51
|
Zhao J, Yang Y, Xu X, Li H, Fei J, Liu Y, Zhang X, Li J. Super Light-Sensitive Photosensitizer Nanoparticles for Improved Photodynamic Therapy against Solid Tumors. Angew Chem Int Ed Engl 2022; 61:e202210920. [PMID: 36050883 DOI: 10.1002/anie.202210920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is an effective method for superficial cancer treatment. However, the limited light intensity in tissues, tumor hypoxia, and the low accumulation efficiency of photosensitizers (PSs) in tumors are still major challenges. Herein, we introduce super light-sensitive PS nanoparticles (designated HR NPs) that can increase singlet oxygen (1 O2 ) production and improve PS accumulation in tumors. HR NPs have the ability to produce a large amount of 1 O2 under ultralow power density light (0.05 mW cm-2 ) irradiation. More significantly, HR NPs have a long circulating time in tumor-bearing mice and can accumulate in tumors with high efficiency. When irradiated by light with a suitable wavelength, the nanoparticles exhibit excellent antitumor efficacy. This work will make it possible to cure solid tumors by PDT by enhancing the therapeutic effects.
Collapse
Affiliation(s)
- Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, The 4th Medical Center of PLA General Hospital, 100048, Beijing, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongyan Li
- Medical Innovation Research Division, Chinese PLA General Hospital, 100048, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Liu
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, 100081, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
52
|
Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Recent advances in bacteria-mediated cancer therapy. Front Bioeng Biotechnol 2022; 10:1026248. [PMID: 36312554 PMCID: PMC9597243 DOI: 10.3389/fbioe.2022.1026248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is among the leading cause of deaths worldwide. Although conventional therapies have been applied in the fight against the cancer, the poor oxygen, low extracellular pH, and high interstitial fluid pressure of the tumor microenvironment mean that these treatments fail to completely eradicate cancer cells. Recently, bacteria have increasingly been considered to be a promising platform for cancer therapy thanks to their many unique properties, such as specific tumor-targeting ability, high motility, immunogenicity, and their use as gene or drug carriers. Several types of bacteria have already been used for solid and metastatic tumor therapies, with promising results. With the development of synthetic biology, engineered bacteria have been endowed with the controllable expression of therapeutic proteins. Meanwhile, nanomaterials have been widely used to modify bacteria for targeted drug delivery, photothermal therapy, magnetothermal therapy, and photodynamic therapy, while promoting the antitumor efficiency of synergistic cancer therapies. This review will provide a brief introduction to the foundation of bacterial biotherapy. We begin by summarizing the recent advances in the use of many different types of bacteria in multiple targeted tumor therapies. We will then discuss the future prospects of bacteria-mediated cancer therapies.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Shao
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhong Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Zhongmin Geng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| |
Collapse
|
53
|
Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, Qiu J, Luo J, Wang X. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for Myocardial Infarction Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202920. [PMID: 36045439 PMCID: PMC9596827 DOI: 10.1002/advs.202202920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Myocardial infarction (MI) is a common disease that seriously threatens human health. It is noteworthy that oxygen is one of the key factors in the regulation of MI pathology procession: the controllable hypoxic microenvironment can enhance the tolerance of cardiac myocytes (CMs) and oxygen therapy regulates the immune microenvironment to repair the myocardial injury. Thus, the development of an oxygen-controllable treatment is critically important to unify MI prevention and timely treatment. Here, a hydrogel encapsulated upconversion cyanobacterium nanocapsule for both MI prevention and treatment is successfully synthesized. The engineered cyanobacteria can consume oxygen via respiration to generate a hypoxic microenvironment, resulting in the upregulation of heat shock protein70 (HSP70), which can enhance the tolerance of CMs for MI. When necessary, under 980 nm near-infrared (NIR) irradiation, the system releases photosynthetic oxygen through upconversion luminescence (UCL) to inhibit macrophage M1 polarization, and downregulates pro-inflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), thereby repairing myocardial injury. To sum up, a photoresponsive upconversion cyanobacterium nanocapsule is developed, which can achieve MI prevention and treatment for only one injection via NIR-defined respiration and photosynthesis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Da Zhong
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| | - Yizhe He
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Zhibo Tang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jianbin Qiu
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
| | - Jun Luo
- Department of Rehabilitation Medicinethe Second Affiliated Hospital of Nanchang UniversityNanchang UniversityNanchang330006China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchang330088China
- School of Chemistry and Chemical Engineering of Nanchang UniversityNanchang UniversityNanchang330088China
| |
Collapse
|
54
|
Son S, Kim J, Kim J, Kim B, Lee J, Kim Y, Li M, Kang H, Kim JS. Cancer therapeutics based on diverse energy sources. Chem Soc Rev 2022; 51:8201-8215. [PMID: 36069855 DOI: 10.1039/d2cs00102k] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-based phototherapy has been developed for cancer treatment owing to its non-invasiveness and spatiotemporal control. Despite the unique merits of phototherapy, one critical disadvantage of light is its limited penetration depth, which restricts its application in cancer treatment. Although many researchers have developed various strategies to deliver light into deep-seated tumors with two-photon and near-infrared light irradiation, phototherapy encounters the peculiar limitations of light. In addition, high oxygen dependency is another limitation of photodynamic therapy to treat hypoxic tumors. To overcome the drawbacks of conventional treatments, various energy sources have been developed for cancer treatment. Generally, most energy sources, such as ultrasound, chemiluminescence, radiation, microwave, electricity, and magnetic field, are relatively free from the restraint of penetration depth. Combining other strategies or therapies with other energy-source-based therapies improves the strength and compensates for the weakness. This tutorial review focuses on recent advances in the diverse energy sources utilized in cancer treatment and their future perspectives.
