51
|
Kim I, Park S, Hong S. Functionalization of Pyridinium Derivatives with 1,4-Dihydropyridines Enabled by Photoinduced Charge Transfer. Org Lett 2020; 22:8730-8734. [DOI: 10.1021/acs.orglett.0c03347] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Inwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| |
Collapse
|
52
|
Suga T, Takahashi Y, Ukaji Y. One‐Shot Radical Cross Coupling Between Benzyl Alcohols and Alkenyl Halides Using Ni/Ti/Mn System. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| | - Yuuki Takahashi
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| | - Yutaka Ukaji
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University, Kakuma Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
53
|
Wang P, Chen X, Luo X, Wang K, Liang F. Late-Stage Alkylation of N-Containing Heteroarenes Enabled by Homolysis of Alkyl-1,4-dihydropyridines under Blue LED Irradiation. Synlett 2020. [DOI: 10.1055/a-1294-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractAlkylated heteroarenes are widely found in bioactive molecules and pharmaceuticals. Therefore, there is great interest in developing a chemoselective alkylation of heteroarenes under mild conditions, particularly during a late-stage functionalization step for the purpose of rapid derivatization. Herein, we introduce an efficient visible-light-promoted C–H alkylation of nitrogen-containing heteroarenes by using C4-alkyl 1,4-dihydropyridines (DHPs) as radical precursors at ambient temperatures. A broad scope of heteroarenes, such as 4-hydroxyquinazoline and its derivatives, including those bearing electron-donating or electron-withdrawing groups, can be successfully alkylated in good yields by using various C4-alkyl DHPs.
Collapse
Affiliation(s)
- Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University
| | - Xiaoping Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and College of Physics and Optoelectronic Engineering Shenzhen University
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University
| | - Kaiqian Wang
- College of Chemistry & Chemical Engineering, Wuhan University of Science and Technology
| | - Feng Liang
- College of Chemistry & Chemical Engineering, Wuhan University of Science and Technology
| |
Collapse
|
54
|
Maity B, Zhu C, Yue H, Huang L, Harb M, Minenkov Y, Rueping M, Cavallo L. Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C sp3-H Bonds. J Am Chem Soc 2020; 142:16942-16952. [PMID: 32900195 DOI: 10.1021/jacs.0c05010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report here a comprehensive computational analysis of the mechanisms of the photoredox-nickel-HAT (HAT: hydrogen atom transfer) catalyzed arylation and alkylation of α-amino Csp3-H bonds developed by MacMillan and co-workers. Different alternatives for the three catalytic cycles were tested to identify unambiguously the operative reaction mechanism. Our analysis indicated that the IrIII photoredox catalyst, upon irradiation with visible light, can be either reduced or oxidized by the HAT and nickel catalysts, respectively, indicating that both reductive and oxidative quenching catalytic cycles can be operative, although the reductive cycle is favored. Our analysis of the HAT cycle indicated that activation of a α-amino Csp3-H bond of the substrate is facile and selective relative to activation of a β-amino Csp3-H bond. Finally, our analysis of the nickel cycle indicated that both arylation and alkylation of α-amino Csp3-H bonds occurs via the sequence of nickel oxidation states NiI-NiII-NiI-NiIII and of elementary steps: radical addition-SET-oxidative addition-reductive elimination.
