51
|
Nishad RC, Rit A. Self-Assembly of Benzimidazole-Derived Tris-NHC Ligands and Ag I -Ions to Hexanuclear Organometallic Cages and Their Unusual Transmetalation Chemistry. Chemistry 2021; 27:594-599. [PMID: 33090631 DOI: 10.1002/chem.202003937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Indexed: 01/08/2023]
Abstract
Multi-ligand self-assembly to attain the AgI -N-heterocyclic carbene (NHC)-built hexanuclear organometallic cages of composition [Ag6 (3 a,b)4 ](PF6 )6 from the reaction of benzimidazole-derived tris(azolium) salts [H3 -3 a,b](PF6 )3 with Ag2 O was achieved. The molecular structures of the cages were established by X-ray diffraction studies along with NMR and MS analyses. The existence of a single assembly in solution was supported by diffusion-ordered spectroscopy (DOSY) 1 H NMR spectra. Further, transmetalation reactions of these self-assembled complexes, [Ag6 (3 a,b)4 ](PF6 )6 , with CuI /AuI -ions provided various coinage metal-NHC complexes having diverse molecular compositions, which included the first example of a hexanuclear CuI -dodecacarbene complex, [Cu6 (3 b)4 ](PF6 )6 .
Collapse
Affiliation(s)
- Rajeev C Nishad
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
52
|
Synthesis of palladium complexes with anionic N,NR- or neutral NH,NR-theophylline-derived NHC ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
53
|
Hua K, Gan MM, Liu XR, Zhang L, An YY, Han YF. Template-driven construction of [8]-imidazolium macrocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01617a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A controllable and efficient template-driven strategy for the rational construction of polyimidazolium macrocycles has been developed.
Collapse
Affiliation(s)
- Kai Hua
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| | - Ming-Ming Gan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| | - Xue-Ru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| | - Yuan-Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
54
|
Mansour W, Fettouhi M, El Ali B. Regioselective Synthesis of Chromones via Cyclocarbonylative Sonogashira Coupling Catalyzed by Highly Active Bridged-Bis(N-Heterocyclic Carbene)Palladium(II) Complexes. ACS OMEGA 2020; 5:32515-32529. [PMID: 33376889 PMCID: PMC7758971 DOI: 10.1021/acsomega.0c04706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 05/08/2023]
Abstract
The one-pot regioselective and catalytic synthesis of bioactive chromones and flavones was achieved via phosphine-free cyclocarbonylative Sonogashira coupling reactions of 2-iodophenols with aryl alkynes, alkyl alkynes, and dialkynes. The reactions are catalyzed by new dibromidobis(NHC)palladium(II) complexes. The new bridged N,N'-substituted benzimidazolium salts (L1, L2, and L3) and their palladium complexes C1, C2, and C3 were designed, prepared, and fully characterized using different physical and spectroscopic techniques. The molecular structures of complexes C1 and C3 were determined by single-crystal X-ray diffraction analysis. They showed a distorted square planar geometry, where the Pd(II) ion is bonded to the carbon atoms of two cis NHC carbene ligands and two cis bromido anions. These complexes displayed a high catalytic activity in cyclocarbonylative Sonogashira coupling reactions with low catalyst loadings. The regioselectivity of these reactions was controlled by using diethylamine as the base and DMF as the solvent.