Collapse
Affiliation(s)
- Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Byungkook Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jieun Lee
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
55
|
Chu B, Yang Y, Tang J, Song B, He Y, Wang H. Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angew Chem Int Ed Engl 2022; 61:e202208422. [DOI: 10.1002/anie.202208422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Yunmin Yang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Jiali Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| |
Collapse
|
56
|
Zhao J, Yang Y, Xu X, Li H, Fei J, Liu Y, Zhang X, Li J. Super Light‐Sensitive Photosensitizer Nanoparticles for Improved Photodynamic Therapy against Solid Tumors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Zhao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Lab of Colloid, Interface and Chemical ThermodynamicsKey Lab of Colloid, Interface and Chemical Thermodynamics Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| | - Yuguang Yang
- Fourth Medical Center of PLA General Hospital Depart of Dermatology Fu Cheng Road, No. 51 100048 Beijing CHINA
| | - Xia Xu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Lab of Colloid, Interface and Chemical Thermodynamics Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| | - Hongyan Li
- Chinese PLA General Hospital Medical Innovation Research Division Fu Cheng Road, No. 51 100048 Beijing CHINA
| | - Jinbo Fei
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Lab of Colloid, Interface and Chemical Thermodynamics Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| | - Yilin Liu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Lab of Colloid, Interface and Chemical Thermodynamics Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| | - Xiaoming Zhang
- Minzu University of China School of Science, Optoelectronics Research Center 100081 Beijing CHINA
| | - Junbai Li
- Chinese Academy of Sciences Institute of Chemistry Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| |
Collapse
|
57
|
Lu S, Feng W, Yao X, Song X, Guo J, Chen Y, Hu Z. Microorganism-enabled photosynthetic oxygeneration and ferroptosis induction reshape tumor microenvironment for augmented nanodynamic therapy. Biomaterials 2022; 287:121688. [PMID: 35926358 DOI: 10.1016/j.biomaterials.2022.121688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Nanodynamic therapy (NDT) based on reactive oxygen species (ROS) generation has been envisioned as a distinct modality for efficient cancer treatment. However, insufficient ROS generation and partial ROS consumption frequently limit the theraputic effect and outcome of NDT owing to the low oxygen (O2) tension and high glutathione (GSH) level in tumor microenvironment (TME). To circumvent these critical issues, we herein proposed and engineered the biodegradable GSH-depletion Mn(III)-riched manganese oxide nanospikes (MnOx NSs) with the photosynthetic bacterial cyanobacteria (Cyan) as a high-efficient and synergistic platform to reshape TME by simultaneously increasing oxygen content and decreasing GSH level. Specifically, under the trigger of acidity, MnOx NSs reacted with photosynthetic oxygen can generate toxic singlet oxygen (1O2). Moreover, MnOx NSs significantly reduced intracellular GSH, resulting in decreased GPX4 activity, which induced tumor cell non-apoptotic ferroptosis. Consequently, this combined strategy based on coadministration with Cyan and MnOx NSs demonstrated the superior antitumor efficacy via amplification of oxidative stress in 4T1 tumor-bearing mice for the synergetic oxygen-augmented nanodynamic/ferroptosis therapy. This work highlights a facile synergistic micro-/nano-system with the specific capability of reshaping TME to augment the sensitivity and therapeutic efficacy of NDT in solid hypoxic tumor therapy.
Collapse
Affiliation(s)
- Shuting Lu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xijuan Yao
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Xinran Song
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Jinhe Guo
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Zhongqian Hu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology and Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
58
|
Cui H, Su Y, Wei W, Xu F, Gao J, Zhang W. How Microalgae is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:3101-3122. [PMID: 35874112 PMCID: PMC9297331 DOI: 10.2147/ijn.s368763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia can aggravate the conditions of many oxygen-deficiency-aggravated diseases (ODAD), such as cancer, ischemic heart disease, and chronic wounds. Photosynthetic microalgae can alleviate the hepatotoxicity of the local microenvironment by producing oxygen. In addition, microalgae extracts have antitumor, anti-inflammatory, antibacterial, and antioxidant effects. These properties make them attractive candidates for developing methods to treat ODAD. Although researchers have exploited the advantages of microalgae and developed a variety of microalgae-based biomaterials to treat ODAD, a comprehensive review of this topic has not been presented previously. Therefore, in this review, we summarize the development and progress made in the field of developing microalgae-based biomaterials toward the treatment of ODAD. The challenges and prospects of this field are also discussed.
Collapse
Affiliation(s)
- Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Yidan Su
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wei
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Fei Xu
- Department of Plastic Surgery, Naval Medical Center, Naval Medical University, Shanghai, 200052, People's Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wenjun Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
59
|
Chu B, Yang Y, Tang J, Song B, He Y, Wang H. Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Binbin Chu
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Yunmin Yang
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Jiali Tang
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Bin Song
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Yao He
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) Renai Road 199 215123 Suzhou CHINA
| | - Houyu Wang
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Road Suzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
60
|
Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioact Mater 2022; 12:314-326. [PMID: 35128179 PMCID: PMC8783102 DOI: 10.1016/j.bioactmat.2021.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
|
61
|
Chen D, Dai H, Wang W, Cai Y, Mou X, Zou J, Shao J, Mao Z, Zhong L, Dong X, Zhao Y. Proton-Driven Transformable 1 O 2 -Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200128. [PMID: 35435332 PMCID: PMC9189669 DOI: 10.1002/advs.202200128] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Indexed: 05/11/2023]
Abstract
Despite the clinical potential, photodynamic therapy (PDT) relying on singlet oxygen (1 O2 ) generation is severely limited by tumor hypoxia and endosomal entrapment. Herein, a proton-driven transformable 1 O2 -nanotrap (ANBDP NPs) with endosomal escape capability is presented to improve hypoxic tumor PDT. In the acidic endosomal environment, the protonated 1 O2 -nanotrap ruptures endosomal membranes via a "proton-sponge" like effect and undergoes a drastic morphology-and-size change from nanocubes (≈94.1 nm in length) to nanospheres (≈12.3 nm in diameter). Simultaneously, anthracenyl boron dipyrromethene-derived photosensitizer (ANBDP) in nanospheres transforms to its protonated form (ANBDPH) and switches off its charge-transfer state to achieve amplified 1 O2 photogeneration capability. Upon 730 nm photoirradiation, ANBDPH prominently produces 1 O2 and traps generated-1 O2 in the anthracene group to form endoperoxide (ANOBDPH). Benefitting from the hypoxia-tolerant 1 O2 -release property of ANOBDPH in the dark, the 1 O2 -nanotrap brings about sustained therapeutic effect without further continuous irradiation, thereby achieving remarkable antitumor performance.