Collapse
Affiliation(s)
- Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| | - Chen Zhu
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| | - Huifeng Yue
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| | - Long Huang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| | - Yury Minenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
55
|
Wang Q, Duan J, Tang P, Chen G, He G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9813-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
56
|
Shen GB, Xie L, Yu HY, Liu J, Fu YH, Yan M. Theoretical investigation on the nature of 4-substituted Hantzsch esters as alkylation agents. RSC Adv 2020; 10:31425-31434. [PMID: 35520635 PMCID: PMC9056415 DOI: 10.1039/d0ra06745h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, a variety of 4-substituted Hantzsch esters (XRH) with different structures have been widely researched as alkylation reagents in chemical reactions, and the key step of the chemical process is the elementary step of XRH˙+ releasing R˙. The purpose of this work is to investigate the essential factors which determine whether or not an XRH is a great alkylation reagent using density functional theory (DFT). This study shows that the ability of an XRH acting as an alkylation reagent can be reasonably estimated by its ΔG≠RD(XRH˙+) value, which can be conveniently obtained through DFT computations. Moreover, the data also show that ΔG≠RD(XRH˙+) has no simple correlation with the structural features of XRH, including the electronegativity of the R substituent group and the magnitude of steric resistance; therefore, it is difficult to judge whether an XRH can provide R˙ solely by experience. Thus, these results are helpful for chemists to design 4-substituted Hantzsch esters (XRH) with novel structures and to guide the application of XRH as a free radical precursor in organic synthesis. This work presents a convenient computation method to estimate whether a 4-substituted Hantzsch ester can be a good alkyl radical donor.![]()
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Jie Liu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University Rizhao Shandong 276800 P. R. China
| |
Collapse
|
57
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel-Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N-Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020; 59:13484-13489. [PMID: 32374951 PMCID: PMC7397811 DOI: 10.1002/anie.202002271] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Indexed: 12/11/2022]
Abstract
While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low-abundance starting materials. In contrast, amide formation is the most-used bond-construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N-alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2-pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Mary P. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| |
Collapse
|
58
|
He XK, Lu J, Zhang AJ, Zhang QQ, Xu GY, Xuan J. BI-OAc-Accelerated C3-H Alkylation of Quinoxalin-2(1 H)-ones under Visible-Light Irradiation. Org Lett 2020; 22:5984-5989. [PMID: 32705873 DOI: 10.1021/acs.orglett.0c02080] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient, photoredox-catalyst-free radical alkylation of quinoxalin-2(1H)-ones has been described. This reaction utilizes 4-alkyl-1,4-dihydropyridines (R-DHPs) as alkyl radical precursors and acetoxybenziodoxole (BI-OAc) as an electron acceptor to undergo single-electron transfer with photoexcited R-DHPs. The benign conditions allow for good compatibility in the scope of both quinoxalin-2(1H)-ones and R-DHPs. The synthetic value of the protocol was also demonstrated by the successful functionalization of natural products and drug-based complex molecules.
Collapse
Affiliation(s)
- Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ai-Jun Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qing-Qing Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
59
|
Wang D, Malmberg R, Pernik I, Prasad SKK, Roemer M, Venkatesan K, Schmidt TW, Keaveney ST, Messerle BA. Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chem Sci 2020; 11:6256-6267. [PMID: 32953021 PMCID: PMC7480183 DOI: 10.1039/d0sc02703k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
While dual photocatalysis-transition metal catalysis strategies are extensively reported, the majority of systems feature two separate catalysts, limiting the potential for synergistic interactions between the catalytic centres. In this work we synthesised a series of tethered dual catalysts allowing us to investigate this underexplored area of dual catalysis. In particular, Ir(i) or Ir(iii) complexes were tethered to a BODIPY photocatalyst through different tethering modes. Extensive characterisation, including transient absorption spectroscopy, cyclic voltammetry and X-ray absorption spectroscopy, suggest that there are synergistic interactions between the catalysts. The tethered dual catalysts were more effective at promoting photocatalytic oxidation and Ir-catalysed dihydroalkoxylation, relative to the un-tethered species, highlighting that increases in both photocatalysis and Ir catalysis can be achieved. The potential of these catalysts was further demonstrated through novel sequential reactivity, and through switchable reactivity that is controlled by external stimuli (heat or light).
