51
|
Wu Y, Xu B, Zhao G, Pan Z, Zhang Z, Zhang J. Palladium/
Xu‐Phos
Catalyzed Enantioselective Tandem Heck/Cacchi Reaction of Unactivated Alkenes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yi Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University, 3663 N. Zhongshan Road Shanghai 200062 China
| | - Bing Xu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University, 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University, 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhan‐Ming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University, 3663 N. Zhongshan Road Shanghai 200062 China
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University, 3663 N. Zhongshan Road Shanghai 200062 China
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
52
|
Whyte A, Bajohr J, Arora R, Torelli A, Lautens M. Sequential Pd
0
‐ and Pd
II
‐Catalyzed Cyclizations: Enantioselective Heck and Nucleopalladation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew Whyte
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ramon Arora
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alexa Torelli
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
53
|
Qiao JB, Zhang YQ, Yao QW, Zhao ZZ, Peng X, Shu XZ. Enantioselective Reductive Divinylation of Unactivated Alkenes by Nickel-Catalyzed Cyclization Coupling Reaction. J Am Chem Soc 2021; 143:12961-12967. [PMID: 34384022 DOI: 10.1021/jacs.1c05670] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic asymmetric dicarbofunctionalization of tethered alkenes has emerged as a promising tool for producing chiral cyclic molecules; however, it typically relies on aryl-tethered alkenes to form benzene-fused compounds. Herein, we report an enantioselective cross-electrophile divinylation reaction of nonaromatic substrates, 2-bromo-1,6-dienes. The approach thus offers a route to new chiral cyclic architectures, which are key structural motifs found in various biologically active compounds. The reaction proceeds under mild conditions, and the use of chiral t-Bu-pmrox and 3,5-difluoro-pyrox ligands resulted in the formation of divinylated products with high chemo-, regio-, and enantioselectivity. The method is applicable for the incorporation of chiral hetero- and carbocycles into complex molecules.
Collapse
Affiliation(s)
- Jin-Bao Qiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ya-Qian Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
54
|
Li YL, Zhang PC, Wu HH, Zhang J. Palladium-Catalyzed Asymmetric Tandem Denitrogenative Heck/Tsuji-Trost of Benzotriazoles with 1,3-Dienes. J Am Chem Soc 2021; 143:13010-13015. [PMID: 34402615 DOI: 10.1021/jacs.1c07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric denitrogenative cycloaddition has emerged as a powerful tool to build chiral aza-heterocyles. However, only one example of asymmetric denitrogenative cycloaddition of benzotriazole with unsaturated hydrocarbons has been explored so far, because the ring-opening of benzotriazole to generate α-imino metal carbenoid species is a thermodynamically unfavorable process. We herein report an efficient asymmetric denitrogenative cycloaddition of benzotriazoles with cyclic and acyclic 1,3-dienes enabled by Pd and chiral sulfonamide phosphine ligand. A variety of substituted hexahydrocarbazoles and indolines were delivered in good yields with high ee values. Interestingly, a pair of enantiomers could be obtained with the use of Xu1 and PC2 with the same absolute configuration. The synthetic utilities of the optically active hexahydrocarbazoles were also showcased.
