51
|
Bentley CL, Kang M, Unwin PR. Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications. Anal Chem 2020; 92:11673-11680. [PMID: 32521997 DOI: 10.1021/acs.analchem.0c01540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
52
|
Wei W, Yuan T, Jiang W, Gao J, Chen HY, Wang W. Accessing the Electrochemical Activity of Single Nanoparticles by Eliminating the Heterogeneous Electrical Contacts. J Am Chem Soc 2020; 142:14307-14313. [PMID: 32787250 DOI: 10.1021/jacs.0c06171] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While single nanoparticle electrochemistry holds great promise for establishing the structure-activity relationship (SAR) of electroactive nanomaterials, as it removes the heterogeneity among individuals, successful SAR studies remain rare. When one nanoparticle is seen to exhibit better performance than the others, it is often simply attributed to better activity of the particular individual. By taking the ion insertion reaction of Prussian blue nanoparticles as an example, here we show that the electrical contact between nanoparticles and electrode, a previously overlooked factor, was greatly distinct from one nanoparticle to another and significantly contributed to the apparent heterogeneity in the reactivity and cyclability. An individual nanoparticle with intrinsically perfect structure (size, facet, crystallinity, and so on) could be completely inactive, simply due to poor electrical contacts, which blurred the SAR and likely caused failures. We further proposed a sputter-coating method to enhance the electrical contacts by depositing an ultrathin platinum layer onto the sample. Such an approach was routinely adopted in scanning electron microscopy to improve the electron mobility between nanoparticles and substrate. Elimination of heterogeneous contacts ensured that the electrochemical activity of single nanoparticles can be accessed and further correlated with their structural features, thus paving the way for single nanoparticle electrochemistry to deliver on its promises in SAR.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
53
|
Chen S, Prins S, Chen A. Patterning of BiVO 4 Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18065-18073. [PMID: 32195563 DOI: 10.1021/acsami.9b22605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a lot of interest in understanding localized catalytic activities at the micro and nanoscale and designing robust catalysts for photoelectrochemical oxidation of water to address the pressing energy and environmental challenges. Here, we demonstrate that scanning photoelectrochemical microscopy (SPECM) can be effectively employed as a novel technique (i) to modify a photocatalyst surface with an electrocatalyst layer in a matrix fashion and (ii) to monitor its localized activity toward the photoelectrochemical (PEC) water oxidation reaction. The three-dimensional SPECM image clearly shows that the loading of the FeOOH electrocatalyst on the BiVO4 semiconductor surface strongly affects its local PEC reaction activity. The optimal photoelectrodeposition time of FeOOH on the BiVO4 photocatalyst was found to be ∼20 min when FeOOH was employed as the electrocatalyst. The electrocatalyst optimization process was conducted on a single photoanode electrode surface, making the optimization process efficient and reliable. The morphology of the formed photocatalyst/electrocatalyst hybrid, inclusive of its localized activity toward the water oxidation reaction, was simultaneously probed. A photoanode surface comprising CuWO4/BiVO4/FeOOH was further prepared in this study and investigated. It was found that the localized photoactivity truly reflects the activity of the local area, differs from region to region, and is contingent on the morphology of the surface. Moreover, the Pt UME is determined as an efficient probe to analyze the photoactivity of the PEC water splitting reaction. This work highlights the novel SPECM technique for enhancement and examination of the catalytic activity of the nanostructured materials.
Collapse
Affiliation(s)
- Shuai Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
54
|
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
55
|
Alden SE, Siepser NP, Patterson JA, Jagdale GS, Choi M, Baker LA. Array Microcell Method (AMCM) for Serial Electroanalysis. ChemElectroChem 2020; 7:1084-1091. [PMID: 36588586 PMCID: PMC9798888 DOI: 10.1002/celc.201901976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe a method for electrochemical measurement and synthesis based on the combination of a mobile micropipette and a microelectrode array, which we term the array microcell method (AMCM). AMCM has the ability to address single electrodes within a microelectrode array (MEA) and provides a simple, low-cost format to enable versatile electrochemical measurements. In AMCM, a droplet at the tip of a movable micropipette (inner diameter of 50 μm) functions as an electrochemical cell, in which the electrode area is defined by a microelectrode of the array. We also report carbon MEAs that are well suited for AMCM and are fabricated from pyrolyzed photoresist films (PPFs). PPF-MEAs with nominal electrode diameters of 5.5 μm are characterized by AMCM, standard macroscale electrochemical methods, and finite element modeling. The versatility of AMCM is demonstrated by measurement of single Pt microparticles and by electrodeposition of shapecontrolled Pt nanoparticles.