Collapse
Affiliation(s)
- Danfeng Wang
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Robert Malmberg
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Indrek Pernik
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Shyamal K K Prasad
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Max Roemer
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Koushik Venkatesan
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Timothy W Schmidt
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Sinead T Keaveney
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Barbara A Messerle
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| |
Collapse
|
60
|
Zhu DL, Xu R, Wu Q, Li HY, Lang JP, Li HX. Nickel-Catalyzed Sonogashira C(sp)–C(sp2) Coupling through Visible-Light Sensitization. J Org Chem 2020; 85:9201-9212. [DOI: 10.1021/acs.joc.0c01177] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ruijie Xu
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
61
|
Li J, Yang XE, Wang SL, Zhang LL, Zhou XZ, Wang SY, Ji SJ. Visible-Light-Promoted Cross-Coupling Reactions of 4-Alkyl-1,4-dihydropyridines with Thiosulfonate or Selenium Sulfonate: A Unified Approach to Sulfides, Selenides, and Sulfoxides. Org Lett 2020; 22:4908-4913. [DOI: 10.1021/acs.orglett.0c01776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Er Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shan-Le Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Long-Long Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiao-Zhou Zhou
- Suzhou High School of Jiangsu Province, Suzhou 215000, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
62
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel‐Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N‐Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Mary P. Watson
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Daniel J. Weix
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
63
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
64
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
65
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
66
|
Zhu C, Yue H, Chu L, Rueping M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem Sci 2020; 11:4051-4064. [PMID: 32864080 PMCID: PMC7424772 DOI: 10.1039/d0sc00712a] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Cascade reactions that produce multiple chemical bonds in one synthetic operation are important in the efficient construction of complex molecules. In addition, photoredox and nickel dual catalysis opens a new and powerful avenue for transition-metal-catalyzed cross-coupling reactions. By combining these two concepts, photoredox and nickel dual-catalyzed cascade reactions have been recently established, and they provide an efficient and mild method for accessing a series of valuable organic compounds.
Collapse
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center , KCC , King Abdullah University of Science and Technology , KAUST , Thuwal 23955-6900 , Saudi Arabia .
| | - Huifeng Yue
- KAUST Catalysis Center , KCC , King Abdullah University of Science and Technology , KAUST , Thuwal 23955-6900 , Saudi Arabia .
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , Center for Advanced Low-Dimension Materials , College of Chemistry , Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China .
| | - Magnus Rueping
- KAUST Catalysis Center , KCC , King Abdullah University of Science and Technology , KAUST , Thuwal 23955-6900 , Saudi Arabia .
| |
Collapse
|
67
|
Zhang S, Li Y, Wang J, Hao X, Jin K, Zhang R, Duan C. A photocatalyst-free photo-induced denitroalkylation of β-nitrostyrenes with 4-alkyl substituted Hantzsch esters at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
68
|
Capaldo L, Ravelli D. The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luca Capaldo
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| | - Davide Ravelli
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
69
|
Angnes RA, Potnis C, Liang S, Correia CRD, Hammond GB. Photoredox-Catalyzed Synthesis of Alkylaryldiazenes: Formal Deformylative C-N Bond Formation with Alkyl Radicals. J Org Chem 2020; 85:4153-4164. [PMID: 32056435 DOI: 10.1021/acs.joc.9b03341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diazenes are valuable compounds that have found broad applicability because of their optical and biological properties. We report the synthesis of alkylaryldiazenes via formal, photoredox-catalyzed, deformylative C-N bond formation. The procedure employs dihydropyridines for the generation of alkyl radicals, which are then trapped by diazonium salts and reduced to the corresponding diazenes. Control experiments were performed to confirm the involvement of radicals in the mechanism. The reaction can be carried out at room temperature and employs readily available reagents; the mild conditions allowed the use of highly functionalized substrates. There was no observed tautomerization of the diazenes to the corresponding arylhydrazones.