Collapse
|
55
|
Bai S, Ma LL, Yang T, Wang F, Wang LF, Hahn FE, Wang YY, Han YF. Supramolecular-induced regiocontrol over the photochemical [4 + 4] cyclodimerization of NHC- or azole-substituted anthracenes. Chem Sci 2020; 12:2165-2171. [PMID: 34163981 PMCID: PMC8179318 DOI: 10.1039/d0sc06017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thanks to the impressive control that microenvironments within enzymes can have over substrates, many biological reactions occur with high regio- and stereoselectivity. However, comparable regio- and stereoselectivity is extremely difficult to achieve for many types of reactions, particularly photochemical cycloaddition reactions in homogeneous solutions. Here, we describe a supramolecular templating strategy that enables photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracenes with unique regio- and stereoselectivity and reactivity using a concept known as the supramolecular approach. The reaction of 2,6-azolium substituted anthracenes H4-L(PF6)2 (L = 1a–1c) with Ag2O yielded complexes anti-[Ag2L2](PF6)4 featuring an antiparallel orientation of the anthracene groups. Irradiation of complexes anti-[Ag2L2](PF6)4 proceeded under [4 + 4] cycloaddition linking the two anthracene moieties to give cyclodimers anti-[Ag2(2)](PF6)2. Reaction of 2,6-azole substituted anthracenes with a dinuclear complex [Cl-Au-NHC–NHC-Au-Cl] yields tetranuclear assemblies with the anthracene moieties oriented in syn-fashion. Irradiation and demetallation gives a [4 + 4] syn-photodimer of two anthracenes. The stereoselectivity of the [4 + 4] cycloaddition between two anthracene moieties is determined by their orientation in the metallosupramolecular assemblies. A supramolecular templating strategy that enables the photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracene derivatives with unique stereoselectivity has been developed based on metal-NHC units.![]()
Collapse
Affiliation(s)
- Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Tao Yang
- School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Feng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
56
|
Yang D, Greenfield JL, Ronson TK, von Krbek LKS, Yu L, Nitschke JR. LaIII and ZnII Cooperatively Template a Metal–Organic Capsule. J Am Chem Soc 2020; 142:19856-19861. [DOI: 10.1021/jacs.0c09991] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dong Yang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jake L. Greenfield
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Larissa K. S. von Krbek
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
57
|
Ibáñez S, Gusev DG, Peris E. Unexpected Influence of Substituents on the Binding Affinities of Polycyclic Aromatic Hydrocarbons with a Tetra-Au(I) Metallorectangle. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
58
|
Dobbe CB, Gutiérrez‐Blanco A, Tan TTY, Hepp A, Poyatos M, Peris E, Hahn FE. Template-Controlled Synthesis of Polyimidazolium Salts by Multiple [2+2] Cycloaddition Reactions. Chemistry 2020; 26:11565-11570. [PMID: 32237240 PMCID: PMC7540564 DOI: 10.1002/chem.202001515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/16/2022]
Abstract
The tetrakisimidazolium salt H4 -2(Br)4 , featuring a central benzene linker and 1,2,4,5-(nBu-imidazolium-Ph-CH=CH-) substituents reacts with Ag2 O in the presence of AgBF4 to yield the tetranuclear, oktakis-NHC assembly [3](BF4 )4 . Cation [3]4+ features four pairs of olefins from the two tetrakis-NHC ligands perfectly arranged for a subsequent [2+2] cycloaddition. Irradiation of [3](BF4 )4 with a high pressure Hg lamp connects the two tetra-NHC ligands through four cyclobutane linkers to give compound [4](BF4 )4 . Removal of the template metals yields the novel oktakisimidazolium salt H8 -5(BF4 )8 . The tetrakisimidazolium salt H4 -2(BF4 )4 and the oktakisimidazolium salt H8 -5(BF4 )8 have been used as multivalent anion receptors and their anion binding properties towards six different anions have been compared.
Collapse
Affiliation(s)
- Christian B. Dobbe
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Ana Gutiérrez‐Blanco
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Tristan T. Y. Tan
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| |
Collapse
|
59
|
Li Y, Huo GF, Liu B, Song B, Zhang Y, Qian X, Wang H, Yin GQ, Filosa A, Sun W, Hla SW, Yang HB, Li X. Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. J Am Chem Soc 2020; 142:14638-14648. [DOI: 10.1021/jacs.0c06680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Alexander Filosa
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
60
|