Collapse
Affiliation(s)
- Dapeng Chen
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yu Cai
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Xiaozhou Mou
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Liping Zhong
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongxiang Zhao
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| |
Collapse
|
62
|
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 2022; 187:114360. [PMID: 35636568 DOI: 10.1016/j.addr.2022.114360] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022]
Abstract
The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.
Collapse
|
63
|
Liao MY, Huang TC, Chin YC, Cheng TY, Lin GM. Surfactant-Free Green Synthesis of Au@Chlorophyll Nanorods for NIR PDT-Elicited CDT in Bladder Cancer Therapy. ACS APPLIED BIO MATERIALS 2022; 5:2819-2833. [PMID: 35616917 DOI: 10.1021/acsabm.2c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The facile and straightforward fabrication of NIR-responsive theranostic materials with high biocompatibility is still an unmet need for nanomedicine applications. Here, we used a natural photosensitizer, iron chlorophyll (Chl/Fe), for the J-aggregate template-assisted synthesis of Au@Chl/Fe nanorods with high stability. The assembly of a high amount of Chl/Fe J-aggregate onto the Au surface enabled red-NIR fluorescence for monitoring and tracking residential tumor lesions. The Chl/Fe moieties condensed on the nanorods could change the redox balance by the photon induction of reactive oxygen species and attenuate iron-mediated lipid peroxidation by inducing a Fenton-like reaction. After conjugation with carboxyphenylboronic acid (CPBA) to target the glycoprotein receptor on T24 bladder cancer (BC) cells, the enhanced delivery of Au@Chl/Fe-CPBA nanorods could induce over 85% cell death at extremely low concentrations of 0.16 ppm[Au] at 660 nm and 1.6 ppm[Au] at 785 nm. High lipid peroxidation, as shown by BODIPY staining and GSH depletion, was observed when treated T24 cells were exposed to laser irradiation, suggesting that preliminary photodynamic therapy (PDT) can revitalize Fenton-like reaction-mediated chemodynamic ferroptosis in T24 cells. We also manipulated the localized administration of Au@Chl-Fe combined with PDT at restricted regions in orthotopic tumor-bearing mice to cure malignant BC successfully without recurrence. By intravesical instillation of the Au@Chl/Fe-CPBA nanorods, this localized treatment could prevent the material from entering the systemic circulation, thus minimizing systemic toxicity. Upon activating NIR-PDT-elicited chemodynamic therapy, ultrasound imaging revealed almost complete tumor remission. Anti-tumor efficacy and survival benefit were achieved with a green photosensitizer.
Collapse
Affiliation(s)
- Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Tzu-Chi Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yu-Cheng Chin
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ting-Yu Cheng
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Geng-Min Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| |
Collapse
|
64
|
Zhang W, Chen Y, Liu Q, Zhou M, Wang K, Wang Y, Nie J, Gui S, Peng D, He Z, Li Z. Emerging nanotherapeutics alleviating rheumatoid arthritis by readjusting the seeds and soils. J Control Release 2022; 345:851-879. [DOI: 10.1016/j.jconrel.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
|
65
|
Lu N, Deng Z, Gao J, Liang C, Xia H, Zhang P. An osmium-peroxo complex for photoactive therapy of hypoxic tumors. Nat Commun 2022; 13:2245. [PMID: 35473926 PMCID: PMC9042834 DOI: 10.1038/s41467-022-29969-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The limited therapeutic effect on hypoxic and refractory solid tumors has hindered the practical application of photodynamic therapy. Herein, we report our investigation of an osmium-peroxo complex (Os2), which is inactive in the dark, but can release a peroxo ligand O2•− upon light irradiation even in the absence of oxygen, and is transformed into a cytotoxic osmium complex (Os1). Os1 is cytotoxic in the presence or absence of irradiation in hypoxic tumors, behaving as a chemotherapeutic drug. At the same time, the light-activated Os2 induces photocatalytic oxidation of endogenous 1,4-dihydronicotinamide adenine dinucleotide in living cancer cells, leading to ferroptosis, which is mediated by glutathione degradation, lipid peroxide accumulation and down-regulation of glutathione peroxidase 4. In vivo studies have confirmed that the Os2 can effectively inhibit the growth of solid hypoxic tumors in mice. A promising strategy is proposed for the treatment of hypoxic tumors with metal-based drugs. Photodynamic therapy has been a promising technique for the treatment of tumours. In this manuscript, the authors report on the photoactivation of the osmium peroxo complex and its potential use for chemotherapy and photodynamic therapy under blue light irradiation against tumours in their hypoxic environment.
Collapse
Affiliation(s)
- Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhihong Deng
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Gao
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
66
|
Chu B, Wu S, Yang Y, Song B, Wang H, He Y. Multifunctional Flavonoid-Silica Nanohydrogel Enables Simultaneous Inhibition of Tumor Recurrence and Bacterial Infection in Post-Surgical Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104578. [PMID: 34837295 DOI: 10.1002/smll.202104578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A strategy to synthesize water-soluble and fluorescent flavonoid-silica nanocomposites (FSiNCs) simultaneously featuring anti-tumor and anti-bacterial abilities is developed. Furthermore, it is demonstrated that the therapeutic effects of FSiNCs are associated with the selective accumulation of reactive oxide species in both tumor and bacteria cells. Following that, the resultant FSiNCs are incorporated with thrombin and fibrinogen, being sprayed onto the tumor surgical wound site to in situ form fibrin gel (FSiNCs@Fibrin). Remarkably, such FSiNCs@Fibrin results in an ≈18-fold reduction in intratumoral bacteria numbers and ≈12-fold decrease in tumor regrowth compared to equivalent free flavonoid-loaded gel.