Collapse
Affiliation(s)
- Sasha E Alden
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Jacqueline A Patterson
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Myunghoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| |
Collapse
|
56
|
Choi M, Siepser NP, Jeong S, Wang Y, Jagdale G, Ye X, Baker LA. Probing Single-Particle Electrocatalytic Activity at Facet-Controlled Gold Nanocrystals. NANO LETTERS 2020; 20:1233-1239. [PMID: 31917592 PMCID: PMC7727918 DOI: 10.1021/acs.nanolett.9b04640] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrocatalytic reduction reactions (i.e., the hydrogen evolution reaction (HER) and oxygen reduction reaction) at individual, faceted Au nanocubes (NCs) and nano-octahedra (ODs) expressing predominantly {100} and {111} crystal planes on the surface, respectively, were studied by nanoscale voltammetric mapping. Cyclic voltammograms were collected at individual nanoparticles (NPs) with scanning electrochemical cell microscopy (SECCM) and correlated with particle morphology imaged by electron microscopy. Nanoscale measurements from a statistically informative set of individual NPs revealed that Au NCs have superior HER electrocatalytic activity compared to that of Au ODs, in good agreement with macroscale cyclic voltammetry measurements. Au NCs exhibited more particle-to-particle variation in catalytic activity compared to that with Au ODs. The approach of single-particle SECCM imaging coupled with macroscale CV on well-defined NPs provides a powerful toolset for the design and activity assessment of nanoscale electrocatalysts.
Collapse
Affiliation(s)
- Myunghoon Choi
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Natasha P Siepser
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Soojin Jeong
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Yi Wang
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Gargi Jagdale
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Xingchen Ye
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Lane A Baker
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
57
|
Wang X, Song S, Zhang H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 2020; 49:736-764. [DOI: 10.1039/c9cs00379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review article focuses on the redox interaction-engaged strategy that offers a powerful way to construct multicomponent nanomaterials with precisely-controlled size, shape, composition and hybridization of nanostructures.
Collapse
Affiliation(s)
- Xiao Wang
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
58
|
Ornelas IM, Unwin PR, Bentley CL. High-Throughput Correlative Electrochemistry-Microscopy at a Transmission Electron Microscopy Grid Electrode. Anal Chem 2019; 91:14854-14859. [PMID: 31674764 DOI: 10.1021/acs.analchem.9b04028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As part of the revolution in electrochemical nanoscience, there is growing interest in using electrochemistry to create nanostructured materials and to assess properties at the nanoscale. Herein, we present a platform that combines scanning electrochemical cell microscopy with ex situ scanning transmission electron microscopy to allow the ready creation of an array of nanostructures coupled with atomic-scale analysis. As an illustrative example, we explore the electrodeposition of Pt at carbon-coated transmission electron microscopy (TEM) grid supports, where in a single high-throughput experiment it is shown that Pt nanoparticle (PtNP) density increases and size polydispersity decreases with increasing overpotential (i.e., driving force). Furthermore, the coexistence of a range of nanostructures, from single atoms to aggregates of crystalline PtNPs, during the early stages of electrochemical nucleation and growth supports a nonclassical aggregative growth mechanism. Beyond this exemplary system, the presented correlative electrochemistry-microscopy approach is generally applicable to solve ubiquitous structure-function problems in electrochemical science and beyond, positioning it as a powerful platform for the rational design of functional nanomaterials.
Collapse
Affiliation(s)
- Isabel M Ornelas
- Nanoscale Physics Research Laboratory , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Patrick R Unwin
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Cameron L Bentley
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
59
|
Tarnev T, Aiyappa HB, Botz A, Erichsen T, Ernst A, Andronescu C, Schuhmann W. Scanning Electrochemical Cell Microscopy Investigation of Single ZIF-Derived Nanocomposite Particles as Electrocatalysts for Oxygen Evolution in Alkaline Media. Angew Chem Int Ed Engl 2019; 58:14265-14269. [PMID: 31347751 PMCID: PMC6790716 DOI: 10.1002/anie.201908021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/11/2022]
Abstract
"Single entity" measurements are central for an improved understanding of the function of nanoparticle-based electrocatalysts without interference arising from mass transfer limitations and local changes of educt concentration or the pH value. We report a scanning electrochemical cell microscopy (SECCM) investigation of zeolitic imidazolate framework (ZIF-67)-derived Co-N-doped C composite particles with respect to the oxygen evolution reaction (OER). Surmounting the surface wetting issues as well as the potential drift through the use of a non-interfering Os complex as free-diffusing internal redox potential standard, SECCM could be successfully applied in alkaline media. SECCM mapping reveals activity differences relative to the number of particles in the wetted area of the droplet landing zone. The turnover frequency (TOF) is 0.25 to 1.5 s-1 at potentials between 1.7 and 1.8 V vs. RHE, respectively, based on the number of Co atoms in each particle. Consistent values at locations with varying number of particles demonstrates OER performance devoid of macroscopic film effects.
Collapse
Affiliation(s)
- Tsvetan Tarnev
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Harshitha Barike Aiyappa
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Alexander Botz
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Thomas Erichsen
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Andrzej Ernst
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration University Duisburg Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|