Collapse
Affiliation(s)
- Yin-Lin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Chao Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
55
|
Whyte A, Bajohr J, Arora R, Torelli A, Lautens M. Sequential Pd 0 - and Pd II -Catalyzed Cyclizations: Enantioselective Heck and Nucleopalladation Reactions. Angew Chem Int Ed Engl 2021; 60:20231-20236. [PMID: 34240542 DOI: 10.1002/anie.202106518] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Indexed: 12/18/2022]
Abstract
An enantioselective consecutive cyclization/coupling process, catalyzed by palladium is reported. Stereoinduction arises from an enantioselective carbopalladation, generating an intermediate which promotes a nucleopalladation step. The dual cyclization sequence was compatible with a variety of alkyne-tethered oxygen- and nitrogen-centered nucleophiles, and a variety of alkenyl-tethered aryl iodides, to forge numerous bisheterocycles in good yields and high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Andrew Whyte
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Ramon Arora
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alexa Torelli
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
56
|
Zhang AA, Chen C, Gao Y, Mo M, Shen RZ, Zhang YH, Ishida N, Murakami M, Liu L. Planar chiral 2-(trifluoromethyl)quinoline-fused ferrocenes via palladium(0)-catalyzed C-H functionalization of trifluoroacetimidoyl chlorides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
57
|
Simultaneous construction of axial and planar chirality by gold/TY-Phos-catalyzed asymmetric hydroarylation. Nat Commun 2021; 12:4609. [PMID: 34326337 PMCID: PMC8322429 DOI: 10.1038/s41467-021-24678-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
The simultaneous construction of two different chiralities via a simple operation poses considerable challenge. Herein a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocenes derivatives is developed, which enable the simultaneous construction of axial and planar chirality. The here identified TY-Phos derived gold complex is responsible for the high yield, good diastereoselectivity (>20:1 dr), high enantioselectivities (up to 99% ee) and mild conditions. The catalyst system also shows potential application in the synthesis of chiral biaryl compounds. The cause of high enantioselectivity of this hydroarylation is investigated with density functional theory caculation. The simultaneous construction of two different types of chiralities is challenging. Here, the authors report a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocene derivatives, which enabled the simultaneous construction of axial and planar chirality.
Collapse
|
58
|
Liu L, Cheng F, Meng C, Zhang AA, Zhang M, Xu K, Ishida N, Murakami M. Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Fangyuan Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxiang Meng
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - An-An Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Mingliang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Kai Xu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
59
|
Chen Q, Li S, Xie X, Guo H, Yang J, Zhang J. Pd-Catalyzed Enantioselective Dicarbofunctionalization of Alkene to Access Disubstituted Dihydroisoquinolinone. Org Lett 2021; 23:4099-4103. [PMID: 33983037 DOI: 10.1021/acs.orglett.1c00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd/Xu-Phos-catalyzed asymmetric Heck/Suzuki domino reaction has been developed that shows high functional group tolerance and enables coupling with various aryl/alkenyl borates. A series of chiral disubstituted dihydroisoquinolinones could be obtained in good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Qiaoyu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Sanliang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoxiao Xie
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| |
Collapse
|
60
|
Chen X, Li L, Yang W, Song K, Wu B, Gan W, Cao J, Xu L. Palladium‐Catalyzed
C—C Bond Activation/Suzuki Reaction of Methylenecyclobutanes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Bing Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Wan‐Chun Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Kun‐Long Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Bin Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Wan‐Er Gan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou Zhejiang 311121 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| |
Collapse
|
61
|
Cerveri A, Giovanelli R, Sella D, Pedrazzani R, Monari M, Nieto Faza O, López CS, Bandini M. Enantioselective CO 2 Fixation Via a Heck-Coupling/Carboxylation Cascade Catalyzed by Nickel. Chemistry 2021; 27:7657-7662. [PMID: 33829576 DOI: 10.1002/chem.202101082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/14/2022]
Abstract
A novel asymmetric nickel-based procedure has been developed in which CO2 fixation is achieved as a second step of a truncated Heck coupling. For this, a new chiral ligand has been prepared and shown to achieve enantiomeric excesses up to 99 %. The overall process efficiently furnishes chiral 2,3-dihydrobenzofuran-3-ylacetic acids, an important class of bioactive products, from easy to prepare starting materials. A combined experimental and computational effort revealed the key steps of the catalytic cycle and suggested the unexpected participation of Ni(I) species in the coupling event.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Giovanelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Davide Sella
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Consorzio CINMPIS, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
62
|
Wang Y, Wang L, Chen M, Tu Y, Liu Y, Zhang J. Palladium/Xu-Phos-catalyzed asymmetric carboamination towards isoxazolidines and pyrrolidines. Chem Sci 2021; 12:8241-8245. [PMID: 34194715 PMCID: PMC8208297 DOI: 10.1039/d1sc01337h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An efficient palladium-catalyzed enantioselective carboamination reaction of N-Boc-O-homoallyl-hydroxylamines and N-Boc-pent-4-enylamines with aryl or alkenyl bromides was developed, delivering various substituted isoxazolidines and pyrrolidines in good yields with up to 97% ee. The reaction features mild conditions, general substrate scope and scalability. The obtained products can be transformed into chiral 1,3-aminoalcohol derivatives without erosion of chirality. The newly identified Xu-Phos ligand bearing an ortho-OiPr group is responsible for the good yield and high enantioselectivity.
