51
|
Jin K, Li X. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis. Chemistry 2018; 24:17397-17404. [DOI: 10.1002/chem.201802067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Kang Jin
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| | - Xuechen Li
- Department of Chemistry; State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong P. R. China
| |
Collapse
|
52
|
Hou Z, Sun C, Geng H, Hu K, Xie M, Ma Y, Jiang F, Yin F, Li Z. Facile Chemoselective Modification of Thio-Ethers Generates Chiral Center-Induced Helical Peptides. Bioconjug Chem 2018; 29:2904-2908. [PMID: 30193458 DOI: 10.1021/acs.bioconjchem.8b00624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A precisely positioned sulfimide chiral center on-tether of a thio-ether tethered peptide determines the peptide secondary structure by chemoselective oxaziridine modification. This method provides a facile way to tune peptides' secondary structures and biophysical properties.
Collapse
Affiliation(s)
- Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Chengjie Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Hao Geng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Kuan Hu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Mingsheng Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Fan Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China
| |
Collapse
|
53
|
Carlo U, Yasuhiro K. Recent advances in the chemical synthesis of N-linked glycoproteins. Curr Opin Chem Biol 2018; 46:130-137. [PMID: 30144649 DOI: 10.1016/j.cbpa.2018.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022]
Abstract
Glycoproteins have many biological roles. Due to the heterogeneity of natural glycoproteins in the sugar part resulting in glycoforms the evaluation of the biochemical roles of individual glycans remains difficult to investigate. Since pure glycoforms are still not accessible via recombinant or chromatographic methods, the synthesis of proteins with uniform posttranslational modifications using ligation methods or glycan remodeling are currently the best options for accessing these targets. Recent developments in chemical protein synthesis, the assembly of N-glycans and the use of enzymatic procedures have provided access to many glycoproteins with modifications as well as their analogs.
Collapse
Affiliation(s)
- Unverzagt Carlo
- Bioorganic Chemistry, Gebäude NWI, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Kajihara Yasuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
54
|
Tsuda S, Nishio H, Yoshiya T. Peptide self-cleavage at a canaline residue: application to a solubilizing tag system for native chemical ligation. Chem Commun (Camb) 2018; 54:8861-8864. [PMID: 30039130 DOI: 10.1039/c8cc04579h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Canaline (Can) is a non-proteinogenic amino acid containing an aminooxy group in its side chain. Can-containing peptides can be synthesized by standard Fmoc SPPS using Fmoc-Can(2-Cl-Trt). Here, for the first time, a Can residue within a peptide sequence was found to spontaneously cleave the main chain amide bond under slightly acidic conditions (pH 4-5). Contrastingly, Can-containing peptides are completely stable under the acidic conditions for HPLC purification (pH ca. 2) and under the neutral conditions for native chemical ligation (NCL). Taking advantage of these unique pH-dependent properties of Can, a novel solubilizing tag system for NCL-mediated protein synthesis using (Lys/Arg)n-Can was developed.
Collapse
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | | | | |
Collapse
|
55
|
Gless BH, Olsen CA. Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. J Org Chem 2018; 83:10525-10534. [DOI: 10.1021/acs.joc.8b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bengt H. Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
56
|
Abstract
Synthetic proteins are expected to go beyond the boundary of recombinant DNA expression systems by being flexibly installed with site-specific natural or unnatural modification structures during synthesis. To enable protein chemical synthesis, peptide ligations provide effective strategies to assemble short peptide fragments obtained from solid-phase peptide synthesis (SPPS) into long peptides and proteins. In this regard, chemoselective peptide ligation represents a simple but powerful transformation realizing selective amide formation between the C-terminus and N-terminus of two side-chain-unprotected peptide fragments. These reactions are highly chemo- and regioselective to tolerate the side-chain functionalities present on the unprotected peptides, highly reactive to work with millmolar or submillimolar concentrations of the substrates, and operationally simple with mild conditions and accessible building blocks. This Account focuses on our work in the development of serine/threonine ligation (STL), which originates from a chemoselective reaction between an unprotected peptide with a C-terminal salicylaldehyde (SAL) ester and another unprotected peptide with an N-terminal serine or threonine residue. Mechanistically, STL involves imine capture, 5- endo-trig ring-chain tautomerization, O-to- N [1,5] acyl transfer to afford the N, O-benzylidene acetal-linked peptide, and acidolysis to regenerate the Xaa-Ser/Thr linkage (where Xaa is the amino acid) at the ligation site. The high abundance of serine and threonine residues (12.7%) in naturally occurring proteins and the good compatibility of STL with various C-terminal residues provide multiple choices for ligation sites. The requisite peptide C-terminal SAL esters can be prepared from the peptide fragments obtained from both Fmoc-SPPS and Boc-SPPS through four available methods (a safety-catch strategy based on phenolysis, direct coupling, ozonolysis, and the n + 1 strategy). In the synthesis of proteins (e.g., ACYP enzyme, MUC1 