Collapse
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Sicong Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yunmin Yang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
67
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
68
|
Veloso-Giménez V, Escamilla R, Necuñir D, Corrales-Orovio R, Riveros S, Marino C, Ehrenfeld C, Guzmán CD, Boric MP, Rebolledo R, Egaña JT. Development of a Novel Perfusable Solution for ex vivo Preservation: Towards Photosynthetic Oxygenation for Organ Transplantation. Front Bioeng Biotechnol 2022; 9:796157. [PMID: 34976984 PMCID: PMC8714958 DOI: 10.3389/fbioe.2021.796157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for ex vivo organ preservation. Here, the microalgae Chlamydomonas reinhardtii was incorporated in a standard preservation solution, and key aspects such as alterations in cell size, oxygen production and survival were studied. Osmolarity and rheological features of the photosynthetic solution were comparable to human blood. In terms of functionality, the photosynthetic solution proved to be not harmful and to provide sufficient oxygen to support the metabolic requirement of zebrafish larvae and rat kidney slices. Thereafter, isolated porcine kidneys were perfused, and microalgae reached all renal vasculature, without inducing damage. After perfusion and flushing, no signs of tissue damage were detected, and recovered microalgae survived the process. Altogether, this work proposes the use of photosynthetic microorganisms as vascular oxygen factories to generate and deliver oxygen in isolated organs, representing a novel and promising strategy for organ preservation.
Collapse
Affiliation(s)
- Valentina Veloso-Giménez
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosalba Escamilla
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Necuñir
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocío Corrales-Orovio
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Hand, Plastic and Aesthetic Surgery, LMU Munich, University Hospital, Munich, Germany
| | - Sergio Riveros
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ehrenfeld
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mauricio P Boric
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Hepatobiliary and Pancreatic Surgery Unit, Surgery Service, Hospital Dr. Sótero del Río, Santiago, Chile
| | - José Tomás Egaña
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
69
|
Ma W, Mao J, He CT, Shao L, Liu J, Wang M, Yu P, Mao L. Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chem Sci 2022; 13:5606-5615. [PMID: 35694341 PMCID: PMC9116287 DOI: 10.1039/d2sc01110g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet oxygen (1O2) as an excited electronic state of O2 plays a significant role in the ubiquitous oxidative processes from enzymatic oxidative metabolism to industrial catalytic oxidation. Generally, 1O2 can...
Collapse
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Chun-Ting He
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry, Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| |
Collapse
|
70
|
Yu N, Qiu P, Ren Q, Wen M, Geng P, Macharia DK, Zhu M, Chen Z. Transforming a Sword into a Knife: Persistent Phototoxicity Inhibition and Alternative Therapeutical Activation of Highly-Photosensitive Phytochlorin. ACS NANO 2021; 15:19793-19805. [PMID: 34851096 DOI: 10.1021/acsnano.1c07241] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phototoxicity of photosensitizers (PSs) is a double-edged sword with one edge beneficial for destroying tumors while the other is detrimental to normal tissues, and the conventional "OFF-ON" strategy provides temporary inhibition so that phototoxicity would come sooner or later due to the inevitable retention and transformation of PSs in vivo. We herein put forward a strategy to convert "double-edged sword" PSs into "single-edged knife" ones with simultaneously persistent phototoxicity inhibition and alternative multiple therapeutical activation. The Chlorin e6 (Ce6) as the PS model directly assembles with Cu2+ ions into nanoscale frameworks (nFs) whose Cu2+-coordination includes both carboxyl groups and a porphyrin ring of Ce6 instead of Fe3+/Mn2+-coordination with only carboxyl groups. Compared to the high phototoxicity of Ce6, the nFs exhibit efficient energy transfer due to the dual-coordination of paramagnetic Cu2+ ions and the aggregation, achieving the persistent and high phototoxicity inhibition rate of >92%. Alternatively, the nFs not only activate a high photoacoustic contrast and near-infrared (NIR)-driven photothermal efficacy (3.5-fold that of free Ce6) due to the aggregation-enhanced nonradiative transition but also initiate tumor microenvironment modulation, structure disassembly, and chemodynamic effect by Cu2+ ions. Given these merits, the nFs achieve long-term biosecurity, no retina injury under sunlight, and a higher therapeutical output than the photodynamic effect of Ce6. This work presents a possibility of converting numerous highly phototoxic porphyrins into safe and efficient ones.
Collapse
Affiliation(s)
- Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
71
|
Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021; 10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is a leading cause of death worldwide, accounting for an estimated 10 million deaths by 2020. Over the decades, various strategies for tumor therapy have been developed and evaluated. Photodynamic therapy (PDT) has attracted increasing attention due to its unique characteristics, including low systemic toxicity and minimally invasive nature. Despite the excellent clinical promise of PDT, hypoxia is still the Achilles' heel associated with its oxygen-dependent nature related to increased tumor proliferation, angiogenesis, and distant metastases. Moreover, PDT-mediated oxygen consumption further exacerbates the hypoxia condition, which will eventually lead to the poor effect of drug treatment and resistance and irreversible tumor metastasis, even limiting its effective application in the treatment of hypoxic tumors. Hypoxia, with increased oxygen consumption, may occur in acute and chronic hypoxia conditions in developing tumors. Tumor cells farther away from the capillaries have much lower oxygen levels than cells in adjacent areas. However, it is difficult to change the tumor's deep hypoxia state through different ways to reduce the tumor tissue's oxygen consumption. Therefore, it will become more difficult to cure malignant tumors completely. In recent years, numerous investigations have focused on improving PDT therapy's efficacy by providing molecular oxygen directly or indirectly to tumor tissues. In this review, different molecular oxygen supplementation methods are summarized to alleviate tumor hypoxia from the innovative perspective of using supplemental oxygen. Besides, the existing problems, future prospects and potential challenges of this strategy are also discussed.
