51
|
Chen M, Wang X, Yang P, Kou X, Ren Z, Guan Z. Palladium‐Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)‐Physostigmine, (+)‐Physovenine, and (+)‐Folicanthine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zhi‐Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
52
|
Chen M, Wang X, Yang P, Kou X, Ren ZH, Guan ZH. Palladium-Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)-Physostigmine, (+)-Physovenine, and (+)-Folicanthine. Angew Chem Int Ed Engl 2020; 59:12199-12205. [PMID: 32239787 DOI: 10.1002/anie.202003288] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Reported herein is the development of the first enantioselective monodentate ligand assisted Pd-catalyzed domino Heck carbonylation reaction with CO. The highly enantioselective domino Heck carbonylation of N-aryl acrylamides and various nucleophiles, including arylboronic acids, anilines, and alcohols, in the presence of CO was achieved. A novel monodentate phosphoramidite ligand, Xida-Phos, has been developed for this reaction and it displays excellent reactivity and enantioselectivity. The reaction employs readily available starting materials, tolerates a wide range of functional groups, and provides straightforward access to a diverse array of enantioenriched oxindoles having β-carbonyl-substituted all-carbon quaternary stereocenters, thus providing a facile and complementary method for the asymmetric synthesis of bioactive hexahydropyrroloindole and its dimeric alkaloids.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
53
|
Tu HY, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing FL, Chu L. Enantioselective Three-Component Fluoroalkylarylation of Unactivated Olefins through Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2020; 142:9604-9611. [DOI: 10.1021/jacs.0c03708] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hai-Yong Tu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Liping Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Huan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
54
|
Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Zhou L, Li S, Xu B, Ji D, Wu L, Liu Y, Zhang Z, Zhang J. Enantioselective Difunctionalization of Alkenes by a Palladium‐Catalyzed Heck/Sonogashira Sequence. Angew Chem Int Ed Engl 2020; 59:2769-2775. [DOI: 10.1002/anie.201913367] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Sanliang Li
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Danting Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Lizuo Wu
- College of Chemistry and Life ScienceAdvanced Institute of Materials ScienceChangchun University of Technology Changchun 130012 China
| | - Yu Liu
- College of Chemistry and Life ScienceAdvanced Institute of Materials ScienceChangchun University of Technology Changchun 130012 China
| | - Zhan‐Ming Zhang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Junliang Zhang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| |
Collapse
|
56
|
Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Ruthenium(II)‐Catalyzed Asymmetric Inert C−H Bond Activation Assisted by a Chiral Transient Directing Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qinzhe Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Laxmaiah Vasamsetty
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
57
|
Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Ruthenium(II)‐Catalyzed Asymmetric Inert C−H Bond Activation Assisted by a Chiral Transient Directing Group. Angew Chem Int Ed Engl 2020; 59:3475-3479. [DOI: 10.1002/anie.201913733] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qinzhe Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Laxmaiah Vasamsetty
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
58
|
Song XD, Li XR, Wang YW, Chu XQ, Rao W, Xu H, Han GZ, Shen ZL. Indium-mediated difunctionalization of iodoalkyl-tethered unactivated alkenes via an intramolecular cyclization and an ensuing palladium-catalyzed cross-coupling reaction with aryl halides. Org Chem Front 2020. [DOI: 10.1039/d0qo00632g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cobalt-catalyzed, indium-mediated difunctionalization of iodoalkyl-tethered unactivated alkenes for accessing five-membered cyclic compounds via a cyclization/cross-coupling sequence was developed.
Collapse
Affiliation(s)
- Xuan-Di Song
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Xiang-Rui Li
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Ya-Wen Wang
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Guo-Zhi Han
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
59
|
He J, Xue Y, Han B, Zhang C, Wang Y, Zhu S. Nickel-Catalyzed Asymmetric Reductive 1,2-Carboamination of Unactivated Alkenes. Angew Chem Int Ed Engl 2019; 59:2328-2332. [PMID: 31755199 DOI: 10.1002/anie.201913743] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Starting from diverse alkene-tethered aryl iodides and O-benzoyl-hydroxylamines, the enantioselective reductive cross-electrophilic 1,2-carboamination of unactivated alkenes was achieved using a chiral pyrox/nickel complex as the catalyst. This mild, modular, and practical protocol provides rapid access to a variety of β-chiral amines with an enantioenriched aryl-substituted quaternary carbon center in good yields and with excellent enantioselectivities. This process reveals a complementary regioselectivity when compared to Pd and Cu catalysis.