Collapse
Affiliation(s)
- Yuzhuo Wang
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Lei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Mingjie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Youshao Tu
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Yu Liu
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
63
|
Lin Z, Jin Y, Hu W, Wang C. Nickel-catalyzed asymmetric reductive aryl-allylation of unactivated alkenes. Chem Sci 2021; 12:6712-6718. [PMID: 34040746 PMCID: PMC8133004 DOI: 10.1039/d1sc01115d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Herein we report a nickel-catalyzed asymmetric reductive aryl-allylation of aryl iodide-tethered unactivated alkenes, wherein both acyclic allyl carbonates and cyclic vinyl ethylene carbonates can serve as the coupling partners. Furthermore, the direct use of allylic alcohols as the electrophilic allyl source in this reaction is also viable in the presence of BOC anhydride. Remarkably, this reaction proceeds with high linear/branched-, E/Z- and enantio-selectivity, allowing the synthesis of various chiral indanes and dihydrobenzofurans (50 examples) containing a homoallyl-substituted quaternary stereocenter with high optical purity (90-98% ee). In this reductive reaction, the use of pregenerated organometallics can be circumvented, giving this process good functionality tolerance and high step-economy.
Collapse
Affiliation(s)
- Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Weitao Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| |
Collapse
|
64
|
Ishu K, Kumar D, Maurya NK, Yadav S, Chaudhary D, Kuram MR. Dicarbofunctionalization of unactivated alkenes by palladium-catalyzed domino Heck/intermolecular direct hetero arylation with heteroarenes. Org Biomol Chem 2021; 19:2243-2253. [PMID: 33600545 DOI: 10.1039/d1ob00195g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A palladium-catalyzed domino Heck/intermolecular direct hetero arylation sequence of unactivated alkenes was developed, providing 1,2,3-triazole containing bisheterocycles bearing all-carbon quaternary centers with yields of 25-90%. The protocol was extended to 1,3,4-oxadiazoles as well. The installed triazole was further exploited for late-stage functionalizations, and the mechanistic studies indicate the involvement of C-H activation.
Collapse
Affiliation(s)
- Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| | - Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector-19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
65
|
Yang WC, Chen XB, Song KL, Wu B, Gan WE, Zheng ZJ, Cao J, Xu LW. Pd-Catalyzed Enantioselective Tandem C–C Bond Activation/Cacchi Reaction between Cyclobutanones and o-Ethynylanilines. Org Lett 2021; 23:1309-1314. [DOI: 10.1021/acs.orglett.0c04297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wan-Chun Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Xiao-Bing Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Kun-Long Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Bin Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Wan-Er Gan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
66
|
Jiang Z, Niu SL, Zeng Q, Ouyang Q, Chen YC, Xiao Q. Selective Alkynylallylation of the C-C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2021; 60:297-303. [PMID: 32909645 DOI: 10.1002/anie.202008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Indexed: 01/04/2023]
Abstract
A Pd-catalyzed regio- and stereoselective alkynylallylation of a specific C-C σ bond in cyclopropenes, using allyl propiolates as both allylation and alkynylation reagents, has been achieved for the first time. By merging selective C(sp2 )-C(sp3 ) bond scission with conjunctive cross-couplings, this decarboxylative reorganization reaction features fascinating atom and step economy and provides an efficient approach to highly functionalized dienynes from readily available substrates. Without further optimization, gram-scale products can be easily obtained by such a simple, neutral, and low-cost catalytic system with high TONs. DFT calculations afford a rationale toward the formation of the products and indicate that the selective insertion of the double bond of cyclopropenes into the C-Pd bond of ambidentate Pd complex and the subsequent nonclassical β-C elimination promoted by 1,4-palladium migration are critical for the success of the reaction.
