51
|
Yang Y, Zhang K, Yang J, Zhu G, Chen W, Zhang C, Zhou Z, Yi W. Ru(II)-Catalyzed and acidity-controlled tunable [5+1]/[5+2] annulation for building ring-fused quinazolines and 1,3-benzodiazepines. Chem Commun (Camb) 2020; 56:11315-11318. [PMID: 32840534 DOI: 10.1039/d0cc04041j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Ru(ii)-catalyzed tunable [5+1]/[5+2] annulation of N-benzo[d]imidazole indolines with propargyl carbonates has been realized for the divergent synthesis of ring-fused quinazolines and 1,3-benzodiazepines bearing various functional groups. These transformations represent an efficient and practical strategy in constructing complex heterocycles via diversified C-H functionalization. A distinctive acidity-controlled reaction manner has been clarified to account for the chemoselectivity.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Kaixin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Jian Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Guoxun Zhu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Chao Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
52
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006137] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
53
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
54
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020; 59:17049-17054. [DOI: 10.1002/anie.202006137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
55
|
Pang Y, Liu G, Huang C, Yuan X, Li W, Xie J. A Highly Efficient Dimeric Manganese‐Catalyzed Selective Hydroarylation of Internal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Gengtu Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
56
|
Liu T, Yang Y, Wang C. Manganese‐Catalyzed Hydroarylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Liu
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
57
|
Liu T, Yang Y, Wang C. Manganese‐Catalyzed Hydroarylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 59:14256-14260. [DOI: 10.1002/anie.202003830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Ting Liu
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
58
|
Pang Y, Liu G, Huang C, Yuan XA, Li W, Xie J. A Highly Efficient Dimeric Manganese-Catalyzed Selective Hydroarylation of Internal Alkynes. Angew Chem Int Ed Engl 2020; 59:12789-12794. [PMID: 32329559 DOI: 10.1002/anie.202004950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 12/28/2022]
Abstract
We have developed a general and site-predictable manganese-catalyzed hydroarylation of internal alkynes in the presence of water, under an air atmosphere without the involvement of ligand. The unique catalytic feature of this reaction is highlighted by comparison with other widely used transition metal catalysts including palladium, rhodium, nickel, or copper. The simple operation, high efficiency and excellent functional group compatibility make this protocol practical for more than 90 structurally diverse internal alkynes, overcoming the influence of both electronic and steric effect of alkynes. Its exclusive regio- and chemoselectivity originates from the unique reactivity of the manganese-based catalyst towards an inherent double controlled strategy of sterically hindered propargyl alcohols without the installing of external directing groups. Its synthetic robustness and practicality have been illustrated by the concise synthesis of bervastatin, a hypolipidemic drug, and late-stage modification of complex alkynes with precise regioselectivity.
Collapse
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Gengtu Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
59
|
Wang H, Luo H, Zhang ZM, Zheng WF, Yin Y, Qian H, Zhang J, Ma S. Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. J Am Chem Soc 2020; 142:9763-9771. [DOI: 10.1021/jacs.0c02876] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hongwen Luo
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Zhan-Ming Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Yu Yin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| |
Collapse
|
60
|
Li T, Yang Z, Song Z, Chauvin R, Cui X. Rhodium(III)-Catalyzed [4+3] Annulation of N-Aryl-pyrazolidinones and Propargylic Acetates: Access to Benzo[c][1,2]diazepines. Org Lett 2020; 22:4078-4082. [DOI: 10.1021/acs.orglett.0c01139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tingfang Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenyu Song
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Remi Chauvin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
- LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
61
|
Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. Iridium-Catalyzed Cyclative Indenylation and Dienylation through Sequential B(4)–C Bond Formation, Cyclization, and Elimination from o-Carboranes and Propargyl Alcohols. J Am Chem Soc 2020; 142:9890-9895. [DOI: 10.1021/jacs.0c02121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kiun Cheong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
62
|
Zhu C, Kuniyil R, Jei BB, Ackermann L. Domino C–H Activation/Directing Group Migration/Alkyne Annulation: Unique Selectivity by d6-Cobalt(III) Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Becky B. Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
63
|
Chen Z, Kong X, Xu B. Rh(III)‐Catalyzed C−H Acylmethylation of 6‐Arylpurines Using Sulfoxonium Ylides as Carbene Precursors. ChemistrySelect 2020. [DOI: 10.1002/slct.201904754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhibing Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
64
|
Chen Y, Hu L, Liang L, Guo F, Yang Y, Zhou B. Ruthenium(II)-Catalyzed Regioselective Ortho C-H Allenylation of Electron-Rich Aniline and Phenol Derivatives. J Org Chem 2020; 85:2048-2058. [PMID: 31913039 DOI: 10.1021/acs.joc.9b02787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ortho C-H allenylation of electron-rich benzene derivatives with propargylic alcohol derivatives has been a challenge, due to their great innate tendency toward a para C-H allenylation via an SN2'-type substitution process. Here, we described a Ru(II)-catalyzed regioselective ortho C-H allenylation of electron-rich aniline and phenol derivatives, which allows the previously challenging synthesis of a broad range of ortho allenylated aniline and phenol derivatives. More significantly, highly optically active fully substituted allenes can also be prepared with high enantiomeric excess via a highly efficient chirality transfer. No para C-H allenylation product was observed in the current catalytic system, thus showing a complete reversibility of the regioselectivity.