Collapse
Affiliation(s)
- Ricardo A Angnes
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States.,Chemistry Institute, University of Campinas, C.P. 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Chinmay Potnis
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Shengzong Liang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Carlos Roque D Correia
- Chemistry Institute, University of Campinas, C.P. 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
70
|
Guo Q, Peng Q, Chai H, Huo Y, Wang S, Xu Z. Visible-light promoted regioselective amination and alkylation of remote C(sp 3)-H bonds. Nat Commun 2020; 11:1463. [PMID: 32193371 PMCID: PMC7081228 DOI: 10.1038/s41467-020-15167-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 11/10/2022] Open
Abstract
The C-N cross coupling reaction has always been a fundamental task in organic synthesis. However, the direct use of N-H group of aryl amines to generate N-centered radicals which would couple with alkyl radicals to construct C-N bonds is still rare. Here we report a visible light-promoted C-N radical cross coupling for regioselective amination of remote C(sp3)-H bonds. Under visible light irradiation, the N-H groups of aryl amines are converted to N-centered radicals, and are then trapped by alkyl radicals, which are generated from Hofmann-Löffler-Freytag (HLF) type 1,5-hydrogen atom transfer (1,5-HAT). With the same strategy, the regioselective C(sp3)-C(sp3) cross coupling is also realized by using alkyl Hantzsch esters (or nitrile) as radical alkylation reagents. Notably, the α-C(sp3)-H of tertiary amines can be directly alkylated to form the C(sp3)-C(sp3) bonds via C(sp3)-H − C(sp3)-H cross coupling through the same photoredox pathway. C-N bond forming is an established strategy to form amines, which are quintessential in chemical synthesis and in nature. Here, the authors report three classes of photoredox reactions, involving C(sp3)-N coupling between N-centered radicals and alkyl radicals and C(sp3)- C(sp3) coupling via C(sp3)-H alkylation.
Collapse
Affiliation(s)
- Quanping Guo
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Qiang Peng
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongli Chai
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Yumei Huo
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Shan Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.
| |
Collapse
|
71
|
Zhu D, Wu Q, Li H, Li H, Lang J. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry 2020; 26:3484-3488. [DOI: 10.1002/chem.201905281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Da‐Liang Zhu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
72
|
Al‐Zoubi RM, Al‐Jammal WK, McDonald R. Microwave‐Assisted/Pd‐Catalyzed Domino Synthesis of 2,3,4‐Triiodoanisole from 3‐Anisic Acid: A Superior Substrate for Regioselective Synthesis of 2,3‐Diiodobiphenyls. ChemistrySelect 2020. [DOI: 10.1002/slct.202000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Raed M. Al‐Zoubi
- Department of ChemistryJordan University of Science and Technology, P.O.Box 3030 Irbid 22110 Jordan
| | - Walid K. Al‐Jammal
- Department of ChemistryJordan University of Science and Technology, P.O.Box 3030 Irbid 22110 Jordan
| | - Robert McDonald
- Department of Chemistry, Gunning-Lemieux Chemistry CentreUniversity of Alberta, Edmonton Alberta T6G2G2 Canada
| |
Collapse
|
73
|
Du HW, Sun J, Gao QS, Wang JY, Wang H, Xu Z, Zhou MD. Synthesis of Monofluoroalkenes through Visible-Light-Promoted Defluorinative Alkylation of gem-Difluoroalkenes with 4-Alkyl-1,4-dihydropyridines. Org Lett 2020; 22:1542-1546. [DOI: 10.1021/acs.orglett.0c00134] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hai-Wu Du
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Jing Sun
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Qi-Sheng Gao
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Jing-Yun Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| |
Collapse
|
74
|
Zhang L, Wu Z, Jiao L. Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4‐Phenylpyridine. Angew Chem Int Ed Engl 2020; 59:2095-2099. [DOI: 10.1002/anie.201912564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhong‐Qian Wu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
75
|
Zhao X, Li B, Xia W. Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl2·DME. Org Lett 2020; 22:1056-1061. [DOI: 10.1021/acs.orglett.9b04595] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinxin Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
76
|
Konev MO, Cardinale L, Jacobi von Wangelin A. Catalyst-Free N-Deoxygenation by Photoexcitation of Hantzsch Ester. Org Lett 2020; 22:1316-1320. [DOI: 10.1021/acs.orglett.9b04632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikhail O. Konev
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | | |
Collapse
|
77
|
Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Cascade Cross-Coupling of Dienes: Photoredox and Nickel Dual Catalysis. Angew Chem Int Ed Engl 2020; 59:457-464. [PMID: 31778289 PMCID: PMC6973272 DOI: 10.1002/anie.201911109] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Chemical transformations based on cascade reactions have the potential to simplify the preparation of diverse and architecturally complex molecules dramatically. Herein, we disclose an unprecedented and efficient method for the cross-coupling of radical precursors, dienes, and electrophilic coupling partners via a photoredox- and nickel-enabled cascade cross-coupling process. The cascade reaction furnishes a diverse array of saturated carbo- and heterocyclic scaffolds, thus providing access to a quick gain in C-C bond saturation.
