic treatment on Klebsiella pneumoniae growth. In conclusion, the present study identified that β-arrestin recruitment was associated with growth and resistance to β-lactams, which suggested that β-arrestin regulating ESBL expression may be a potential target for addressing antibiotic resistance to β-lactams in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Jiang Wei
- Department of Infectious Disease, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Yang Wenjie
- Department of Infectious Disease, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Liu Ping
- Laboratory of Microbiology of Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Wang Na
- Department of Transplantation, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Ren Haixia
- Department of Pharmacy, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Zhao Xuequn
- Department of Infectious Disease, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
56
|
Zhang Z, Han X, Wang Z, Yang Z, Zhang W, Li J, Yang H, Ling XY, Xing B. A live bacteria SERS platform for the in situ monitoring of nitric oxide release from a single MRSA. Chem Commun (Camb) 2018; 54:7022-7025. [DOI: 10.1039/c8cc02855a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A live bacteria SERS platform is developed for the precise and sensitive monitoring of nitric oxide release from a single MRSA.
Collapse
Affiliation(s)
- Zhijun Zhang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Zhe Yang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Juan Li
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| |
Collapse
|
57
|
Kitayama Y, Isomura M. Gas-stimuli-responsive molecularly imprinted polymer particles with switchable affinity for target protein. Chem Commun (Camb) 2018; 54:2538-2541. [DOI: 10.1039/c7cc09889h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecularly imprinted polymer particles bearing gas-responsive property was successfully prepared using functional initiator.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Manabu Isomura
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
58
|
Combined photodynamic and antibiotic therapy for skin disorder via lipase-sensitive liposomes with enhanced antimicrobial performance. Biomaterials 2017; 141:243-250. [DOI: 10.1016/j.biomaterials.2017.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/25/2017] [Accepted: 07/05/2017] [Indexed: 11/18/2022]
|
59
|
Wei Y, Zeng Q, Hu Q, Wang M, Tao J, Wang L. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens Bioelectron 2017; 99:136-141. [PMID: 28750337 DOI: 10.1016/j.bios.2017.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/08/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN)6]3-/4-. The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL-1 to 10μmolL-1 with a detection limit of 0.012 μmolL-1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications.
Collapse
Affiliation(s)
- Yubo Wei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
60
|
Zheng W, Jia Y, Chen W, Wang G, Guo X, Jiang X. Universal Coating from Electrostatic Self-Assembly to Prevent Multidrug-Resistant Bacterial Colonization on Medical Devices and Solid Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21181-21189. [PMID: 28581702 DOI: 10.1021/acsami.7b05230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We provide a facile and scalable strategy for preparing gold nanoparticles (AuNPs)-based antibacterial coating on a variety of surfaces through electrostatic self-assembly. AuNPs conjugated with 4,6-diamino-2-pyrimidinethiol (DAPT, not antibacterial by itself), AuDAPT, can form stable coating on different substrates made from polyethylene (PS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polydimethylsiloxane (PDMS), and SiO2 in one step. Such a coating can efficiently eradicate pathogenic Gram-negative bacteria and even multidrug-resistant (MDR) mutants without causing any side-effect such as cytotoxicity, hemolysis, coagulation, and inflammation. We show that immobilized AuDAPT, instead of AuDAPT released from the substrate, is responsible for killing the bacteria and that the antimicrobial components do not enter into the environment to cause secondary contamination to breed drug resistance. Advantages for such coating include applicability on a broad range of surfaces, low cost, stability, high antibacterial efficiency, good biocompatibility, and low risk in antibiotics pollution; these advantages may be particularly helpful in preventing infections that involve medical devices.
Collapse
Affiliation(s)
- Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology & University of the Chinese Academy of Sciences , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yuexiao Jia
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology & University of the Chinese Academy of Sciences , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Wenwen Chen
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology & University of the Chinese Academy of Sciences , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guanlin Wang
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology & University of the Chinese Academy of Sciences , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xuefeng Guo
- Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology & University of the Chinese Academy of Sciences , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
61
|
Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS NANO 2017; 11:5737-5745. [PMID: 28531351 DOI: 10.1021/acsnano.7b01240] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Remedying a multidrug-resistant (MDR) bacteria wound infection is a major challenge due to the inability of conventional antibiotics to treat such infections against MDR bacteria. Thus, developing wound dressings for wound care, particularly against MDR bacteria, is in huge demand. Here, we present a strategy in designing wound dressings: we use a small molecule (6-aminopenicillanic acid, APA)-coated gold nanoparticles (AuNPs) to inhibit MDR bacteria. We dope the AuNPs into electrospun fibers of poly(ε-caprolactone) (PCL)/gelatin to yield materials that guard against wound infection by MDR bacteria. We systematically evaluate the bactericidal activity of the AuNPs and wound-healing capability via the electrospun scaffold. APA-modified AuNPs (Au_APA) exhibit remarkable antibacterial activity even when confronted with MDR bacteria. Meanwhile, Au_APA has outstanding biocompatibility. Moreover, an in vivo bacteria-infected wound-healing experiment indicates that it has a striking ability to remedy a MDR bacteria wound infection. This wound scaffold can assist the wound care for bacterial infections.