glycopeptide 40-mer to 80-mer, interleukin 25, and HMGA1a with variable post-translational modification patterns), both C-to- N and N-to- C sequential STL strategies have been developed through selection of temporal N-terminal protecting groups and proper design of the switch-on/off C-terminal SAL ester surrogate, respectively. In the synthesis of cyclic peptide natural products (e.g., daptomycin, teixobactin, cyclomontanin B, yunnanin C) and their analogues, intramolecular head-to-tail STL has been implemented on linear peptide SAL ester precursors containing four to 10 amino acid residues with good efficiency and minimized oligomerization. As a thiol-independent chemoselective ligation complementary to native chemical ligation, STL provides an alternative tool for the chemical synthesis of homogeneous proteins with site-specific and structure-defined modifications and cyclic peptide natural products, which lays foundation for chemical biology and medicinal studies of those molecules with biological importance and therapeutic potential.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
57
|
Liang LJ, Si Y, Tang S, Huang D, Wang ZA, Tian C, Zheng JS. Biochemical properties of K11,48-branched ubiquitin chains. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
58
|
So WH, Wong CT, Xia J. Peptide photocaging: A brief account of the chemistry and biological applications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
59
|
Qu Q, Pan M, Gao S, Zheng Q, Yu Y, Su J, Li X, Hu H. A Highly Efficient Synthesis of Polyubiquitin Chains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800234. [PMID: 30027052 PMCID: PMC6051384 DOI: 10.1002/advs.201800234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
A robust, microwave-assisted, highly efficient, solid-phase peptide synthesis method for preparing isopeptide-linked 62-mer and 76-mer isoubiquitins and polyubiquitin is developed. The strategy avoids the use of costly resins and pseudoprolines, and the isopeptide-linked building blocks can be assembled with high initial purity within 1 day. All seven diubiquitins are successfully synthesized on a multi-milligram scale; a four-segment, three-ligation method is used to obtain a K33-/K11-linked mixed triubiquitin in excellent yield. Circular dichroism and crystallographic analyses are used to verify the structures of the well-folded, synthetic polyubiquitin chains. The facile synthetic strategy is expected to be generally applicable for the rapid synthesis of isopeptide-linked isoUbs and to pave the way for the study of longer polyubiquitin chains.
Collapse
Affiliation(s)
- Qian Qu
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Man Pan
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Shuai Gao
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Qing‐Yun Zheng
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Yuan‐Yuan Yu
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Jia‐Can Su
- Changhai HospitalSecond Military Medical University168 Changhai RoadShanghai200433China
| | - Xiang Li
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
| | - Hong‐Gang Hu
- School of PharmacySecond Military Medical University325 Guohe RoadShanghai200433China
| |
Collapse
|
60
|
Xu C, Xu J, Liu H, Li X. Development of aspartic acid ligation for peptide cyclization derived from serine/threonine ligation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
61
|
Chisholm TS, Clayton D, Dowman LJ, Sayers J, Payne RJ. Native Chemical Ligation-Photodesulfurization in Flow. J Am Chem Soc 2018; 140:9020-9024. [PMID: 29792427 DOI: 10.1021/jacs.8b03115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Native chemical ligation (NCL) combined with desulfurization chemistry has revolutionized the way in which large polypeptides and proteins are accessed by chemical synthesis. Herein, we outline the use of flow chemistry for the ligation-based assembly of polypeptides. We also describe the development of a novel photodesulfurization transformation that, when coupled with flow NCL, enables efficient access to native polypeptides on time scales up to 2 orders of magnitude faster than current batch NCL-desulfurization methods. The power of the new ligation-photodesulfurization flow platform is showcased through the rapid synthesis of the 36 residue clinically approved HIV entry inhibitor enfuvirtide and the peptide diagnostic agent somatorelin.
Collapse
Affiliation(s)
- Timothy S Chisholm
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Daniel Clayton
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Luke J Dowman
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Jessica Sayers
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
62
|
Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0122] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Qi YK, Ai HS, Li YM, Yan B. Total Chemical Synthesis of Modified Histones. Front Chem 2018; 6:19. [PMID: 29473034 PMCID: PMC5810247 DOI: 10.3389/fchem.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hua-Song Ai
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yi-Ming Li
- Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
64
|
Racemic X-ray structure of L-type calcium channel antagonist Calciseptine prepared by total chemical synthesis. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
65
|
Shimodaira S, Takei T, Hojo H, Iwaoka M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem Commun (Camb) 2018; 54:11737-11740. [DOI: 10.1039/c8cc06805d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic selenocysteine-containing peptides were synthesized via one-pot tandem conversion of N-alkylcysteine-containing selenopeptides.
Collapse
Affiliation(s)
- Shingo Shimodaira
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| | - Toshiki Takei
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| |
Collapse
|