Collapse
Affiliation(s)
- Long Huang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Chen Zhu
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Liang Yi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| |
Collapse
|
78
|
Liao Y, Ran Y, Liu G, Liu P, Liu X. Transition-metal-free radical relay cyclization of vinyl azides with 1,4-dihydropyridines involving a 1,5-hydrogen-atom transfer: access to α-tetralone scaffolds. Org Chem Front 2020. [DOI: 10.1039/d0qo01042a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The remote C(sp3)–H functionalization enabled by a radical-mediated 1,5-hydrogen-atom transfer (HAT) process using vinyl azides and 1,4-dihydropyridines as precursors has been described.
Collapse
Affiliation(s)
- Yangzhen Liao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Yu Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Guijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| |
Collapse
|
79
|
Liu L, Jiang P, Liu Y, Du H, Tan J. Direct radical alkylation and acylation of 2H-indazoles using substituted Hantzsch esters as radical reservoirs. Org Chem Front 2020. [DOI: 10.1039/d0qo00507j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A platform approach for the direct synthesis of 3-substituted 2H-indazole derivatives has been developed using a Ag(i)/Na2S2O8 system.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Pengxing Jiang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavour Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Hongguang Du
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| |
Collapse
|
80
|
Schwarz JL, Huang HM, Paulisch TO, Glorius F. Dialkylation of 1,3-Dienes by Dual Photoredox and Chromium Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04222] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- J. Luca Schwarz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tiffany O. Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
81
|
Zhang L, Wu Z, Jiao L. Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4‐Phenylpyridine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhong‐Qian Wu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
82
|
González MJ, Breit B. Visible-Light-Driven Intermolecular Reductive Ene-Yne Coupling by Iridium/Cobalt Dual Catalysis for C(sp 3 )-C(sp 2 ) Bond Formation. Chemistry 2019; 25:15746-15750. [PMID: 31549749 PMCID: PMC6916364 DOI: 10.1002/chem.201903708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/19/2019] [Indexed: 02/02/2023]
Abstract
A new methodology to form C(sp3 )-C(sp2 ) bonds by visible-light-driven intermolecular reductive ene-yne coupling has been successfully developed. The process relies on the ability of the Hantzsch ester to contribute in both SET and HAT processes through a unified cobalt and iridium catalytic system. This procedure avoids the use of stoichiometric amounts of reducing metallic reagents, which is translated into high functional-group tolerance and atom economy.