Collapse
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Sheng-Li Niu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qiang Zeng
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ying-Chun Chen
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
67
|
Chen J, Li JH, Zhu YP, Wang QA. Copper-catalyzed enantioselective arylboronation of activated alkenes leading to chiral 3,3′-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00186h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper-catalyzed asymmetric arylboronation of activated alkenes for producing highly enantioenriched 3-boroalkyl oxindoles and incorporating pharmacophores is depicted.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- School of Pharmacy
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
68
|
Chen LP, Chen JF, Zhang YJ, He XY, Han YF, Xiao YT, Lv GF, Lu X, Teng F, Sun Q, Li JH. Atroposelective carbonylation of aryl iodides with amides: facile synthesis of enantioenriched cyclic and acyclic amides. Org Chem Front 2021. [DOI: 10.1039/d1qo01147b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unprecedented palladium-catalyzed asymmetric carbonylation of ArI with carbon monoxide (CO) to expand a class of atroposelective cyclic and acyclic amides in good yields with high enantioselectivities has been reported.
Collapse
Affiliation(s)
- Li-Ping Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiang-Fei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xing-Yi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
69
|
Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Asymmetric synthesis of 3-benzyl and allyl isoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00589h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Pd-catalyzed enantioselective Heck/Suzuki reaction of 1,1-disubstituted enamides with aryl/vinyl boronic acids has been developed to access 3-benzyl/allyl substituted isoindolinones bearing a tetrasubstituted stereogenic carbon center.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yaxin Teng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|
70
|
Li M, Wang Y, Xu Y. Palladium-Catalyzed Tandem Heck Cyclization Reactions to Access the Bridged N-Heterocyclic Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
71
|
Xu XH, Liu WB, Song X, Zhou L, Liu N, Zhu YY, Wu ZQ. Chain-end functionalization of living helical polyisocyanides through a Pd( ii)-mediated Sonogashira coupling reaction. Polym Chem 2021. [DOI: 10.1039/d1py00809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various functional helical polymers were constructed through chain-end functionalization of living helical polyisocyanides through a Pd(ii)-mediated Sonogashira coupling reaction.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yuan-Yuan Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
72
|
Chen L, Jin S, Gao J, Liu T, Shao Y, Feng J, Wang K, Lu T, Du D. N-Heterocyclic Carbene/Magnesium Cocatalyzed Radical Relay Assembly of Aliphatic Keto Nitriles. Org Lett 2020; 23:394-399. [DOI: 10.1021/acs.orglett.0c03883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lei Chen
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shiyi Jin
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tongtong Liu
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuebo Shao
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Kangyi Wang
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
73
|
Wu X, Xiao G, Ding Y, Zhan Y, Zhao Y, Chen R, Loh TP. Palladium-Catalyzed Intermolecular Polarity-Mismatched Addition of Unactivated Alkyl Radicals to Unactivated Alkenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaojin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guanlin Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
| | - Yalan Ding
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616, Singapore
| |
Collapse
|
74
|
Li Y, Zhang FP, Wang RH, Qi SL, Luan YX, Ye M. Carbamoyl Fluoride-Enabled Enantioselective Ni-Catalyzed Carbocarbamoylation of Unactivated Alkenes. J Am Chem Soc 2020; 142:19844-19849. [PMID: 33170685 DOI: 10.1021/jacs.0c09949] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A carbamoyl fluoride-enabled enantioselective Ni-catalyzed carbocarbamoylation of unactivated alkenes was developed, providing a broad range of chiral γ-lactams bearing an all-carbon quaternary center in 45-96% yield and 38-97% ee.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng-Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