Collapse
Affiliation(s)
- Yanni Chen
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , China.,College of Pharmacy , Nanchang University , Nanchang 330006 , China
| | - Liuyu Hu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , China.,College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210013 , China
| | - Liuchun Liang
- Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Fujiang Guo
- Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Yaxi Yang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , China
| | - Bing Zhou
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , China.,Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| |
Collapse
|
65
|
Kong X, Xu B. OrthoC H amidations enabled by a recyclable manganese-ionic liquid catalytic system. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
66
|
Cembellín S, Dalton T, Pinkert T, Schäfers F, Glorius F. Highly Selective Synthesis of 1,3-Enynes, Pyrroles, and Furans by Manganese(I)-Catalyzed C–H Activation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03965] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sara Cembellín
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
67
|
Kumar A, Muniraj N, Prabhu KR. Manganese‐Catalysed C−H Activation: A Regioselective C−H Alkenylation of Indoles and other (hetero)aromatics with 4‐Hydroxy‐2‐Alkynoates Leading to Concomitant Lactonization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anil Kumar
- Department of Organic chemistryIndian Institute of Science Bangalore 560 012 Karnataka India
| | - Nachimuthu Muniraj
- Department of Organic chemistryIndian Institute of Science Bangalore 560 012 Karnataka India
| | | |
Collapse
|
68
|
Kong X, Xu B. Manganese‐Catalyzed Oxime‐Directed
ortho
‐C−H Amidation in Ionic Liquids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
69
|
Cabrera-Lobera N, Velasco N, Sanz R, Fernández-Rodríguez MA. Brønsted acid−catalyzed synthesis of tetrasubstituted allenes and polysubstituted 2H-chromenes from tertiary propargylic alcohols. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
70
|
Wu X, Fan J, Fu C, Ma S. A ruthenium(ii)-catalyzed C-H allenylation-based approach to allenoic acids. Chem Sci 2019; 10:6316-6321. [PMID: 31341585 PMCID: PMC6598647 DOI: 10.1039/c9sc00603f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/04/2019] [Indexed: 12/04/2022] Open
Abstract
A Ru(ii)-catalyzed direct access to various functionalized allenoic acids via C-H allenylation of readily available aryl carboxylic acids with propargylic acetates is reported. Axially chiral allenoic acids could be obtained in high ee by using optically active propargylic acetates through a chirality transfer strategy.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China .
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China .
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China .