Collapse
Affiliation(s)
- María J. González
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Bernhard Breit
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
83
|
Gazi S, Đokić M, Chin KF, Ng PR, Soo HS. Visible Light-Driven Cascade Carbon-Carbon Bond Scission for Organic Transformations and Plastics Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902020. [PMID: 31871870 PMCID: PMC6918108 DOI: 10.1002/advs.201902020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Significant efforts are devoted to developing artificial photosynthetic systems to produce fuels and chemicals in order to cope with the exacerbating energy and environmental crises in the world now. Nonetheless, the large-scale reactions that are the focus of the artificial photosynthesis community, such as water splitting, are thus far not economically viable, owing to the existing, cheaper alternatives to the gaseous hydrogen and oxygen products. As a potential substitute for water oxidation, here, a unique, visible light-driven oxygenation of carbon-carbon bonds for the selective transformation of 32 unactivated alcohols, mediated by a vanadium photocatalyst under ambient, atmospheric conditions is presented. Furthermore, since the initial alcohol products remain as substrates, an unprecedented photodriven cascade carbon-carbon bond cleavage of macromolecules can be performed. Accordingly, hydroxyl-terminated polymers such as polyethylene glycol, its block co-polymer with polycaprolactone, and even the non-biodegradable polyethylene can be repurposed into fuels and chemical feedstocks, such as formic acid and methyl formate. Thus, a distinctive approach is presented to integrate the benefits of photoredox catalysis into environmental remediation and artificial photosynthesis.
Collapse
Affiliation(s)
- Sarifuddin Gazi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
- Department of ChemistrySchool of Applied SciencesUniversity of Science and TechnologyTechno City, Kling Road, Baridua 9th MileRi BhoiMeghalaya793101India
| | - Miloš Đokić
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Kek Foo Chin
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Pei Rou Ng
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
- Solar Fuels LaboratoryNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
84
|
Darvasiová D, Šoral M, Puškárová I, Dvoranová D, Vénosová B, Bučinský L, Zalibera M, Dujnič V, Dobrov A, Schwalbe M, Arion VB, Rapta P. Spectroelectrochemical, photochemical and theoretical study of octaazamacrocyclic nickel(II) complexes exhibiting unusual solvent-dependent deprotonation of methylene group. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Cascade Cross‐Coupling of Dienes: Photoredox and Nickel Dual Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Long Huang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Liang Yi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
86
|
Liang S, Angnes RA, Potnis CS, Hammond GB. Photoredox catalyzed C(sp3) C(sp) coupling of dihydropyridines and alkynylbenziodoxolones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Pezzetta C, Bonifazi D, Davidson RWM. Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Org Lett 2019; 21:8957-8961. [DOI: 10.1021/acs.orglett.9b03338] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cristofer Pezzetta
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
- School of Chemistry, Cardiff University, Park Place Main Building, Cardiff CF10 3AT, United Kingdom
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Park Place Main Building, Cardiff CF10 3AT, United Kingdom
| | - Robert W. M. Davidson
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| |
Collapse
|
88
|
Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. Histidine-Specific Peptide Modification via Visible-Light-Promoted C–H Alkylation. J Am Chem Soc 2019; 141:18230-18237. [DOI: 10.1021/jacs.9b09127] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoping Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xueyi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
89
|
De Abreu M, Belmont P, Brachet E. Synergistic Photoredox/Transition-Metal Catalysis for Carbon-Carbon Bond Formation Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901146] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maxime De Abreu
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
90
|
Lan G, Quan Y, Wang M, Nash GT, You E, Song Y, Veroneau SS, Jiang X, Lin W. Metal-Organic Layers as Multifunctional Two-Dimensional Nanomaterials for Enhanced Photoredox Catalysis. J Am Chem Soc 2019; 141:15767-15772. [PMID: 31550885 DOI: 10.1021/jacs.9b08956] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-organic layers (MOLs) have recently emerged as a novel class of molecular two-dimensional (2D) materials with significant potential for catalytic applications. Herein we report the design of a new multifunctional MOL, Hf12-Ir-Ni, by laterally linking Hf12 secondary building units (SBUs) with photosensitizing Ir(DBB)[dF(CF3)ppy]2+ [DBB-Ir-F, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine] bridging ligands and vertically terminating the SBUs with catalytic Ni(MBA)Cl2 [MBA = 2-(4'-methyl-[2,2'-bipyridin]-4-yl)acetate] capping agents. Hf12-Ir-Ni was synthesized in a bottom-up approach and characterized by TEM, AFM, PXRD, TGA, NMR, ICP-MS, UV-vis, and luminescence spectroscopy. The proximity between photosensitizing Ir centers and catalytic Ni centers (∼0.85 nm) in Hf12-Ir-Ni facilitates single electron transfer, leading to a 15-fold increase in photoredox reactivity. Hf12-Ir-Ni was highly effective in catalytic C-S, C-O, and C-C cross-coupling reactions with broad substrate scopes and turnover numbers of ∼4500, ∼1900, and ∼450, respectively.