Collapse
Affiliation(s)
- Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China.
| |
Collapse
|
72
|
Obaíd ML, Camacho JP, Brenet M, Corrales-Orovio R, Carvajal F, Martorell X, Werner C, Simón V, Varas J, Calderón W, Guzmán CD, Bono MR, San Martín S, Eblen-Zajjur A, Egaña JT. A First in Human Trial Implanting Microalgae Shows Safety of Photosynthetic Therapy for the Effective Treatment of Full Thickness Skin Wounds. Front Med (Lausanne) 2021; 8:772324. [PMID: 34917636 PMCID: PMC8669306 DOI: 10.3389/fmed.2021.772324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Insufficient oxygen supply represents a relevant issue in several fields of human physiology and medicine. It has been suggested that the implantation of photosynthetic cells can provide oxygen to tissues in the absence of a vascular supply. This approach has been demonstrated to be successful in several in vitro and in vivo models; however, no data is available about their safety in human patients. Here, an early phase-1 clinical trial (ClinicalTrials.gov identifier: NCT03960164, https://clinicaltrials.gov/ct2/show/NCT03960164) is presented to evaluate the safety and feasibility of implanting photosynthetic scaffolds for dermal regeneration in eight patients with full-thickness skin wounds. Overall, this trial shows that the presence of the photosynthetic microalgae Chlamydomonas reinhardtii in the implanted scaffolds did not trigger any deleterious local or systemic immune responses in a 90 days follow-up, allowing full tissue regeneration in humans. The results presented here represent the first attempt to treat patients with photosynthetic cells, supporting the translation of photosynthetic therapies into clinics. Clinical Trial Registration:www.clinicaltrials.gov/ct2/show/NCT03960164, identifier: NCT03960164.
Collapse
Affiliation(s)
- Miguel Luis Obaíd
- Department of Plastic Surgery, Hospital del Salvador, Santiago, Chile
| | | | - Marianne Brenet
- Institute for Biological and Medical Engineering, Faculty of Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Faculty of Engineering, Pontifical Catholic University of Chile, Santiago, Chile.,Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig Maximilian University of Munich, Munich, Germany
| | - Felipe Carvajal
- Institute for Biological and Medical Engineering, Faculty of Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| | | | | | - Valeska Simón
- Department of Biology, Faculty Science, Universidad de Chile, Santiago, Chile
| | - Juan Varas
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilfredo Calderón
- Department of Plastic Surgery, Hospital del Salvador, Santiago, Chile.,Faculty of Medicine, School of Medicine, Universidad de Chile, Santiago, Chile
| | | | - María Rosa Bono
- Department of Biology, Faculty Science, Universidad de Chile, Santiago, Chile
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Eblen-Zajjur
- Institute for Biological and Medical Engineering, Faculty of Engineering, Pontifical Catholic University of Chile, Santiago, Chile.,Translational Neuroscience Lab, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Faculty of Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
73
|
Chang M, Feng W, Ding L, Zhang H, Dong C, Chen Y, Shi J. Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy. Bioact Mater 2021; 10:131-144. [PMID: 34901535 PMCID: PMC8637009 DOI: 10.1016/j.bioactmat.2021.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with “optical battery” characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy. Construction of CaAl2O4:Eu,Nd PLM to generate 1O2 without the aid of exogenous light excitation. Cyanobacteria with light-triggered oxygenation effect were employed for the normalization of tumor microenvironment. A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform was rationally engineered.
Collapse
Affiliation(s)
- Meiqi Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Hongguang Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
74
|
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021; 179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Employing natural cells as drug carriers has been a hotspot in recent years, attributing to their biocompatibility and inherent dynamic properties. In the earlier stage, cells were mainly used as vehicles by virtue of their lipid-delimited compartmentalized structures and native membrane proteins. The scope emphasis was 'what cell displays' instead of 'how cell changes'. More recently, the dynamic behaviours, such as changes in surface protein patterns, morphologies, polarities and in-situ generation of therapeutics, of natural cells have drawn more attention for developing advanced drug delivery systems by fully taking advantage of these processes. In this review, we revolve around the dynamic cellular transformation behaviours which facilitate targeted therapy. Cellular deformation in geometry shape, spitting smaller vesicles, activation of antigen present cells, polarization between distinct phenotypes, local production of therapeutics, and hybridization with synthetic materials are involved. Other than focusing on the traditional delivery of concrete cargoes, more functional 'handles' that are derived from the cells themselves are introduced, such as information exchange, cellular communication and interactions between cell and extracellular environment.
Collapse
|
75
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
77
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
78
|
Geng Z, Cao Z, Liu R, Liu K, Liu J, Tan W. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat Commun 2021; 12:6584. [PMID: 34782610 PMCID: PMC8593157 DOI: 10.1038/s41467-021-26956-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
Despite bacterial-mediated biotherapies have been widely explored for treating different types of cancer, their implementation has been restricted by low treatment efficacy, due largely to the absence of tumor-specific accumulation following administration. Here, the conjugation of aptamers to bacterial surface is described by a simple and cytocompatible amidation procedure, which can significantly promote the localization of bacteria in tumor site after systemic administration. The surface density of aptamers can be easily adjusted by varying feed ratio and the conjugation is able to increase the stability of anchored aptamers. Optimal bacteria conjugated with an average of 2.8 × 105 aptamers per cell present the highest specificity to tumor cells in vitro, separately generating near 2- and 4-times higher accumulation in tumor tissue at 12 and 60 hours compared to unmodified bacteria. In both 4T1 and H22 tumor-bearing mouse models, aptamer-conjugated attenuated Salmonella show enhanced antitumor efficacy, along with highly activated immune responses inside the tumor. This work demonstrates how bacterial behaviors can be tuned by surface conjugation and supports the potential of aptamer-conjugated bacteria for both targeted intratumoral localization and enhanced tumor biotherapy.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Weihong Tan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
79
|
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) together with irradiation light of specific wavelength interacting with oxygen to generate cytotoxic reactive oxygen species (ROS), which could trigger apoptosis and/or necrosis-induced cell death in target tissues. During the past two decades, multifunctional nano-PSs employing nanotechnology and nanomedicine developed, which present not only photosensitizing properties but additionally accurate drug release abilities, efficient response to optical stimuli and hypoxia resistance. Further, nano-PSs have been developed to enhance PDT efficacy by improving the ROS yield. In addition, nano-PSs with additive or synergistic therapies are significant for both currently preclinical study and future clinical practice, given their capability of considerable higher therapeutic efficacy under safer systemic drug dosage. In this review, nano-PSs that allow precise drug delivery for efficient absorption by target cells are introduced. Nano-PSs boosting sensitivity and conversion efficiency to PDT-activating stimuli are highlighted. Nano-PSs developed to address the challenging hypoxia conditions during PDT of deep-sited tumors are summarized. Specifically, PSs capable of synergistic therapy and the emerging novel types with higher ROS yield that further enhance PDT efficacy are presented. Finally, future demands for ideal nano-PSs, emphasizing clinical translation and application are discussed.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Xiaocheng Dong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
80
|
Qi F, Ji P, Chen Z, Wang L, Yao H, Huo M, Shi J. Photosynthetic Cyanobacteria-Hybridized Black Phosphorus Nanosheets for Enhanced Tumor Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102113. [PMID: 34524730 DOI: 10.1002/smll.202102113] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention due to its advantages such as high safety and effectiveness compared to traditional radiotherapy and chemotherapy. However, the intratumoral hypoxic microenvironment will inevitably compromise the PDT effect of the highly oxygen-dependent type II photosensitizers, implicating the urgent demand for continuous intratumoral oxygenation. Herein, biocompatible photosynthetic cyanobacteria have been modified with inorganic two-dimensional black phosphorus nanosheets (BPNSs) to be a novel bioreactor termed as Cyan@BPNSs. Upon 660 nm laser irradiation, the photosynthetic cyanobacteria generate oxygen continuously in situ through photosynthesis, followed by the photosensitization of BPNSs for activating oxygen into singlet oxygen (1 O2 ), resulting in a large amount of 1 O2 accumulation at the tumor site and the consequent strong tumor cell killing effect both in vitro and in vivo. This work provides an attractive strategy for efficient and biocompatible PDT, meanwhile extends the scope of microbiotic nanomedicine by hybridizing microorganisms with inorganic nanophotosensitizer.