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China .
| |
Collapse
|
71
|
Liu N, Yao J, Yin L, Lu T, Tian Z, Dou X. Rhodium-Catalyzed Expeditious Synthesis of Indenes from Propargyl Alcohols and Organoboronic Acids by Selective 1,4-Rhodium Migration over β-Oxygen Elimination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Na Liu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yao
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Long Yin
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaowei Dou
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
72
|
Scheipers I, Mück‐Lichtenfeld C, Studer A. Palladium‐Catalyzed Decarboxylative γ‐Arylation for the Synthesis of Tetrasubstituted Chiral Allenes. Angew Chem Int Ed Engl 2019; 58:6545-6548. [DOI: 10.1002/anie.201901848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ina Scheipers
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | | | - Armido Studer
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
73
|
Wang B, Wang X, Yin X, Yu W, Liao Y, Ye J, Wang M, Liao J. Cu-Catalyzed S N2' Substitution of Propargylic Phosphates with Vinylarene-Derived Chiral Nucleophiles: Synthesis of Chiral Allenes. Org Lett 2019; 21:3913-3917. [PMID: 31074282 DOI: 10.1021/acs.orglett.9b00908] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new Cu-catalyzed enantioselective three-component (i.e., styrenes, B2pin2, and propargylic phosphates) allenylation via an SN2' substitution of propargylic electrophiles with vinylarene-derived chiral nucleophiles is presented. This method provides an efficient and enantioselective approach to access a range of optically pure di-(1,1-), tri-, and tetra-substituted allenes with α-central chirality and axial chirality in excellent chemo-, regio-, diastereo-, and enantioselectivities.
Collapse
Affiliation(s)
- Bing Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xihong Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xuemei Yin
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wangzhi Yu
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jialin Ye
- College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| | - Min Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| |
Collapse
|
74
|
Xu Y, Zheng G, Kong L, Li X. Manganese(I)-Catalyzed Synthesis of Fused Eight- and Four-Membered Carbocycles via C–H Activation and Pericyclic Reactions. Org Lett 2019; 21:3402-3406. [DOI: 10.1021/acs.orglett.9b01139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youwei Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xingwei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
75
|
Li T, Wang Z, Chen C, Zhu B. Rhodium‐Catalyzed C−H Functionalization of
N
‐(2‐Pyrimidyl)indole with Internal Alkynes: Formation of Unexpected Products by Regulating the Amount of Silver Acetate. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900105] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
76
|
Scheipers I, Mück‐Lichtenfeld C, Studer A. Palladiumkatalysierte decarboxylierende γ‐Arylierung: Ein Zugang zu tetrasubstituierten chiralen Allenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ina Scheipers
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
77
|
Zhu C, Kuniyil R, Ackermann L. Manganese(I)‐Catalyzed C−H Activation/Diels–Alder/retro‐Diels–Alder Domino Alkyne Annulation featuring Transformable Pyridines. Angew Chem Int Ed Engl 2019; 58:5338-5342. [DOI: 10.1002/anie.201900495] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Cuiju Zhu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| |
Collapse
|
78
|
Jia T, Wang C. Manganese‐Catalyzed
ortho‐
Alkenylation of Aromatic Amidines with Alkynes via C−H Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Teng Jia
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
79
|
Wang H, Zhou ZX, Kurmoo M, Liu YJ, Zeng MH. Carboxylate-Assisted Pd(II)-Catalyzed ortho-C–H and Remote C–H Activation: Economical Synthesis of Pyrano[4,3-b]Indol-1(5H)-ones. Org Lett 2019; 21:2847-2850. [DOI: 10.1021/acs.orglett.9b00851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Wang
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Zheng-Xin Zhou
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Department Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
80
|
Zheng G, Sun J, Xu Y, Zhai S, Li X. Mn‐Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through C−H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angew Chem Int Ed Engl 2019; 58:5090-5094. [DOI: 10.1002/anie.201900166] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Guangfan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jiaqiong Sun
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Youwei Xu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Shuailei Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
81
|
Zhu C, Kuniyil R, Ackermann L. Manganese(I)‐Catalyzed C−H Activation/Diels–Alder/retro‐Diels–Alder Domino Alkyne Annulation featuring Transformable Pyridines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cuiju Zhu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| |
Collapse
|
82
|
Zheng G, Sun J, Xu Y, Zhai S, Li X. Mn‐Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through C−H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guangfan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jiaqiong Sun