Collapse
Affiliation(s)
- Guangxu Lan
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Yangjian Quan
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Maolin Wang
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Geoffrey T Nash
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Eric You
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Yang Song
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Samuel S Veroneau
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Xiaomin Jiang
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wenbin Lin
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
91
|
Zhang K, Lu L, Jia Y, Wang Y, Lu F, Pan F, Xiao W. Exploration of a Chiral Cobalt Catalyst for Visible‐Light‐Induced Enantioselective Radical Conjugate Addition. Angew Chem Int Ed Engl 2019; 58:13375-13379. [DOI: 10.1002/anie.201907478] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yue Jia
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fu‐Dong Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fangfang Pan
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
92
|
Zhang K, Lu L, Jia Y, Wang Y, Lu F, Pan F, Xiao W. Exploration of a Chiral Cobalt Catalyst for Visible‐Light‐Induced Enantioselective Radical Conjugate Addition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yue Jia
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fu‐Dong Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fangfang Pan
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
93
|
Nakajima K, Zhang Y, Nishibayashi Y. Alkylation Reactions of Azodicarboxylate Esters with 4-Alkyl-1,4-Dihydropyridines under Catalyst-Free Conditions. Org Lett 2019; 21:4642-4645. [PMID: 31145630 DOI: 10.1021/acs.orglett.9b01537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction of alkyl groups on azodicarboxylate esters is an important method to prepare alkyl amine derivatives. Herein, we report reactions of 4-alkyl-1,4-dihydropyridines as alkylation reagents with di- tert-butyl azodicarboxylate to prepare alkyl amine derivatives under heating conditions. The alkylation reactions via C-C bond cleavage of the dihydropyridines are achieved in the absence of catalysts and additives.
Collapse
Affiliation(s)
- Kazunari Nakajima
- Frontier Research Center for Energy and Resources, School of Engineering , The University of Tokyo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yulin Zhang
- Department of Systems Innovation, School of Engineering , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
94
|
Ni S, Li CX, Mao Y, Han J, Wang Y, Yan H, Pan Y. Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation. SCIENCE ADVANCES 2019; 5:eaaw9516. [PMID: 31259244 PMCID: PMC6598763 DOI: 10.1126/sciadv.aaw9516] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/17/2019] [Indexed: 05/05/2023]
Abstract
The reductive cross-coupling of sp3-hybridized carbon centers represents great synthetic values and insurmountable challenges. In this work, we report a nickel-catalyzed deaminative cross-electrophile coupling reaction to construct C(sp)─C(sp3), C(sp2)─C(sp3), and C(sp3)─C(sp3) bonds. A wide range of coupling partners including aryl iodides, bromoalkynes, or alkyl bromides are stitched with alkylpyridinium salts that derived from the corresponding primary amines. The advantages of this methodology are showcased in the two-step synthesis of the key lactonic moiety of (+)-compactin and (+)-mevinolin. The one-pot procedure without isolation of alkylpyridinium tetrafluoroborate salt is also proven to be successful. This cross-coupling strategy of two electrophiles provides a highly valuable vista for the convenient installation of alkyl substituents and late functionalizations of sp3 carbons.