Collapse
Affiliation(s)
- Fenggang Qi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghao Ji
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhixin Chen
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heliang Yao
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Minfeng Huo
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
81
|
Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021; 277:121124. [PMID: 34534860 DOI: 10.1016/j.biomaterials.2021.121124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Precise targeting and high therapeutic efficiency are the major requisites of personalized cancer treatment. However, some unique features of the tumor microenvironment (TME) such as hypoxia, low pH and elevated interstitial fluid pressure cause cancer cells resistant to most therapies. Bacteria are increasingly being considered for targeted tumor therapy owing to their intrinsic tumor tropism, high motility as well as the ability to rapidly colonize in the favorable TME. Compared to other nano-strategies using peptides, aptamers, and other biomolecules, tumor-targeting bacteria are largely unaffected by the tumor cells and microenvironment. On the contrary, the hypoxic TME is highly conducive to the growth of facultative anaerobes and obligate anaerobes. Live bacteria can be further integrated with anti-cancer drugs and nanomaterials to increase the latter's targeted delivery and accumulation in the tumors. Furthermore, anaerobic and facultatively anaerobic bacteria have also been combined with other anti-cancer therapies to enhance therapeutic effects. In this review, we have summarized the applications and advantages of using bacteria for targeted tumor therapy (Scheme 1) in order to aid in the design of novel intelligent drug delivery systems. The current challenges and future prospects of tumor-targeting bacterial nanocarriers have also been discussed.
Collapse
|
82
|
Zhao H, Wang L, Zeng K, Li J, Chen W, Liu YN. Nanomessenger-Mediated Signaling Cascade for Antitumor Immunotherapy. ACS NANO 2021; 15:13188-13199. [PMID: 34342966 DOI: 10.1021/acsnano.1c02765] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemical messengers have been recognized as signaling molecules involved in regulating various physiological and metabolic activities. Nevertheless, they usually show limited regulatory efficiency due to the complexity of biological processes. Especially for tumor cells, antideath pathways and tumor metastasis are readily activated to resist chemical messenger regulation, further impairing antitumor outcomes. Therefore, it is imperative to develop strategies for tumor eradication with chemical messengers. Herein, a nanomessenger was prepared with signaling transduction cascades to amplify the regulatory activity of chemical messengers and mediate antitumor immunotherapy. Ca2+ and H2S as two chemical messengers were released from nanomessengers to synergistically elevate intracellular Ca2+ stress and mediate subsequent cell death. Meanwhile, zinc protoporphyrin (ZnPP) as a messenger amplifier suppressed the antideath effect of tumor cells. As a result, tumor cells underwent Ca2+-dependent cell death via signaling transduction cascades to release tumor-associated antigens, which further served as an in situ tumor vaccine to activate antitumor immunity. In vivo studies revealed that both primary tumors and distant metastases were markedly eradicated. Furthermore, immunological memory was fabricated to arrest tumor metastasis and recurrence. This work introduces cascade engineering into chemical messengers and thus offers a strategy for amplifying chemical messenger-mediated cellular regulation, which would promote the future development of chemical messenger-mediated immunotherapy.̀.