75
|
Jiang Z, Niu S, Zeng Q, Ouyang Q, Chen Y, Xiao Q. Selective Alkynylallylation of the C−C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Sheng‐Li Niu
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qiang Zeng
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qin Ouyang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Ying‐Chun Chen
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qing Xiao
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| |
Collapse
|
76
|
Wang L, Wang C. Nickel-Catalyzed Three-Component Reductive Alkylacylation of Electron-Deficient Activated Alkenes. Org Lett 2020; 22:8829-8835. [DOI: 10.1021/acs.orglett.0c03210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
77
|
Lin T, Pan Z, Tu Y, Zhu S, Wu H, Liu Y, Li Z, Zhang J. Design and Synthesis of TY‐Phos and Application in Palladium‐Catalyzed Enantioselective Fluoroarylation of
gem
‐Difluoroalkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tao‐Yan Lin
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Youshao Tu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Yu Liu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Zhiming Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
78
|
Lin TY, Pan Z, Tu Y, Zhu S, Wu HH, Liu Y, Li Z, Zhang J. Design and Synthesis of TY-Phos and Application in Palladium-Catalyzed Enantioselective Fluoroarylation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2020; 59:22957-22962. [PMID: 32893388 DOI: 10.1002/anie.202008262] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/07/2020] [Indexed: 01/10/2023]
Abstract
The first example of highly enantioselective fluoroarylation of gem-difluoroalkenes with aryl halides is presented by using a new chiral sulfinamide phosphine (Sadphos) type ligand TY-Phos. N-Me-TY-Phos can be easily synthesized on a gram scale from readily available starting materials in three steps. Salient features of this work including readily available starting materials, good yields, high enantioselectivities as well as broad substrate scope make this approach very practical and attractive. Notably, the asymmetric synthesis of an analogue of a biologically active molecule is also reported.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
79
|
Tao M, Li W, Zhang J. Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization of norbornene and norbornadiene. Chem Commun (Camb) 2020; 56:13125-13128. [PMID: 33005910 DOI: 10.1039/d0cc04996d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective Pd/Xiang-Phos-catalyzed carbohetero-functionalization of norbornene is described, giving a direct access to various chiral norbornane-fused dihydrofurans and dihydro-pyrroles. This synthetic methodology provides the first example of asymmetric carboetherification of norbornene, and also tolerates norbornadiene well.
Collapse
Affiliation(s)
- Mengna Tao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | | | | |
Collapse
|
80
|
Chu H, Cheng J, Yang J, Guo Y, Zhang J. Asymmetric Dearomatization of Indole by Palladium/PC‐Phos‐Catalyzed Dynamic Kinetic Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haoke Chu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Jie Cheng
- Stake Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yin‐Long Guo
- Stake Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
81
|
Chu H, Cheng J, Yang J, Guo YL, Zhang J. Asymmetric Dearomatization of Indole by Palladium/PC-Phos-Catalyzed Dynamic Kinetic Transformation. Angew Chem Int Ed Engl 2020; 59:21991-21996. [PMID: 32851748 DOI: 10.1002/anie.202010164] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/08/2023]
Abstract
A palladium-catalyzed intermolecular dynamic kinetic asymmetric dearomatization of 3-arylindoles with internal alkynes was developed with the use of achiral Xantphos and chiral sulfinamide phosphine ligand (PC-Phos) as the co-ligands. This method could deliver various spiro[indene-1,3'-indole] compounds in good yields (up to 95 % yield) with up to 98 % ee. The salient features of the transformation include the use of readily available substrates, ease of scale-up and the versatile functionalization of the products. The mechanistic experiments gave some insights on active intermediates.