Ibáñez S, Poyatos M, Peris E. N-Heterocyclic Carbenes: A Door Open to Supramolecular Organometallic Chemistry. Acc Chem Res 2020; 53:1401-1413. [PMID: 32644769 DOI: 10.1021/acs.accounts.0c00312] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The field of metallosupramolecular chemistry is clearly dominated by the use of O-, N-, and P-donor Werner-type polydentate ligands. These molecular architectures are of high interest because of their wide range of applications, which include molecular encapsulation, stabilization of reactive species, supramolecular catalysis, and drug delivery, among others. Only recently, organometallic ligands have allowed the preparation of a variety of supramolecular coordination complexes, and the term supramolecular organometallic complexes (SOCs) is gaining space within the field of metallosupramolecular chemistry. While the early examples of SOCs referred to supramolecular architectures mostly containing bisalkenyl, diphenyl, or bisalkynyl linkers, the development of SOCs during the past decade has been boosted by the parallel development of multidentate N-heterocyclic carbene (NHC) ligands. The first examples of NHC-based SOCs referred to supramolecular assemblies based on polydentate NHC ligands bound to group 11 metals. However, during the last 10 years, several planar poly-NHC ligands containing extended π-conjugated systems have facilitated the formation of a large variety of architectures in which the supramolecular assemblies can contain metals other than Cu, Ag, and Au. Such ligands are Janus di-NHCs and trigonal-planar tris-NHCs-most of them prepared by our research group-which have allowed the preparation of a vast range of NHC-based metallosupramolecular compounds with interesting host-guest chemistry properties. Although the number of SOCs has increased in the past few years, their use for host-guest chemistry purposes is still in its earliest infancy. In this Account, we describe the achievements that we have made during the last 4 years toward broadening the applications of planar extended π-conjugated NHC ligands for the preparation of organometallic-based supramolecular structures, including their use as hosts for some selected organic and inorganic guests, together with the catalytic properties displayed by some selected host-guest inclusion complexes. Our contribution describes the design of several Ni-, Pd-, and Au-based metallorectangles and metalloprisms, which we used for the encapsulation of several organic substrates, such as polycyclic aromatic hydrocarbons (PAHs) and fullerenes. The large binding affinities found are ascribed to the incorporation of two cofacial panels with large π-conjugated systems, which provide the optimum conditions for guest recognition by π-π-stacking interactions. We also describe a series of digold(I) metallotweezers for the recognition of organic and inorganic substrates. These metallotweezers were used for the recognition of "naked" metal cations and polycyclic aromatic hydrocarbons. The recognition properties of these metallotweezers are highly dependent on the nature of the rigid connector and of the ancillary ligands that constitute the arms of the tweezer. A peculiar balance between the self-aggregation properties of the tweezer and its ability to encapsulate organic guests is observed.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| |
Collapse
|
61
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
62
|
Lei Z, Nagata K, Ube H, Shionoya M. Ligand effects on the photophysical properties of N,N′-diisopropylbenzimidazolylidene-protected C-centered hexagold(I) clusters. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
Shi Y, Lu Z, Zheng L, Cao QE. Silver-Driven Coordination Self-Assembly of Tetraphenylethene Stereoisomer: Construct Charming Topologies and Their Mechanochromic Behaviors. Inorg Chem 2020; 59:6508-6517. [PMID: 32315165 DOI: 10.1021/acs.inorgchem.0c00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of silver coordination complexes (CCs) have been synthesized through self-assembly of five pyridine-substituted tetraphenylethylene stereoisomer ligands with silver ions (named Ag-TPE-2by-1-E, Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z). These silver CCs show distinct topologies including beaded chain frameworks, linear structures, and discrete metallacycles. The single-crystal analysis results reveal the critical role of the space distribution of the coordination site and stereoisomer ligands in controlling the silver CCs' geometry configuration and modulating the optical properties. Luminescent investigations revealed that Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z possess obvious mechanocharomic behaviors, which can be achieved several reversible cycles through repeated grinding and methanol soaking processes. However, the Ag-TPE-2by-1-E showed tenacious stability toward mechanical grinding and temperature. Thus, these silver CCs provide a good platform to investigate the influence of the space distribution of the coordination site of ligands on their geometry and mechanocharomic properties.