Collapse
Affiliation(s)
- Henan Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ke Zeng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People's Republic of China
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
83
|
Wei F, Kuang S, Rees TW, Liao X, Liu J, Luo D, Wang J, Zhang X, Ji L, Chao H. Ruthenium(II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia. Biomaterials 2021; 276:121064. [PMID: 34391019 DOI: 10.1016/j.biomaterials.2021.121064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022]
Abstract
The photodynamic therapy (PDT) of cancer is limited by tumor hypoxia as PDT efficiency depends on O2 concentration. A novel oxygen self-sufficient photosensitizer (Ru-g-C3N4) was therefore designed and synthesized via a facile one-pot method in order to overcome tumor hypoxia-induced PDT resistance. The photosensitizer is based on [Ru(bpy)2]2+ coordinated to g-C3N4 nanosheets by Ru-N bonding. Compared to pure g-C3N4, the resulting nanosheets exhibit increased water solubility, stronger visible light absorption, and enhanced biocompatibility. Once Ru-g-C3N4 is taken up by hypoxic tumor cells and exposed to visible light, the nanosheets not only catalyze the decomposition of H2O2 and H2O to generate O2, but also catalyze H2O2 and O2 concurrently to produce multiple ROS (•OH, •O2-, and 1O2). In addition, Ru-g-C3N4 affords luminescence imaging, while continuously generating O2 to alleviate hypoxia greatly improving PDT efficacy. To the best of our knowledge, this oxygen self-sufficient photosensitizer produced via grafting a metal complex onto g-C3N4 is the first of its type to be reported.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Diqing Luo
- Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, S.A.R., Hong Kong, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
84
|
Gong W, Xia C, He Q. Therapeutic gas delivery strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Gas molecules with pharmaceutical effects offer emerging solutions to diseases. In addition to traditional medical gases including O2 and NO, more gases such as H2 , H2 S, SO2 , and CO have recently been discovered to play important roles in various diseases. Though some issues need to be addressed before clinical application, the increasing attention to gas therapy clearly indicates the potentials of these gases for disease treatment. The most important and difficult part of developing gas therapy systems is to transport gas molecules of high diffusibility and penetrability to interesting targets. Given the particular importance of gas molecule delivery for gas therapy, distinguished strategies have been explored to improve gas delivery efficiency and controllable gas release. Here, we summarize the strategies of therapeutic gas delivery for gas therapy, including direct gas molecule delivery by chemical and physical absorption, inorganic/organic/hybrid gas prodrugs, and natural/artificial/hybrid catalyst delivery for gas generation. The advantages and shortcomings of these gas delivery strategies are analyzed. On this basis, intelligent gas delivery strategies and catalysts use in future gas therapy are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wanjun Gong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chao Xia
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
85
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All‐in‐One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wenbo Sun
- College of Materials Science and Engineering College of Chemistry and Chemical Engineering Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials Instrumental Analysis Center of Qingdao University Qingdao University Qingdao 266071 China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry University of Science and Technology of China Changchun 130022 China
| |
Collapse
|
86
|
Gao C, Guo W, Guo X, Ding Z, Ding Y, Shen XC. Black SnO 2-x based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window. Acta Biomater 2021; 129:220-234. [PMID: 34082106 DOI: 10.1016/j.actbio.2021.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023]
Abstract
The shallow penetration depth of photothermal agents in the first near-infrared (NIR-I) window significantly limits their therapeutic efficiency. Multifunctional nanotheranostic agents in the second near-infrared (NIR-II) window have drawn extensive attention for their combined treatment of tumors. Here, for the first time, we created oxygen-deficient black SnO2-x with strong NIR (700-1200 nm) light absorption with NaBH4 reduction from white SnO2. Hyaluronic acid (HA) could selectively target cancer cells overexpressed CD44 protein. After modification with HA, the obtained nanotheranostic SnO2-x@SiO2-HA showed high dispersity in aqueous solution and good biocompatibility. SnO2-x@SiO2-HA was confirmed to simultaneously generate enough hyperthermia and reactive oxygen species with single NIR-II (1064 nm) light irradiation. Because HA is highly affined to CD44 protein, SnO2-x@SiO2-HA has specific uptake by overexpressed CD44 cells and can be accurately transferred to the tumor site. Furthermore, tumor growth was significantly inhibited following synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) with targeted specificity under the guidance of photoacoustic (PA) imaging using 1064 nm laser irradiation in vivo. Moreover, SnO2-x@SiO2-HA accelerated wound healing. This work prominently extends the therapeutic utilization of semiconductor nanomaterials by changing their nanostructures and demonstrates for the first time that SnO2-x based therapeutic agents can accelerate wound healing. STATEMENT OF SIGNIFICANCE: The phototherapeutic efficacy of nanotheranostics by NIR-I lightirradiation was restricted owing to the limitation of tissue penetration and maximum permissible exposure. To overcome these limitations, we hereby fabricated a NIR-IIlight-mediated multifunctional nanotheranostic based on SnO2-x. The introduction of oxygen vacancy strategy was employed to construct full spectrum responsive oxygen-deficient SnO2-x, endowing outstanding photothermal conversion, and remarkable production activity of reactive oxygen species under NIR-II light activation. Tumor growth was significantly inhibited following synergistic PDT/PTT with targeted specificity under the guidance of photoacoustic imaging using 1064 nm laser irradiation in vivo. Our strategy not only expands the biomedical application of SnO2, but also providea method to develop other inorganic metal oxide-based nanosystems for NIR-II light-activated phototheranostic of cancers.
Collapse
|
87
|
Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021; 276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The microwave dynamic therapy (MDT) mediated by cytotoxic reactive oxygen species (ROS) is a promising anticancer therapeutic method. However, the therapeutic efficiency of MDT is restricted by several limitations including insufficient ROS generation, strong proangiogenic response, and low tumor-targeting efficiency. Herein, we find that Cu-based nanoparticles can produce oxygen under microwave (MW) irradiation to raise the generation of ROS, such as •O2, •OH and 1O2, especially •O2. On this basis, a nanoengineered biomimetic strategy is designed to improve the efficiency of MDT. After intravenous administration, the nanoparticles accumulate to the tumor site through targeting effect mediated by biomimetic modification, and it can continuously produce oxygen to raise the levels of ROS in tumor microenvironment under MW irradiation for MDT. Additionally, Apatinib is incorporated as antiangiogenic drug to downregulate the expression of vascular endothelial growth factor (VEGF), which can effectively inhibit the tumor angiogenesis after MDT. Hence, the tumor inhibition rate is as high as 96.79%. This study provides emerging strategies to develop multifunctional nanosystems for efficient tumor therapy by MDT.
Collapse
Affiliation(s)
- Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ning Wen
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Lisheng Zhao
- Department of Stomatology, the General Hospital of Chinese PLA, Beijing, 100853, People's Republic of China.
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, People's Republic of China.
