51
|
Knighton RC, Dapin S, Beer PD. Luminescent Anion Sensing by Transition-Metal Dipyridylbenzene Complexes Incorporated into Acyclic, Macrocyclic and Interlocked Hosts. Chemistry 2020; 26:5288-5296. [PMID: 32130744 PMCID: PMC7216984 DOI: 10.1002/chem.202000661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 12/19/2022]
Abstract
A series of novel acyclic, macrocyclic and mechanically interlocked luminescent anion sensors have been prepared by incorporation of the isophthalamide motif into dipyridylbenzene to obtain cyclometallated complexes of platinum(II) and ruthenium(II). Both the acyclic and macrocyclic derivatives 7⋅Pt, 7⋅Ru⋅PF6 , 10⋅Pt and 10⋅Ru⋅PF6 are effective sensors for a range of halides and oxoanions. The near-infra red emitting ruthenium congeners exhibited an increased binding strength compared to platinum due to the cationic charge and thus additional electrostatic interactions. Intramolecular hydrogen-bonding between the dipyridylbenzene ligand and the amide carbonyls increases the preorganisation of both acyclic and macrocyclic metal derivatives resulting in no discernible macrocyclic effect. Interlocked analogues were also prepared, and preliminary luminescent chloride anion spectrometric titrations with 12⋅Ru⋅(PF6 )2 demonstrate a marked increase in halide binding affinity due to the complementary chloride binding pocket of the [2]rotaxane. 1 H NMR binding titrations indicate the interlocked dicationic receptor is capable of chloride recognition even in competitive 30 % aqueous mixtures.
Collapse
Affiliation(s)
| | - Sophie Dapin
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
52
|
Bickerton LE, Sterling AJ, Beer PD, Duarte F, Langton MJ. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores. Chem Sci 2020; 11:4722-4729. [PMID: 34122927 PMCID: PMC8159253 DOI: 10.1039/d0sc01467b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transmembrane ion transport by synthetic anionophores is typically achieved using polar hydrogen bonding anion receptors. Here we show that readily accessible halogen and hydrogen bonding 1,2,3-triazole derivatives can efficiently mediate anion transport across lipid bilayer membranes with unusual anti-Hofmeister selectivity. Importantly, the results demonstrate that the iodo-triazole systems exhibit the highest reported activity to date for halogen bonding anionophores, and enhanced transport efficiency relative to the hydrogen bonding analogues. In contrast, the analogous fluoro-triazole systems, which are unable to form intermolecular interactions with anions, are inactive. The halogen bonding anionophores also exhibit a remarkable intrinsic chloride over hydroxide selectivity, which is usually observed only in more complex anionophore designs, in contrast to the readily accessible acyclic systems reported here. This highlights the potential of iodo-triazoles as synthetically accessible and versatile motifs for developing more efficient anion transport systems. Computational studies provide further insight into the nature of the anion-triazole intermolecular interactions, examining the origins of the observed transport activity and selectivity of the systems, and revealing the role of enhanced charge delocalisation in the halogen bonding anion complexes. Halogen and hydrogen bonding 1,2,3-triazole derivatives efficiently mediate anion transport across lipid bilayer membranes with unusual anion selectivity profiles.![]()
Collapse
Affiliation(s)
- Laura E Bickerton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
53
|
Chen XL, Shen YJ, Gao C, Yang J, Sun X, Zhang X, Yang YD, Wei GP, Xiang JF, Sessler JL, Gong HY. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J Am Chem Soc 2020; 142:7443-7455. [PMID: 32216311 DOI: 10.1021/jacs.9b13473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituent effects play critical roles in both modulating reaction chemistry and supramolecular self-assembly processes. Using substituted terephthalate dianions (p-phthalic acid dianions; PTADAs), the effect of varying the type, number, and position of the substituents was explored in terms of their ability to regulate the inherent anion complexation features of a tetracationic macrocycle, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (referred to as the Texas-sized molecular box; 14+), in the form of its tetrakis-PF6- salt in DMSO. Several of the tested substituents, including 2-OH, 2,5-di(OH), 2,5-di(NH2), 2,5-di(Me), 2,5-di(Cl), 2,5-di(Br), and 2,5-di(I), were found to promote pseudorotaxane formation in contrast to what was seen for the parent PTADA system. Other derivatives of PTADA, including those with 2,3-di(OH), 2,6-di(OH), 2,5-di(OMe), 2,3,5,6-tetra(Cl), and 2,3,5,6-tetra(F) substituents, led only to so-called outside binding, where the anion interacts with 14+ on the outside of the macrocyclic cavity. The differing binding modes produced by the choice of PTADA derivative were found to regulate further supramolecular self-assembly when the reaction components included additional metal cations (M). Depending on the specific choice of PTADA derivatives and metal cations (M = Co2+, Ni2+, Zn2+, Cd2+, Gd3+, Nd3+, Eu3+, Sm3+, Tb3+), constructs involving one-dimensional polyrotaxanes, outside-type rotaxanated supramolecular organic frameworks (RSOFs), or two-dimensional metal-organic rotaxane frameworks (MORFs) could be stabilized. The presence and nature of the substituent were found to dictate which specific higher order self-assembled structure was obtained using a given cation. In the specific case of the 2,5-di(OH), 2,5-di(Cl), and 2,5-di(Br) PTADA derivatives and Eu3+, so-called MORFs with distinct fluorescence emission properties could be produced. The present work serves to illustrate how small changes in guest substitution patterns may be used to control structure well beyond the first interaction sphere.