Collapse
Affiliation(s)
- Haoke Chu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jie Cheng
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin-Long Guo
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
82
|
Syntheses of 3,3-Disubstituted Dihydrobenzofurans, Indolines, Indolinones and Isochromanes by Palladium-Catalyzed Tandem Reaction Using Pd(PPh3)2Cl2/(±)-BINAP as a Catalytic System. Catalysts 2020. [DOI: 10.3390/catal10091084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A general procedure for the tandem arylation reaction of arylbromide with heteroaryl compounds was developed by using Pd(PPh3)2Cl2/(±)-BINAP (1,1′-Binaphthalene-2,2′-diylbis (diphenylphosphane)) as catalytic system. Both sulphur- and oxygen-containing heterocycles were also employed as an efficient reagent for arylation, which gave moderate to excellent yields with moderate to good regioselectivities (5:1 to > 20:1 ir (isomer ratio)). Except for dihydrobenzofurans, indolines and indolinones, this type of tandem reaction was also expanded to synthesize isochromanes. The synthesized new compounds were well characterized through different spectroscopic techniques, such as 1H and 13C NMR (nuclear magnetic resonance), and mass spectral analysis.
Collapse
|
83
|
Wang D, He Y, Dai H, Huang C, Yuan X, Xie J. Manganese‐Catalyzed
Hydrocarbofunctionalization of Internal Alkenes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Haotian Dai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
84
|
Dearomative 1,4-difunctionalization of naphthalenes via palladium-catalyzed tandem Heck/Suzuki coupling reaction. Nat Commun 2020; 11:4380. [PMID: 32873772 PMCID: PMC7463262 DOI: 10.1038/s41467-020-18137-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Dearomative functionalization reactions represent an important strategy for the synthesis of valuable three-dimensional molecules from simple planar aromatics. Naphthalene is a challenging arene towards transition-metal-catalyzed dearomative difunctionalization reactions. Reported herein is an application of naphthalene as a masked conjugated diene in a palladium-catalyzed dearomative 1,4-diarylation or 1,4-vinylarylation reaction via tandem Heck/Suzuki sequence. Three types of 1,4-dihydronaphthalene-based spirocyclic compounds are achieved in excellent regio- and diastereoselectivities. Key to this transformation is the inhibition of a few competitive side reactions, including intramolecular naphthalenyl C-H arylation, intermolecular Suzuki cross-coupling, dearomative 1,2-difunctionalization, and dearomative reductive-Heck reaction. Density functional theory (DFT) calculations imply that the facile exergonic dearomative insertion of a naphthalene double bond disrupts the sequence of direct Suzuki coupling, leading to the tandem Heck/Suzuki coupling reaction. The observed regioselectivity towards 1,4-difunctionalization is due to the steric repulsions between the introduced aryl group and the spiro-scaffold in 1,2-difunctionalization. Naphthalene is a challenging arene towards transition-metal-catalyzed dearomative difunctionalization. Here, the authors show that naphthalene may act as a masked conjugated diene in palladium-catalyzed dearomative 1,4-diarylation or 1,4-vinylarylation via a tandem Heck/Suzuki sequence.
Collapse
|
85
|
Wang XX, Lu X, He SJ, Fu Y. Nickel-catalyzed three-component olefin reductive dicarbofunctionalization to access alkylborates. Chem Sci 2020; 11:7950-7956. [PMID: 34094163 PMCID: PMC8163243 DOI: 10.1039/d0sc02054k] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
We report a three-component olefin reductive dicarbofunctionalization for constructing alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex compounds.