| |
Collapse
|
88
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
89
|
Chen W, Sun Z, Jiang C, Sun W, Yu B, Wang W, Lu L. An All-in-One Organic Semiconductor for Targeted Photoxidation Catalysis in Hypoxic Tumor. Angew Chem Int Ed Engl 2021; 60:16641-16648. [PMID: 33880849 DOI: 10.1002/anie.202105206] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Tumor hypoxia severely limits the therapeutic effects of photodynamic therapy (PDT). Although many methods for oxygen generation exist, substantial safety concerns, spatiotenporal uncontrollability, limited efficacy, and complicated procedures have compromised their practical application. Here, we demonstrate a biocompatiable all-in-one organic semiconductor to provide a photoxidation catalysis mechanism of action. A facile method is developed to produce gram-level C5 N2 nanoparticles (NPs)-based organic semiconductor. Under 650 nm laser irradiation, the semiconductor split water to generate O2 and simultaneously produce singlet oxygen (1 O2 ), showing that the photocatalyst for O2 evolution and the photosensitizer (PS) for 1 O2 generation could be synchronously achieved in one organic semiconductor. The inherent nucleus targeting capacity endows it with direct and efficient DNA photocleavage. These findings pave the way for developing organic semiconductor-based cancer therapeutic agents.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wenbo Sun
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
90
|
Recent advances in tissue engineering and anticancer modalities with photosynthetic microorganisms as potent oxygen generators. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
91
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
92
|
Wu Q, Zhang F, Pan X, Huang Z, Zeng Z, Wang H, Jiao J, Xiong X, Bai L, Zhou D, Liu H. Surface Wettability of Nanoparticle Modulated Sonothrombolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007073. [PMID: 33987928 DOI: 10.1002/adma.202007073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Sonodynamic therapy (SDT) is a non-invasive and highly penetrating treatment strategy under ultrasound irradiation. However, uncertainty in the mechanism of SDT has seriously hindered its future clinical application. Here, the mechanism of SDT enhanced by the wettability of nanoparticles is investigated. Nanoparticles can adsorb and stabilize nanobubbles in liquid, thus enhancing SDT efficiency. The stability of the nanobubbles is positively correlated with the desorption energy of the nanoparticles, which is determined by the wettability of the nanoparticles. This conclusion is verified for mesoporous silica and polystyrene nanoparticles and it is found that nanoparticles with a water contact angle of about 90° possess the largest desorption energy. To further apply this conclusion, thrombus models are constructed on rats and the experimental results demonstrate that nanoparticles with the largest desorption energy have the highest thrombolytic efficiency. It is believed that these findings will help to better understand the SDT mechanism and guide new strategies for rational design of nanoparticles adopted in SDT.
Collapse
Affiliation(s)
- Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhijie Zeng
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Lixin Bai
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
93
|
An injectable hydrogel co-loading with cyanobacteria and upconversion nanoparticles for enhanced photodynamic tumor therapy. Colloids Surf B Biointerfaces 2021; 201:111640. [DOI: 10.1016/j.colsurfb.2021.111640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/27/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023]
|
94
|
Wang H, Guo Y, Gan S, Liu H, Chen Q, Yuan A, Hu Y, Wu J. Photosynthetic Microorganisms-Based Biophotothermal Therapy with Enhanced Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007734. [PMID: 33738929 DOI: 10.1002/smll.202007734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The production of oxygen by photosynthetic microorganisms (PSMs) has recently attracted interest concerning the in vivo treatment of multiple diseases for their photosynthetic oxygen production in vivo, since PSMs have good biological safety. Here, the first evidence that PSMs can be used as a photothermal source to perform biophotothermal therapy (bio-PTT) is provided. In vitro and in vivo experiments proved that PSMs can generate heat for the direct elimination of tumors and release a series of pathogen-associated molecular patterns and adjuvants for immune stimulation under light irradiation. Bio-PTT enabled a local tumor inhibition rate exceeding 90% and an abscopal tumor inhibition rate exceeding 75%. This strategy also produced a stronger antitumor immune memory effect to prevent tumor recurrence. The bio-PTT strategy provides a novel direction for photothermal therapy as it simultaneously produces local and abscopal antitumor effects.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Shaoju Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Honghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
95
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
96
|
Guo M, Wang S, Guo Q, Hou B, Yue T, Ming D, Zheng B. NIR-Responsive Spatiotemporally Controlled Cyanobacteria Micro-Nanodevice for Intensity-Modulated Chemotherapeutics in Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18423-18431. [PMID: 33847489 DOI: 10.1021/acsami.0c20514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The expression of hypoxia-inducible factor-1α (HIF-1α) is upregulated in hypoxic environments at the lesions of rheumatoid arthritis (RA), which promoted the polarization of proinflammatory M1 macrophages and inhibited the differentiation of anti-inflammatory M2 to deteriorate synovial inflammation. Since oxygen scarcity at the joints causes an imbalance of macrophages M1 and M2, herein, we designed a cyanobacteria micro-nanodevice that can be spatiotemporally controlled in vivo to continuously producing oxygen in the RA joints for the downregulation of the expression of HIF-1α, thereby reducing the amounts of M1 macrophages and inducing the polarization of M2 macrophages for chemically sensitized RA treatment. The forthputting of temperature-sensitive hydrogel guaranteed the safety of cyanobacteria micro-nanodevice in vivo. Furthermore, the oxygen produced by cyanobacteria micro-nanodevice in a sustained manner enhanced the therapeutic effect of the antirheumatic drug methotrexate (MTX) and discouraged inflammation and bone erosion at RA. This study provided a new approach for the RA treatment of spatiotemporal-controlled release of oxygen in vitro.
Collapse
Affiliation(s)
- Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shuchao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Qinglu Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Bei Hou
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Tao Yue
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
97
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
98
|
Ruan J, Qian H. Recent Development on Controlled Synthesis of Mn‐Based Nanostructures for Bioimaging and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Juan Ruan
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering Research and Engineering Center of Biomedical Materials Anhui Medical University Hefei 230032 P. R. China
- Anhui Provincial Institute of Translational Medicine Anhui Medical University Hefei 230032 P. R. China
| |
Collapse
|
99
|
Chen L, Chen M, Zhou Y, Ye C, Liu R. NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Front Chem 2021; 9:629062. [PMID: 33708758 PMCID: PMC7940671 DOI: 10.3389/fchem.2021.629062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Preparation of near-infrared (NIR) emissive fluorophore for imaging-guided PDT (photodynamic therapy) has attracted enormous attention. Hence, NIR photosensitizers of two-photon (TP) fluorescent imaging and photodynamic therapy are highly desirable. In this contribution, a novel D-π-A structured NIR photosensitizer (TTRE) is synthesized. TTRE demonstrates near-infrared (NIR) emission, good biocompatibility, and superior photostability, which can act as TP fluorescent agent for clear visualization of cells and vascular in tissue with deep-tissue penetration. The PDT efficacy of TTRE as photosensitizer is exploited in vitro and in vivo. All these results confirm that TTRE would serve as potential platform for TP fluorescence imaging and imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Changsheng Ye
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
100
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|