Collapse
Affiliation(s)
- Jun He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chunzhu Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
60
|
Zhou L, Li S, Xu B, Ji D, Wu L, Liu Y, Zhang Z, Zhang J. Enantioselective Difunctionalization of Alkenes by a Palladium‐Catalyzed Heck/Sonogashira Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913367] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Sanliang Li
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Danting Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Lizuo Wu
- College of Chemistry and Life ScienceAdvanced Institute of Materials ScienceChangchun University of Technology Changchun 130012 China
| | - Yu Liu
- College of Chemistry and Life ScienceAdvanced Institute of Materials ScienceChangchun University of Technology Changchun 130012 China
| | - Zhan‐Ming Zhang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Junliang Zhang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| |
Collapse
|
61
|
Nickel‐Catalyzed Asymmetric Reductive 1,2‐Carboamination of Unactivated Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Polo EC, Wang MF, Angnes RA, Braga AAC, Correia CRD. Enantioselective Heck Arylation of Acyclic Alkenol Aryl Ethers: Synthetic Applications and DFT Investigation of the Stereoselectivity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ellen Christine Polo
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| | - Martí Fernández Wang
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| | - Ricardo Almir Angnes
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Lineu Prestes, 748 05508-000, São Paulo São Paulo Brazil
| | - Ataualpa A. C. Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Lineu Prestes, 748 05508-000, São Paulo São Paulo Brazil
| | - Carlos Roque Duarte Correia
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| |
Collapse
|
63
|
Affiliation(s)
- Baihang Ju
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shigui Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
64
|
Cheng C, Wan B, Zhou B, Gu Y, Zhang Y. Enantioselective synthesis of quaternary 3,4-dihydroisoquinolinones via Heck carbonylation reactions: development and application to the synthesis of Minalrestat analogues. Chem Sci 2019; 10:9853-9858. [PMID: 32015808 PMCID: PMC6977551 DOI: 10.1039/c9sc03406d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Minalrestat and its analogues represent structurally novel aldose reductase inhibitors, and the asymmetric synthesis of such pharmaceutically privileged molecules has not been reported yet. We have developed a palladium-catalyzed enantioselective intramolecular carbonylative Heck reaction by using formate esters as the source of CO, which represents the first enantioselective synthesis of quaternary 3,4-dihydroisoquinolines. The reaction provides a facile and efficient method for the synthesis of enantiopure nitrogen-containing heterocyclic compounds bearing an all-carbon quaternary stereocenter. The reaction has been successfully applied to the first asymmetric synthesis of Minalrestat analogues.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Bin Wan
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Bo Zhou
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Yichao Gu
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| | - Yanghui Zhang
- School of Chemical Science and Engineering , Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China .
| |
Collapse
|
65
|
Liang X, Li R, Wang X. Copper‐Catalyzed Asymmetric Annulation Reactions of Carbenes with 2‐Iminyl‐ or 2‐Acyl‐Substituted Phenols: Convenient Access to Enantioenriched 2,3‐Dihydrobenzofurans. Angew Chem Int Ed Engl 2019; 58:13885-13889. [PMID: 31350783 DOI: 10.1002/anie.201907943] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Xin‐Shen Liang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Rui‐Dong Li
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
66
|
Zhang Z, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Enantioselective Dicarbofunctionalization of Unactivated Alkenes by Palladium‐Catalyzed Tandem Heck/Suzuki Coupling Reaction. Angew Chem Int Ed Engl 2019; 58:14653-14659. [DOI: 10.1002/anie.201907840] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zhan‐Ming Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Lizuo Wu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Yuanqi Wu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Yanyan Qian
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Yu Liu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| |
Collapse
|
67
|
Zhang Z, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Enantioselective Dicarbofunctionalization of Unactivated Alkenes by Palladium‐Catalyzed Tandem Heck/Suzuki Coupling Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907840] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhan‐Ming Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Lizuo Wu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Yuanqi Wu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Yanyan Qian
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Yu Liu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| |