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Youwei Xu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Shuailei Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
83
|
Hammarback LA, Robinson A, Lynam JM, Fairlamb IJS. Mechanistic Insight into Catalytic Redox-Neutral C-H Bond Activation Involving Manganese(I) Carbonyls: Catalyst Activation, Turnover, and Deactivation Pathways Reveal an Intricate Network of Steps. J Am Chem Soc 2019; 141:2316-2328. [PMID: 30698423 DOI: 10.1021/jacs.8b09095] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manganese(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds containing suitable metal directing groups has recently emerged as a potentially useful synthetic methodology for the introduction of various groups to the ortho position of a benzene ring. Preliminary mechanistic studies have highlighted that these reactions could proceed via numerous different species and steps and, moreover, potentially different catalytic cycles. The primary requirement for typically 10 mol % catalyst, oftentimes the ubiquitous precursor catalyst, BrMn(CO)5, has not yet been questioned nor significantly improved upon, suggesting catalytic deactivation may be a serious issue to be understood and resolved. Several critical questions are further raised by the species responsible for providing a source of protons in the protonation of vinyl-manganese(I) carbonyl intermediates. In this study, using a combination of experimental and theoretical methods, we provide comprehensive answers to the key mechanistic questions concerning the Mn(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds. Our results enable the explanation of alkyne substrate dependencies, i.e., internal versus terminal alkynes. We found that there are different catalyst activation pathways for BrMn(CO)5, e.g., terminal alkynes lead to the generation of MnI-acetylide species, whose formation is reminiscent of CuI-acetylide species proposed to be of critical importance in Sonogashira cross-coupling processes. We have unequivocally established that alkyne, 2-phenylpyridine, and water can facilitate hydrogen transfer in the protonation step, leading to the liberation of protonated alkene products.
Collapse
Affiliation(s)
- L Anders Hammarback
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| | - Alan Robinson
- Syngenta Crop Protection AG , Breitenloh 5 , Münchwilen 4333 , Switzerland
| | - Jason M Lynam
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| | - Ian J S Fairlamb
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| |
Collapse
|
84
|
Affiliation(s)
- Yuanyuan Hu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
85
|
Zhang J, Liao Z, Chen L, Jiang H, Zhu S. Construction of polycyclic bridged indene derivatives by a tandem 1,3-rearrangement/intramolecular Friedel-Crafts cyclization of propargyl acetates. Chem Commun (Camb) 2019; 55:7382-7385. [PMID: 31173008 DOI: 10.1039/c9cc03715b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An unprecedented Lewis acid-catalyzed cascade 1,3-rearrangement/Friedel-Crafts cyclization of propargyl acetates is developed for the construction of polycyclic bridged indene derivatives in moderate to good yields. This practical procedure features mild conditions, broad substrate scope, and easy operation.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
86
|
Liu B, Yuan Y, Hu P, Zheng G, Bai D, Chang J, Li X. Mn(i)-Catalyzed nucleophilic addition/ring expansion via C–H activation and C–C cleavage. Chem Commun (Camb) 2019; 55:10764-10767. [PMID: 31432805 DOI: 10.1039/c9cc05973c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Mn(i)-Catalyzed C–H alkenylation/carbonyl addition/retro-Aldol cascade was realized leading to the convenient synthesis of seven- or eight-membered carbocycles.
Collapse
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Yin Yuan
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Panjie Hu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University (SNNU)
- Xi’an 710062
- China
| | - Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| |
Collapse
|
87
|
Wang C, Yang J, Meng X, Sun Y, Man X, Li J, Sun F. Manganese(ii)-catalysed dehydrogenative annulation involving C–C bond formation: highly regioselective synthesis of quinolines. Dalton Trans 2019; 48:4474-4478. [PMID: 30860245 DOI: 10.1039/c9dt00647h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An inexpensive nontoxic manganese(ii)-catalysed dehydrogenative annulation was developed for C–C bond formation.
Collapse
Affiliation(s)
- Chengniu Wang
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Jinfei Yang
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Xiao Meng
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Yufeng Sun
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Xuyan Man
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Jinxia Li
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| | - Fei Sun
- Medical school
- Institute of Reproductive Medicine
- Nantong University
- Nantong 226019
- China
| |
Collapse
|
88
|
Wu P, Jia M, Ma S. Pd-Catalyzed coupling reaction of cyclobutanols with propargylic carbonates. Org Chem Front 2019. [DOI: 10.1039/c9qo00192a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pd-Catalyzed ring opening coupling reaction of cyclobutanols with propargylic carbonates afforded δ-allenyl ketones efficiently.