Collapse
Affiliation(s)
- Xiao-Xu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei 230026 China
| | - Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei 230026 China
| | - Shi-Jiang He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
86
|
Yao T, Zhang F, Zhang J, Liu L. Palladium-Catalyzed Intermolecular Heck-Type Dearomative [4 + 2] Annulation of 2 H-Isoindole Derivatives with Internal Alkynes. Org Lett 2020; 22:5063-5067. [PMID: 32539418 DOI: 10.1021/acs.orglett.0c01643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here, an interesting palladium-catalyzed intermolecular Heck-type dearomative [4 + 2] annulation of 2H-isoindole derivatives with internal alkynes has been developed, affording diverse polycyclic pyrrolidine scaffolds in good yield. This reaction is a useful method for the transformation of 2H-isoindole.
Collapse
Affiliation(s)
- Tengfei Yao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Fang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
87
|
Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. Asymmetric Ni-Catalyzed Radical Relayed Reductive Coupling. J Am Chem Soc 2020; 142:13515-13522. [DOI: 10.1021/jacs.0c05254] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaofeng Wei
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Wei Shu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Andrés García-Domínguez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
88
|
Maikhuri VK, Khatri V, Kumar A, Singh B, Prasad AK. Synthesis of Sugar Diene and Its Pd-Catalyzed Transformation into Chromanes. J Org Chem 2020; 85:7068-7076. [PMID: 32402192 DOI: 10.1021/acs.joc.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A route to synthesize 1,2-disubstituted glucals has been developed, which were further converted to substituted chromanes by thermal 6π-electrocyclization in HMPA followed by in situ aromatization. One of the key steps in the synthesis of chromane is metal-free generation of C1-substituted glucal from d-mannose, which was further converted to 1,2-disubstituted glucals by Pd-catalyzed Fujiwara-Moritani reaction with styrenes, acrylates, acrylamide, acrylonitrile, and ethyl vinyl ketone in good yields.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vinod Khatri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.,Department of Chemistry, Pt. Neki Ram Sharma Govt. College, Rohtak 124001, India
| | - Amit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Balram Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
89
|
Shekhar KC, Dhungana RK, Khanal N, Giri R. Nickel-Catalyzed α-Carbonylalkylarylation of Vinylarenes: Expedient Access to γ,γ-Diarylcarbonyl and Aryltetralone Derivatives. Angew Chem Int Ed Engl 2020; 59:8047-8051. [PMID: 32059062 PMCID: PMC7274890 DOI: 10.1002/anie.201913435] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 11/10/2022]
Abstract
We report a Ni-catalyzed regioselective α-carbonylalkylarylation of vinylarenes with α-halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α-halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ-diarylcarbonyl derivatives with α-secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.
Collapse
Affiliation(s)
- KC Shekhar
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM, USA
| | - Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Namrata Khanal
- Department of Chemistry and Chemical Biology, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
90
|
Chen M, Wang X, Yang P, Kou X, Ren Z, Guan Z. Palladium‐Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)‐Physostigmine, (+)‐Physovenine, and (+)‐Folicanthine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zhi‐Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
91
|
Chen M, Wang X, Yang P, Kou X, Ren ZH, Guan ZH. Palladium-Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)-Physostigmine, (+)-Physovenine, and (+)-Folicanthine. Angew Chem Int Ed Engl 2020; 59:12199-12205. [PMID: 32239787 DOI: 10.1002/anie.202003288] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Reported herein is the development of the first enantioselective monodentate ligand assisted Pd-catalyzed domino Heck carbonylation reaction with CO. The highly enantioselective domino Heck carbonylation of N-aryl acrylamides and various nucleophiles, including arylboronic acids, anilines, and alcohols, in the presence of CO was achieved. A novel monodentate phosphoramidite ligand, Xida-Phos, has been developed for this reaction and it displays excellent reactivity and enantioselectivity. The reaction employs readily available starting materials, tolerates a wide range of functional groups, and provides straightforward access to a diverse array of enantioenriched oxindoles having β-carbonyl-substituted all-carbon quaternary stereocenters, thus providing a facile and complementary method for the asymmetric synthesis of bioactive hexahydropyrroloindole and its dimeric alkaloids.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
92
|