Collapse
|
68
|
Xu S, Wang K, Kong W. Ni-Catalyzed Reductive Arylacylation of Alkenes toward Carbonyl-Containing Oxindoles. Org Lett 2019; 21:7498-7503. [DOI: 10.1021/acs.orglett.9b02788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheng Xu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kuai Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
69
|
Liang X, Li R, Wang X. Copper‐Catalyzed Asymmetric Annulation Reactions of Carbenes with 2‐Iminyl‐ or 2‐Acyl‐Substituted Phenols: Convenient Access to Enantioenriched 2,3‐Dihydrobenzofurans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xin‐Shen Liang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Rui‐Dong Li
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege ofChemistry, Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
70
|
Pandit RP, Kim ST, Ryu DH. Asymmetric Synthesis of Enantioenriched 2‐Aryl‐2,3‐Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Seung Tae Kim
- Department of ChemistrySungkyunkwan University 300, Cheoncheon, Jangan Suwon 16419 Korea
| | - Do Hyun Ryu
- Department of ChemistrySungkyunkwan University 300, Cheoncheon, Jangan Suwon 16419 Korea
| |
Collapse
|
71
|
Pandit RP, Kim ST, Ryu DH. Asymmetric Synthesis of Enantioenriched 2-Aryl-2,3-Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angew Chem Int Ed Engl 2019; 58:13427-13432. [PMID: 31309680 DOI: 10.1002/anie.201906954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/14/2022]
Abstract
A cyclopropanation/intramolecular rearrangement initiated by the Michael addition of in situ generated ortho-quinone methides (o-QMs) has been developed for the enantioselective synthesis of 2-aryl-2,3-dihydrobenzofurans containing two consecutive stereogenic centers, including a quaternary carbon atom. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in excellent yields (up to 95 %) with excellent stereoselectivity (up to >99 ee, up to >20:1 d.r.).
Collapse
Affiliation(s)
- Rameshwar Prasad Pandit
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| | - Seung Tae Kim
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon, Jangan, Suwon, 16419, Korea
| |
Collapse
|
72
|
Bai Z, Zheng S, Bai Z, Song F, Wang H, Peng Q, Chen G, He G. Palladium-Catalyzed Amide-Directed Enantioselective Carboboration of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01350] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqian Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fangfang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
73
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2‐Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Fan Teng
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Jian Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
| | - Weiming Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Shuang Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Qiang Zhu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| |
Collapse
|
74
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2-Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019; 58:9225-9229. [PMID: 31074567 DOI: 10.1002/anie.201904838] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 01/16/2023]
Abstract
An efficient one-pot assembly of all-carbon spiro-oxindole compounds from non-oxindole-based materials has been developed through a palladium-catalyzed asymmetric Heck/carbonylative lactonization and lactamization sequence. Diversified spirooxindole γ-and δ-lactones/lactams were accessed in high yields with good to excellent enantioselectivities (up to 99 % ee) under mild reaction conditions. The natural product coixspirolactam A was conveniently synthesized by applying the current methodology, and thus its absolute configuration was elucidated for the first time. Asymmetric synthesis of an effective CRTH2 receptor antagonist has also been demonstrated utilizing this method in the key step.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
75
|
Tian ZX, Qiao JB, Xu GL, Pang X, Qi L, Ma WY, Zhao ZZ, Duan J, Du YF, Su P, Liu XY, Shu XZ. Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes. J Am Chem Soc 2019; 141:7637-7643. [PMID: 31002758 DOI: 10.1021/jacs.9b03863] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enantioselective cross-electrophile reactions remain a challenging subject in metal catalysis, and with respect to data, studies have mainly focused on stereoconvergent reactions of racemic alkyl electrophiles. Here, we report an enantioselective cross-electrophile aryl-alkenylation reaction of unactivated alkenes. This method provides access to a number of biologically important chiral molecules such as dihydrobenzofurans, indolines, and indanes. The incorporated alkenyl group is suitable for further reactions that can lead to an increase in molecular diversity and complexity. The reaction proceeds under mild conditions at room temperature, and an easily accessible chiral pyrox ligand is used to afford products with high enantioselectivity. The synthetic utility of this method is demonstrated by enabling the modification of complex molecules such as peptides, indometacin, and steroids.