Collapse
Affiliation(s)
| | | | | | - Jianlin Han
- Corresponding author. (J.H.); (Y.W.); (H.Y.)
| | - Yi Wang
- Corresponding author. (J.H.); (Y.W.); (H.Y.)
| | - Hong Yan
- Corresponding author. (J.H.); (Y.W.); (H.Y.)
| | | |
Collapse
|
95
|
Ye S, Li X, Xie W, Wu J. Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900396] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
- Department of Chemistry; Fudan University; 2005 Songhu Road 200438 Shanghai China
| |
Collapse
|
96
|
Liang S, Kumon T, Angnes RA, Sanchez M, Xu B, Hammond GB. Synthesis of Alkyl Halides from Aldehydes via Deformylative Halogenation. Org Lett 2019; 21:3848-3854. [PMID: 31050440 PMCID: PMC6525078 DOI: 10.1021/acs.orglett.9b01337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented deformylative halogenation of aldehydes to alkyl halides is presented. Under oxidative conditions, 1,4-dihydropyridine (DHP), derived from an aldehyde, generated a C(sp3)- radical that coupled with a halogen radical that was generated from inexpensive and atom-economical halogen sources (NaBr, NaI, or HCl), to yield an alkyl halide. Because of the mild conditions, a wide range of functional groups were tolerated, and excellent site selectivity was achieved.
Collapse
Affiliation(s)
- Shengzong Liang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tatsuya Kumon
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Ricardo A. Angnes
- Chemistry Institute, State University of Campinas - Unicamp C.P. 6154, CEP.13083-970, Campinas, São Paulo, Brazil
| | - Melissa Sanchez
- California State University Fresno, 2555 East San Ramon Avenue M/S SB70, Fresno, California 93740, United States
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
97
|
Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl Carbon-Carbon Bond Formation by Nickel/Photoredox Cross-Coupling. Angew Chem Int Ed Engl 2019; 58:6152-6163. [PMID: 30291664 PMCID: PMC6551614 DOI: 10.1002/anie.201809431] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/10/2022]
Abstract
The union of photoredox and nickel catalysis has resulted in a renaissance in radical chemistry as well as in the use of nickel-catalyzed transformations, specifically for carbon-carbon bond formation. Collectively, these advances address the longstanding challenge of late-stage cross-coupling of functionalized alkyl fragments. Empowered by the notion that photocatalytically generated alkyl radicals readily undergo capture by Ni complexes, wholly new feedstocks for cross-coupling have been realized. Herein, we highlight recent developments in several types of alkyl cross-couplings that are accessible exclusively through this approach.
Collapse
Affiliation(s)
- John A Milligan
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - James P Phelan
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Shorouk O Badir
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
98
|
Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl‐C‐C‐Bindungsbildung durch Nickel/Photoredox‐Kreuzkupplung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809431] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- John A. Milligan
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - James P. Phelan
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Shorouk O. Badir
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Gary A. Molander
- Department of ChemistryUniversity of PennsylvaniaRoy and Diana Vagelos Laboratories 231 S. 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
99
|
Wu QY, Min QQ, Ao GZ, Liu F. Radical alkylation of para-quinone methides with 4-substituted Hantzsch esters/nitriles via organic photoredox catalysis. Org Biomol Chem 2019; 16:6391-6394. [PMID: 30141823 DOI: 10.1039/c8ob01641k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel photocatalytic protocol is herein described for the preparation of functionalized phenols via radical alkylation of para-quinone methides under transition-metal-free conditions. The reaction is external oxidant free and performed at ambient temperature upon visible light irradiation, allowing the access to various desired products in satisfactory yields. The readily available 4-alkyl-1,4-dihydropyridines serve as the effective alkyl radical precursors.
Collapse
Affiliation(s)
- Qing-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.
| | | | | | | |
Collapse
|
100
|
Chen H, Anand D, Zhou L. Photoredox Defluorinative Alkylation of 1‐Trifluoromethyl Alkenes and 1,3‐Butadienes with 1,4‐Dihydropyridines as Alkylation Reagents. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haoguo Chen
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| | - Devireddy Anand
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| | - Lei Zhou
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| |
Collapse
|