Collapse
Affiliation(s)
- Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Chao Gao
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Jian Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Sun
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Zhang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Gong-Ping Wei
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China.,Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| |
Collapse
|
54
|
Su M, Yan X, Guo X, Li Q, Zhang Y, Li C. Two Orthogonal Halogen-Bonding Interactions Directed 2D Crystalline Supramolecular J-Dimer Lamellae. Chemistry 2020; 26:4505-4509. [PMID: 32077546 DOI: 10.1002/chem.202000462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Dye assemblies exhibit fascinating properties and performances, both of which depend critically on the mutual packing arrangement of dyes and on the supramolecular architecture. Herein, we engineered, for the first time, an intriguing chlorosome-mimetic 2D crystalline J-dimer lamellar structure based on halogenated dyes in aqueous media by employing two distinct orthogonal halogen-bonding (XB) interactions. As the only building motif, antiparallel J-dimer was formed and stabilized by single π-stacking and dual halogen⋅⋅⋅π interactions. With two substituted halogen atoms acting as XB donors and the other two acting as acceptors, the constituent J-dimer units were linked by quadruple highly-directional halogen⋅⋅⋅halogen interactions in a staggered manner, resulting in unique 2D lamellar dye assemblies. This work champions and advances halogen-bonding as a remarkably potent tool for engineering dye aggregates with a controlled molecular packing arrangement and supramolecular architecture.
Collapse
Affiliation(s)
- Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xia Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Quanwen Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
55
|
Beladi-Mousavi SM, Klein J, Khezri B, Walder L, Pumera M. Active Anion Delivery by Self-Propelled Microswimmers. ACS NANO 2020; 14:3434-3441. [PMID: 32043877 DOI: 10.1021/acsnano.9b09525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-propelled micro- and nanomachines are at the forefront of materials research, branching into applications in biomedical science and environmental remediation. Cationic frameworks enabling the collection and delivery of anionic species (A-) are highly required, due to the large variety of life-threatening pollutants, such as radioactive technetium and carcinogenic chromium, and medicines, such as dexamethasone derivatives with negative charges. However, such autonomous moving carriers for active transport of the anions have been barely discussed. A polymeric viologen (PV++)-consisting of electroactive bicationic subunits-is utilized in a tubular autonomous microswimmer to selectively deliver A- of different sizes and charge densities. The cargo loading is based on a facile anion exchange mechanism. The packed crystal structure of PV++ allows removal of an exceptionally high quantity of anions per one microswimmer (2.55 × 10-13 mol anions per microswimmer), a critical factor often neglected regarding the real-world application of microswimmers. Notably, there was virtually no leakage of anions during the delivery process or upon keeping the loaded microswimmers under ambient conditions for at least 4 months. Multiple release mechanisms, compatible with different environments, including electrochemical, photochemical, and a metathesis reaction, with high efficiencies up to 98% are introduced. Such functional autonomous micromachines provide great promise for the next generation of functional materials for biomedical and environmental applications.
Collapse
Affiliation(s)
- Seyyed Mohsen Beladi-Mousavi
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague 166 28, Czech Republic
- Institute of Chemistry of New Materials, Center of Physics and Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, Osnabrück D-49069, Germany
| | - Jonas Klein
- Institute of Chemistry of New Materials, Center of Physics and Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, Osnabrück D-49069, Germany
| | - Bahareh Khezri
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague 166 28, Czech Republic
| | - Lorenz Walder
- Institute of Chemistry of New Materials, Center of Physics and Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, Osnabrück D-49069, Germany
| | - Martin Pumera
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, Prague 166 28, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyn̆ova 656/123, Brno CZ-616 00, Czech Republic
| |
Collapse
|
56
|
Iribarren I, Sánchez-Sanz G, Trujillo C. Anion Recognition by Neutral and Cationic Iodotriazole Halogen Bonding Scaffolds. Molecules 2020; 25:E798. [PMID: 32059506 PMCID: PMC7070532 DOI: 10.3390/molecules25040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
A computational study of the iodide discrimination by different neutral and cationic iodotriazole halogen bonding hosts was carried out by means of Density Functional Theory. The importance of the size of the scaffold was highlighted and its impact observed in the binding energies and intermolecular X···I distances. Larger scaffolds were found to reduce the electronic repulsion and increase the overlap between the halide electron lone pair and the corresponding I-C antibonding orbital, increasing the halogen bonding interactions. Additionally, the planarity plays an important role within the interaction, and can be tuned using hydroxyl to perform intramolecular hydrogen bonds (IMHB) between the scaffold and the halogen atoms. Structures with IMHB exhibit stronger halogen bond interactions, as evidenced by the shorter intramolecular distances, larger electron density values at the bond critical point and more negative binding energies.
Collapse
Affiliation(s)
- Iñigo Iribarren
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, D02 R590 Dublin 2, Ireland;
| | - Goar Sánchez-Sanz
- Irish Centre of High-End Computing, Grand Canal Quay, Dublin 2, Ireland & School of Chemistry, University College Dublin, Belfield, D02 HP83 Dublin 4, Ireland;
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, D02 R590 Dublin 2, Ireland;
| |
Collapse
|