Collapse
Affiliation(s)
- Xinglong Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu, Sichuan 610041, China
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Junchuan Yang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Le Wang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Bei Ran
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Yuexiao Jia
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Lingmin Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Guang Yang
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Huawu Shao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu, Sichuan 610041, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , ZhongGuanCun BeiYiTiao, Beijing 100190, China
| |
Collapse
|
62
|
Tian J, Zhang J, Yang J, Du L, Geng H, Cheng Y. Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18512-18520. [PMID: 28516770 DOI: 10.1021/acsami.7b03906] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The emergence of drug-resistant bacteria severely challenges the antimicrobial agents and antibacterial strategy. Here, we demonstrate a novel, simple, and highly efficient combination therapy strategy by direct combinations of cationic conjugated polymers (CCPs) with polypeptide antibiotics against Gram-negative and Gram-positive bacteria based on a synergistic antibacterial effect. The combination therapy method enhances the antibacterial efficacy with a significantly reduced antibiotic dosage. Also, the highly efficient and synergistic killing of drug-resistant bacteria is realized. Using combinations of CCPs and antibiotics to show increased antibacterial activity, this strategy will provide a much wider scope of the discovery of efficient antibacterial systems than that of antibiotic-antibiotic combinations. The proposed combination therapy method provides a universal and powerful platform for the treatment of pathogens, in particular, the drug-resistant bacteria, and also opens a new way for the development of efficient antibacterial systems.
Collapse
Affiliation(s)
- Jingxiao Tian
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Jiangtao Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Lingyun Du
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Hao Geng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| |
Collapse
|
63
|
Becher TB, Ornelas C. Nonswellable Injectable Hydrogels Self-Assembled Through Non-Covalent Interactions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tiago B. Becher
- Institute of Chemistry; University of Campinas, UNICAMP; Campinas 13083-970, SP Brazil
| | - Catia Ornelas
- Institute of Chemistry; University of Campinas, UNICAMP; Campinas 13083-970, SP Brazil
| |
Collapse
|
64
|
Zhang C, Ying Z, Luo Q, Du H, Wang Y, Zhang K, Yan S, Li X, Shen Z, Zhu W. Poly(hexamethylene guanidine)-based hydrogels with long lasting antimicrobial activity and low toxicity. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Zhimin Ying
- Department of Orthopedics; 2nd Affiliated Hospital, School of Medicine, Zhejiang University; #88 Jie Fang Road Hangzhou 310009 People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
- The First Affiliated Hospital; College of Medicine, Zhejiang University; Hangzhou 310003 People's Republic of China
| | - Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Kai Zhang
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Shigui Yan
- Department of Orthopedics; 2nd Affiliated Hospital, School of Medicine, Zhejiang University; #88 Jie Fang Road Hangzhou 310009 People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University; Hangzhou 310027 People's Republic of China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province; Hangzhou 310027 China
| |
Collapse
|
65
|
Hu J, Quan Y, Lai Y, Zheng Z, Hu Z, Wang X, Dai T, Zhang Q, Cheng Y. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 2017; 247:145-152. [DOI: 10.1016/j.jconrel.2017.01.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/05/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023]
|
66
|
Liu R, Cui Q, Wang C, Wang X, Yang Y, Li L. Preparation of Sialic Acid-Imprinted Fluorescent Conjugated Nanoparticles and Their Application for Targeted Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3006-3015. [PMID: 28051302 DOI: 10.1021/acsami.6b14320] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescent conjugated polymer nanoparticles have attracted great interest for applications in biological imaging owing to their excellent optical properties and low cytotoxicity; however, a lack of effective targeting limits their use. In this work, we design and synthesize a fluorescent conjugated polymer modified with a phenylboronic acid group, which can covalently bind with cis-diol-containing compounds, such as sialic acid (SA), by forming a cyclic ester. However, the obtained conjugated polymer nanoparticles failed to discriminate between cancer cells, with or without SA overexpressed surfaces (such as DU 145 and HeLa cells, respectively). To address this problem, we introduced SA template molecules into the polymer nanoparticles during the reprecipitation process and then removed the template by adjusting the solution pH. The SA-imprinted nanoparticles showed a uniform size around 30 nm and enhanced fluorescence intensity compared with unmodified polymer nanoparticles. The SA-imprinted nanoparticles exhibited selective staining for DU 145 cancer cells and did not enter HeLa cells even after long incubation times. Thus, we present a facile method to prepare fluorescent nanoparticles for applications in targeted cancer cell imaging.
Collapse
Affiliation(s)
- Ronghua Liu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qianling Cui
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Chun Wang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xiaoyu Wang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yu Yang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Lidong Li
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
67
|
Liu D, Ulbricht M. A highly selective protein adsorber via two-step surface-initiated molecular imprinting utilizing a multi-functional polymeric scaffold on a macroporous cellulose membrane. RSC Adv 2017. [DOI: 10.1039/c6ra28403e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein-imprinted cellulose membranes with tailored binding selectivity have been prepared by two-step surface grafting based on an orthogonal photochemical initiation.
Collapse
Affiliation(s)
- Dejing Liu
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| |
Collapse
|
68
|
Liu L, Yang K, Zhang L, Zhang Y. Protein-imprinted material for the treatment of antibiotic-resistant bacteria. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1207-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|