Collapse
Affiliation(s)
- Yonggang Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhixiang Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
64
|
Li K, Li Z, Liu D, Chen M, Wang SC, Chan YT, Wang P. Tetraphenylethylene(TPE)-Containing Metal-Organic Nanobelt and Its Turn-on Fluorescence for Sulfide (S 2-). Inorg Chem 2020; 59:6640-6645. [PMID: 32286799 DOI: 10.1021/acs.inorgchem.0c00928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A metal-organic supramolecular nanobelt was synthesized by quantitative self-assembling terpyridine-functionized tetraphenylethylene (TPE) and Cd2+, which only showed a weak emission both in solution or aggregated state. Nevertheless, nanobelt complex could be transferred to a fluorescence turn-on sensor to S2- by taking advantage of the structural transformation from nanobelt to its fluorescent ligand.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering; Central South University, Changsha, Hunan 410083, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering; Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering; Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
65
|
Liu D, Chen M, Li K, Li Z, Huang J, Wang J, Jiang Z, Zhang Z, Xie T, Newkome GR, Wang P. Giant Truncated Metallo-Tetrahedron with Unexpected Supramolecular Aggregation Induced Emission Enhancement. J Am Chem Soc 2020; 142:7987-7994. [DOI: 10.1021/jacs.0c02366] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Kaixiu Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhengguang Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jian Huang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Tingzheng Xie
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - George R. Newkome
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
66
|
Zhang Z, Zhao Z, Wu L, Lu S, Ling S, Li G, Xu L, Ma L, Hou Y, Wang X, Li X, He G, Wang K, Zou B, Zhang M. Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. J Am Chem Soc 2020; 142:2592-2600. [PMID: 31940435 DOI: 10.1021/jacs.9b12689] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is quite challenging to realize fluorescence resonance energy transfer (FRET) between two chromophores with specific positions and directions. Herein, through the self-assembly of two carefully selected fluorescent ligands via metal-coordination interactions, we prepared two tetragonal prismatic platinum(II) cages with a reverse FRET process between their faces and pillars. Bearing different responses to external stimuli, these two emissive ligands are able to tune the FRET process, thus making the cages sensitive to solvents, pressure, and temperature. First, these cages could distinguish structurally similar alcohols such as n-butanol, t-butanol, and i-butanol. Furthermore, they showed decreased emission with bathochromic shifts under high pressure. Finally, they exhibited a remarkable ratiometric response to temperature over a wide range (223-353 K) with high sensitivity. For example, by plotting the ratio of the maximum emission (I600/I480) of metallacage 4b against the temperature, the slope reaches 0.072, which is among the highest values for ratiometric fluorescent thermometers reported so far. This work not only offers a strategy to manipulate the FRET efficiency in emissive supramolecular coordination complexes but also paves the way for the future design and preparation of smart emissive materials with external stimuli responsiveness.
Collapse
Affiliation(s)
| | | | - Lianwei Wu
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | | | | | | | | | | | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | | | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | | |
Collapse
|
67
|
Wu QJ, Mao MJ, Chen JX, Huang YB, Cao R. Integration of metalloporphyrin into cationic covalent triazine frameworks for the synergistically enhanced chemical fixation of CO2. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01636e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cobalt porphyrin as a Lewis acidic site was integrated into imidazolium-functionalized porous cationic covalent triazine frameworks for the cooperatively enhanced catalysis CO2 cycloaddition to produce cyclic carbonates.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Min-Jie Mao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Jian-Xin Chen
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
68
|
Yu WB, Qiu FY, Sun P, Shi HT, Xin ZF. A new supramolecular catalytic system: the self-assembly of Rh8 cage host anthracene molecules for [4 + 4] cycloaddition induced by UV irradiation. Dalton Trans 2020; 49:9688-9693. [DOI: 10.1039/d0dt01978j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular assembly is significant in host–guest chemistry. In this work, a new supramolecular system assembled through a distorted cuboid was introduced. Moreover, the [4 + 4] cycloaddition reaction of the guest molecules was further studied under UV light.
Collapse
Affiliation(s)
- Wei-Bin Yu
- Analysis and Testing Central Facility
- Institute of Molecular Engineering and Applied Chemistry
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Institute of Molecular Engineering and Applied Chemistry
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
| | - Po Sun
- Analysis and Testing Central Facility
- Institute of Molecular Engineering and Applied Chemistry
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Institute of Molecular Engineering and Applied Chemistry
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
| | - Zhi-Feng Xin
- Analysis and Testing Central Facility
- Institute of Molecular Engineering and Applied Chemistry
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
| |
Collapse
|
69
|
Wang YS, Bai S, Wang YY, Han YF. Process-tracing study on the post-assembly modification of poly-NHC-based metallosupramolecular cylinders with tunable aggregation-induced emission. Chem Commun (Camb) 2019; 55:13689-13692. [DOI: 10.1039/c9cc07113j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A process-tracing and aggregation-induced emission (AIE) study of a covalent post-assembly modification (PAM) process of the AuI–CNHC cylinders was presented.
Collapse
Affiliation(s)
- Yi-Shou Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
- P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
- P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
- P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
- P. R. China
| |
Collapse
|