Collapse
Affiliation(s)
- Penglin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
89
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
90
|
Tan YX, Liu XY, Zhao YS, Tian P, Lin GQ. Arylation/Intramolecular Conjugate Addition of 1,6-Enynes Enabled by Manganese(I)-Catalyzed C–H Bond Activation. Org Lett 2018; 21:5-9. [DOI: 10.1021/acs.orglett.8b03288] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing-Yu Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yi-Shuang Zhao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ping Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
91
|
Wang Z, Zhu L, Zhong K, Qu L, Bai R, Lan Y. Mechanistic Insights into Manganese (I)‐Catalyzed Chemoselective Hydroarylations of Alkynes: A Theoretical Study. ChemCatChem 2018. [DOI: 10.1002/cctc.201801301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheyuan Wang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P.R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P.R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P.R. China
| | - Ling‐Bo Qu
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P.R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P.R. China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P.R. China
| |
Collapse
|
92
|
Yi W, Li L, Chen H, Ma K, Zhong Y, Chen W, Gao H, Zhou Z. Rh(III)-Catalyzed Oxidative [5 + 2] Annulation Using Two Transient Assisting Groups: Stereospecific Assembly of 3-Alkenylated Benzoxepine Framework. Org Lett 2018; 20:6812-6816. [PMID: 30354168 DOI: 10.1021/acs.orglett.8b02940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Liping Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hongzhen Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Kuangshun Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuting Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
93
|
|
94
|
Zhu C, Pinkert T, Greßies S, Glorius F. One-Pot C–H Formylation Enabled by Relay Catalysis of Manganese(I) and Iron(III). ACS Catal 2018. [DOI: 10.1021/acscatal.8b03097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Can Zhu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Steffen Greßies
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
95
|
Yan Z, Yuan XA, Zhao Y, Zhu C, Xie J. Selective Hydroarylation of 1,3-Diynes Using a Dimeric Manganese Catalyst: Modular Synthesis of Z-Enynes. Angew Chem Int Ed Engl 2018; 57:12906-12910. [PMID: 30102007 DOI: 10.1002/anie.201807851] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Indexed: 11/09/2022]
Abstract
The transition-metal-catalyzed selective hydroarylation of unsymmetrical alkynes represents the state-of-art in organic chemistry, and still mainly relies on the use of precious late-transition-metal catalysts. Reported herein is an unprecedented MnI -catalyzed hydroarylation of unsymmetrical 1,3-diyne alcohols with commercially available arylboronic acids with predictive selectivity. This method addresses the challenges in regio-, stereo-, and chemoselectivity. It offers a general, convenient and practical strategy for the modular synthesis of multisubstituted Z-configurated conjugated enynes. This protocol is distinguished by its operational simplicity, complete selectivity, excellent functional-group compatibility, and gram-scale potential. A dimeric MnI species, Mn2 (CO)8 Br2 , was proven to be a much more efficient catalyst precursor than Mn(CO)5 Br.
Collapse
Affiliation(s)
- Zhongfei Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
96
|
Yan Z, Yuan XA, Zhao Y, Zhu C, Xie J. Selective Hydroarylation of 1,3-Diynes Using a Dimeric Manganese Catalyst: Modular Synthesis of Z
-Enynes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhongfei Yan
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Shanghai 200032 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
97
|
Liu B, Li J, Hu P, Zhou X, Bai D, Li X. Divergent Annulative C–C Coupling of Indoles Initiated by Manganese-Catalyzed C–H Activation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02560] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Panjie Hu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xukai Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dachang Bai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
98
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
99
|
Lu Q, Mondal S, Cembellín S, Glorius F. Mn
I
/Ag
I
‐Kaskadenkatalyse: spurlose diazoassistierte C(sp
2
)‐H/C(sp
3
)‐H‐Kupplung für β‐(Hetero)aryl‐/β‐Alkenylketone. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qingquan Lu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Shobhan Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Sara Cembellín
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
100
|
Liang Y, Steinbock R, Yang L, Ackermann L. Continuous Visible‐Light Photoflow Approach for a Manganese‐Catalyzed (Het)Arene C−H Arylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu‐Feng Liang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|