Tu HY, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing FL, Chu L. Enantioselective Three-Component Fluoroalkylarylation of Unactivated Olefins through Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2020; 142:9604-9611. [DOI: 10.1021/jacs.0c03708] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hai-Yong Tu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Liping Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Huan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
93
|
Chintawar CC, Yadav AK, Patil NT. Gold‐Catalyzed 1,2‐Diarylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:11808-11813. [DOI: 10.1002/anie.202002141] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Chetan C. Chintawar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Amit K. Yadav
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
94
|
Affiliation(s)
- Chetan C. Chintawar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Amit K. Yadav
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
95
|
Yang Q, Li S, Wang J(J. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2
H
‐Chromenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 P. R. China
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Sifeng Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
96
|
Huang X, Nguyen MH, Pu M, Zhang L, Chi YR, Wu Y, Zhou JS. Asymmetric Reductive and Alkynylative Heck Bicyclization of Enynes to Access Conformationally Restricted Aza[3.1.0]bicycles. Angew Chem Int Ed Engl 2020; 59:10814-10818. [DOI: 10.1002/anie.202000859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaolei Huang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Minh Hieu Nguyen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Maoping Pu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Luoqiang Zhang
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| | - Yonggui Robin Chi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yun‐Dong Wu
- Lab of Computational Chemistry and Drug DesignState Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhen Bay Laboratory Shenzhen 518055 China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
97
|
Huang X, Nguyen MH, Pu M, Zhang L, Chi YR, Wu Y, Zhou JS. Asymmetric Reductive and Alkynylative Heck Bicyclization of Enynes to Access Conformationally Restricted Aza[3.1.0]bicycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolei Huang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Minh Hieu Nguyen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Maoping Pu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Luoqiang Zhang
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| | - Yonggui Robin Chi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yun‐Dong Wu
- Lab of Computational Chemistry and Drug DesignState Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhen Bay Laboratory Shenzhen 518055 China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
98
|
Zhou L, Xu B, Ji D, Zhang Z, Zhang J. Ming‐Phos/Gold(I)‐Catalyzed Stereodivergent Synthesis of Highly Substituted Furo[3,4‐d][1,2]oxazines†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lujia Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Bing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Danting Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Zhan‐Ming Zhang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
99
|
Matsude A, Hirano K, Miura M. Highly Stereoselective Synthesis of 1,2-Disubstituted Indanes by Pd-Catalyzed Heck/Suzuki Sequence of Diarylmethyl Carbonates. Org Lett 2020; 22:3190-3194. [DOI: 10.1021/acs.orglett.0c00945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akihiro Matsude
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
100
|
Lan Y, Wang C. Nickel-catalyzed enantioselective reductive carbo-acylation of alkenes. Commun Chem 2020; 3:45. [PMID: 36703467 PMCID: PMC9814080 DOI: 10.1038/s42004-020-0292-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Recently, transition-metal-catalyzed asymmetric dicarbofunctionalization of tethered alkenes has emerged as a powerful method for construction of chiral cyclic carbo- and heterocycles. However, all these reactions rely on facially selective arylmetalation of the pendant olefinic unit. Here, we successfully apply acylnickelation as the enantiodetermining step in the asymmetric nickel-catalyzed reductive carbo-acylation of aryl carbamic chloride-tethered alkenes with primary and secondary alkyl iodides as well as benzyl chlorides as the coupling partners, using manganese as a reducing agent. By circumventing the use of pre-generated organometallics, this reductive strategy enables the synthesis of diverse enantioenriched oxindoles bearing a quaternary stereogenic center under mild reaction conditions with high tolerance of a broad range of functional moieties.
Collapse
Affiliation(s)
- Yun Lan
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026 People’s Republic of China
| | - Chuan Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026 People’s Republic of China
| |
Collapse
|