Collapse
Affiliation(s)
- Zhi-Xiong Tian
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Jin-Bao Qiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Guang-Li Xu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Wei-Yuan Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Jicheng Duan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Yun-Fei Du
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Peifeng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou 730000 , China
| |
Collapse
|
76
|
Ju B, Chen S, Kong W. Enantioselective palladium-catalyzed diarylation of unactivated alkenes. Chem Commun (Camb) 2019; 55:14311-14314. [DOI: 10.1039/c9cc07036b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enantioselective Pd-catalyzed diarylation of unactivated alkenes between arenediazonium salts and arylboronic acids has been developed. This method provides an efficient route to dihydrobenzofurans with all-carbon quaternary centers in good yields with 88–99% ee.
Collapse
Affiliation(s)
- Baihang Ju
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
77
|
Reddi Y, Tsai CC, Avila CM, Toste FD, Sunoj RB. Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck-Matsuda Arylation. J Am Chem Soc 2018; 141:998-1009. [PMID: 30562010 DOI: 10.1021/jacs.8b11062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of more than one catalyst in one-pot reaction conditions has become a rapidly evolving protocol in the development of asymmetric catalysis. The lack of molecular insights on the mechanism and enantioselectivity in dual-catalytic reactions motivated the present study focusing on an important catalytic asymmetric Heck-Matsuda cross-coupling. A comprehensive density functional theory (M06 and B3LYP-D3) investigation of the coupling between a spirocyclic cyclopentene and 4-fluorophenyl diazonium species under a dual-catalytic condition involving Pd2(dba)3 (dba = trans, trans-dibenzylideneacetone) and chiral 2,2'-binaphthyl diamine (BINAM)-derived phosphoric acids (BDPA, 2,2'-binaphthyl diamine-derived phosphoric acids) is presented. Among various mechanistic possibilities examined, the pathway with explicit inclusion of the base (in situ generated sodium bicarbonate/sodium biphosphate) is found to be energetically more preferred over the analogous base-free routes. The chiral phosphate generated by the action of sodium carbonate on BDPA is found to remain associated with the reaction site as a counterion. The initial oxidative addition of Pd(0) to the aryl diazonium bond gives rise to a Pd-aryl intermediate, which then goes through the enantiocontrolling migratory insertion to the cyclic alkene, leading to an arylated cycloalkene intermediate. Insights on how a series of noncovalent interactions, such as C-H···O, C-H···N, C-H···F, C-H···π, lp···π, O-H···π, and C-F···π, in the enantiocontrolling transition state (TS) render the migration of the Pd-aryl to the si prochiral face of the cyclic alkene more preferred over that to the re face are utilized for modulating the enantioselectivity. Aided by molecular insights on the enantiocontrolling transition states, we predicted improved enantioselectivity from 37% to 89% by changes in the N-aryl substituents of the catalyst. Subsequent experiments in our laboratory offered very good agreement with the predicted enantioselectivities.
Collapse
Affiliation(s)
- Yernaidu Reddi
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Cheng-Che Tsai
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Carolina M Avila
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Raghavan B Sunoj
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
78
|
Xiang Y, Wang C, Ding Q, Peng Y. Diazo Compounds: Versatile Synthons for the Synthesis of Nitrogen Heterocycles via
Transition Metal-Catalyzed Cascade C-H Activation/Carbene Insertion/Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800960] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunyu Xiang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Cong Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| |
Collapse
|
79
|
Kattela S, de Lucca EC, Correia CRD. Enantioselective Synthesis of Phthalides and Isochromanones via Heck-Matsuda Arylation of Dihydrofurans. Chemistry 2018; 24:17691-17696. [PMID: 30290051 DOI: 10.1002/chem.201804958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 11/09/2022]
Abstract
In this communication, the enantioselective synthesis of phthalides and isochromanones is described through a new palladium-catalyzed Heck-Matsuda arylation/NaBH4 -reduction/lactonization sequence of 2,3- and 2,5-dihydrofurans in good overall yields and excellent enantioselectivities (up to 98:2 er). This expeditious synthesis of chiral Heck lactol intermediates allowed the diversification of the strategy to obtain medicinally relevant chiral lactones, amines, and olefins. The natural product 3-butylphthalide was obtained in three steps with an overall yield of 33 % yield in 98:2 er.
Collapse
Affiliation(s)
- Shivashankar Kattela
- Institute of Chemistry, University of Campinas, Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Emilio C de Lucca
- Institute of Chemistry, University of Campinas, Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Carlos Roque D Correia
- Institute of Chemistry, University of Campinas, Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|